ISO/IEC JTC1/SC22/WG9 N 429

Working Draft for PDTR Registration
6 July 2003

Guide for the use of the Ada Ravenscar Profile in high integrity
systems

This report was originally developed by the University of York and is being contributed
as a Type 3 Technical Report. Because neither a PAS nor fast-track process exists for
Technical Reports, the item is being processed using the normal method — albeit in an
accelerated fashion.

Accordingly, the original report from the University of York is provided as the Working
Draft for PDTR registration.

Guide for the use of the
Ada Ravenscar Profile In
high integrity systems

Alan Burns, Brian Dobbing and Tullio Vardanega

University of York Technical Report YCS-2003-348
January 2003

[2003 by the authors

Y CS-2003-348 Burns, Dobbing and Vardanega

Acknowledgements

Thisreport is the result of input from a number of people. The authors wish to acknowledge the
contributions of Peter Amey, Rod Chapman, Stephen Michell, Juan Antonio de la Puente, Phil
Thornley and David Tombs and the permission by Aonix Inc. to use sections of their cross-
development guide for the ObjectAda/Raven® product as the textual basis of theinitial version
of thisreport.

ii Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

Contents
1 100 (U Tox 1 o o SR 1
SErUCLUFE OF the GUIE.eeeeeeeeeee ettt st st sae e e e eneeneens 2
L S0 L= £ T o 2
10000177 01 {[0] 0 = TN TSR P TUT PR PRURPRRPRPON 2
2 Motivation for the Ravenscar Profile ..o 3
21 SCHEAUIING THEOTY ...ttt 3
211 IS Y O = o= 1 o SRS 3
212 SCBAUIING MOEL ...ttt ae e s ae e e e 4
22 Mapping Adato the Scheduling MOE ..o 5
23 Non-Preemptive Scheduling and RAVENSCAT............cccovririririreseseeeee et 6
24 Other Program Verification TEChNIQUES..........coeeiiiiiiecieceeee et 7
24.1 S Lol N 7= Y TSRS 7
(00110 I [0 1TSS 7
[0 = o 7
INFOrMEETON FIOW ...ttt se et besaeene e e enee e eneas 8
SYMBDOIIC EXECULION.......eeeieciiecee ettt ettt e s re e be e et eesaesraesreesreenseenennnes 8
Formal Code VErTICALIONcciiiieeieeeeee e st 8
24.2 00T N 7= A U 8
243 FOrmal CeartifiCalioN........c.ocieeeece et sne et sneeneenes 9
3 The Ravenscar Profile Definitionccooveviiienicce e 11
31 (DY ol o] 01= 1B o [T (o SRS 11
3.2 D= T 011 o o TSR 11
3.21 RAVENSCAI FEALUIESottt ettt et sttt et et e sae e saeeeee e 12
3.3 Summary of Implications of pragma Profile(Ravenscar)cccccevveeeveiecieseseese e 12
4 ez (0] 7= SR 15
4.1 Ravenscar Profile RESIHCHONS.........oiiiieieeere e 15
411 StatiC EXIStENCE MOUEooviieiieieeee ettt 15
412 Static Synchronization and Communication MOGEccccoveiereieinieneeeeseeeens 16
413 Deterministic MemMOryY USAJE.coiiiririirieieerieeeiee sttt re e 17
414 Deterministic EXECULION MOEc.oviiiriiiiieeceee et 17
415 IMPLICIE RESIICLIONS......ccviiticecie ettt s e s be s e e saesreennenre s 19
4.2 Ravenscar Profile DYNamiC SEMANTICS........coeiirererieeeisesie e 19
421 Task DispatChing POIICYcoiiieeieii ettt s 19
422 (0T (] o 1 o 1T RSSO 19
423 QUEUING POLICY ...ttt sttt b bt nn e s 19
424 Additional Run Time Errors Defined by the Ravenscar Profile...........cccooviiiiiiciccennne 19
425 Potentially-Blocking Operations in Protected ACHIONS...........ccccevveeeiiieccee e 20
4.2.6 Exceptions and the NO_EXCeptionS RESIICHION.........coiriiirereeeeeeee e 20
427 ACCESSTO Shared VariablESc..oiveeeecee ettt 21
4.3 E18DOratiOn CONLIOcoiiiiriiieieecesese sttt b bt ne e s 22
5 EXAMPIES OF USE.....oeieieeeee et 23
51 (@Yo Lo I OSSR 23
5.2 Co-ordinated rel€ase Of CYClIC TASKS.......ccciiiieeieciee ettt reenenne s 24
53 Cyclic Tasks with Precedence REIGHONS...........cooiiiiiieeeees s 25
54 EVENE-TTIQOEIE TASKS ...cviiiiiteieiee ettt sb e n b nn e e 25
55 Shared Resource Control using Protected ObJECES........ccvceeviieeiececeece e 26
5.6 Task Synchronization PrimitiVES.cccoiieiiiiece ettt 27

Guide for the use of the Ada Ravenscar Profile in high integrity systems iii

Y CS-2003-348 Burns, Dobbing and Vardanega

5.7 Minimum Separation between Event-Triggered TaskSccceveeveieeieseceesie e 28
58 INEEITUPE HBNAIET'S.......eeeeeeeee et n e 29
59 Catering for Entries with Multiple Callers.........c.oieiiiieee e 29
5.10 Catering for Protected Objects with morethan ONEENtryccccccvveeveviccece e, 31
511 Programming TIMEOULSccueiiiieie ettt st ae s be e s b e sreebesre e e e resneennenras 33
512 Further Expansions to the Expressive Power of RAVENSCAcoceveerireninienienieseeeeeeins 34
6 Verification of RAVENSCar PrOGramSccceerieieriesieresie et 37
6.1 Static Analysis of Sequential COE.........ccooiiiriririeeee s 37
6.2 Static AnalysiS Of CONCUIMTENT COUE........c.oriiuirieriiieiee et 37
6.2.1 Program-wide Information FIOW ANGIYSIScccoiiiiiiiicice et 38
6.2.2 ADSENCE Of RUN-LIME EITOIS ...t 39
LS = ool 0] 0 8 =g (] (=TSR 39
Execution Errors Causing EXCEPLIONS.........cciieieirieieienieeeie sttt sttt st s 40
Max_Entry_Queue_Length and Suspension Object CheCK...........coerrireririneneneneeseseeseee 40
Priority Ceiling Violation ChECK ... 40
Potentially Blocking Operationsin aProtected ACHONcccccveveereeiesce e 41
TASK TOIMMINGLION ...ttt sb bt s et et s bbb e eaeebe e e e e e e e b e b e 41
Use of Unprotected Shared Variablesocooveeiieci ettt 42
6.3 SChEAUIING ANAIYSIS ...t ettt s b e s re e besae e e e besneesaesreenrenreas 42
6.3.1 PriOrity ASSIGNIMENTcveeiieieeeieeee et e et sb s e nn s n e 42
6.3.2 Rate Monotonic Utilization-based ANalYSIS.........ccoviiierineneieieeeeese e 43
6.3.3 RESPONSE TIME ANBIYSIS....cciiiiieiecte ettt sttt ee st st te e e sbesreebesreeneese e 44
6.34 Documentation Requirement on Run-time Overhead Parameters...........cccoovveeevenvceennene. 45
6.4 Formal Analysis Of RAVENSCar PrOgraimS..........cccivereieiniesiisiesiesiesee s 46
7 Extended EXAMPIE.......cco s 47
7.1 A Ravenscar AppliCation EXamMPIE.........ooiiiiieieiiieeseses e 47
7.2 L0 L= S RSRURRR 50
L0 1T o I 51
Event-response (SPOradic) TasKS......coivei et ste s sttt snaenneens 51
Shared Resource Control Protected ODJECLooveiieiiiir e 54
Task Synchronization PrimitiVES..........coieeieeriee ettt re e ae e e 55
INEEITUPE HBNAIEY ...ttt b 57
7.3 SChEAUITNG ANBIYSIS ..ottt bbb 59
7.4 AUXITAIY COOR......ceeeitestet ettt e et b e bt b e b e n e e e e eneas 61
8 Definitions, Acronyms, and AbBBreviations...........coceveereeeeneere s 67
9 REFEIENCES ...ttt e e et st nrenns 73
10 BiblIOGrapNY ..o 74

iv Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

1 Introduction

There isincreasing recognition that the software components of critical real-time applications must
be provably predictable. Thisis particularly so for a hard real-time system, in which the failure of
a component of the system to meet its timing deadline can result in an unacceptable failure of the
whole system. The choice of a suitable design and development method, in conjunction with
supporting tools that enable the real -time performance of a system to be analysed and simulated,
can lead to ahigh level of confidence that the final system meetsits real-time constraints.

Traditional methods used for the design and devel opment of complex applications, which
concentrate primarily on functionality, are increasingly inadequate for hard real-time systems.
Thisis because non-functional requirements such as dependability (e.g. safety and reliability),
timeliness, memory usage and dynamic change management are left until too late in the
development cycle.

The traditional approach to formal verification and certification of critical real-time systems has
been to dispense entirely with separate processes, each with their own independent thread of
control, and to use acyclic executive that calls a series of proceduresin afully deterministic
manner. Such a system becomes easy to analyse, but is difficult to design for systems of more
than moderate complexity, inflexible to change, and not well suited to applications where sporadic
activity may occur and where error recovery isimportant. Moreover, it can lead to poor software
engineering if small procedures have to be artificialy constructed to fit the cyclic schedule.

The use of Ada has proven to be of great value within high integrity and real-time applications,
albeit vialanguage subsets of deterministic constructs, to ensure full analysability of the code.
Such subsets have been defined for Ada 83, but these have excluded tasking on the grounds of its
non-determinism and inefficiency. Advancesin the area of schedulability analysis currently allow
hard deadlines to be checked, even in the presence of arun-time system that enforces preemptive
task scheduling based on multiple priorities. This valuable research work has been mapped onto a
number of new Ada constructs and rules that have been incorporated into the Real-Time Annex of
the Adalanguage standard [RM D]. This has opened the way for these tasking constructs to be
used in high integrity subsets whilst retaining the core el ements of predictability and reliability.

The Ravenscar Profileis asubset of the tasking model, restricted to meet the real-time community
requirements for determinism, schedulability analysis and memory-boundedness, as well as being
suitable for mapping to asmall and efficient run-time system that supports task synchronization
and communication, and which could be certifiable to the highest integrity levels. The
concurrency model promoted by the Ravenscar Profile is consistent with the use of toolsthat alow
the static properties of programsto be verified. Potential verification techniquesinclude
information flow analysis, schedulability analysis, execution-order analysis and model checking.
These techniques alow analysis of a system to be performed throughout its development life cycle,
thus avoiding the common problem of finding only during system integration and testing that the
design failsto meet its non-functional requirements.

It isimportant to note that the Ravenscar Profile is silent on the non-tasking (i.e. sequential)
aspects of the language. For exampleit does not dictate how exceptions should, or should not, be
used. For any particular application, it islikely that constraints on the sequential part of the
language will be required. These may be due to other forms of static analysis to be applied to the
code, or to enable wor st-case execution time information to be derived for the sequential code.
The reader is referred to the ISO Technical Report, Guide for the Use of Ada Programming

Guide for the use of the Ada Ravenscar Profile in high integrity systems 1

Y CS-2003-348 Burns, Dobbing and Vardanega

Language in High Integrity Systems [GA] for adetailed discussion on all aspects of static analysis
of sequential Ada.

The Ravenscar Profile has been designed such that the restricted form of tasking that it defines can
be used even for software that needs to be verified to the very highest integrity levels. The Profile
has already been included in the SO technical report [GA] referenced above. The aim of this
guide isto give a complete description of the motivations behind the Profile, to show how
conformant programs can be analysed and to give examples of usage.

Structure of the Guide

Thereport is organized asfollows. The motivation for the development of the Ravenscar Profileis
given in the next chapter. Chapter 3 includes the definition of the profile as agreed by WG9; the
definition isincluded here for convenience, but this report is not the definitive statement of the
profile. In Chapter 4, the rationale for each aspect of the profileis described. Examples of usage
arethen provided in Chapter 5. The need for verification isan important design goal for
Ravenscar and Chapter 1 reviews the verification approach appropriate to Ravenscar programs.
Finally in Chapter 7 an extended example is given. Definitions and references are included at the
end of the report.

Readership

Thisreport isaimed at a broad audience, including application programmers, implementers of run-
time systems, those responsible for defining company/project guidelines, and academics.
Familiarity with the Adalanguage is assumed.

Conventions

This report uses the italics face to flag the first occurrence of terms that have a defining entry in
Chapter 8. For all Ada-related terms the report follows the language reference manual [RM] style:
it usesthe Arial font where thereis areference to defined syntax entities (e.g.
delay_relative_statement). For all other names (e.g. Ada.Calendar) it uses normal text font, as do
language keywords in the text except that they are in bold face.

2 Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

2.1

Motivation for the Ravenscar Profile

Before describing the Ravenscar Profile in detail, we will explain in this chapter some of the
reasoning behind its features. These primarily come from the need to be able to verify concurrent
rea -time programs, and to have these programs implemented reliably and efficiently.

In this chapter we look mainly at scheduling theory, asthisisthe main driver for the definition of
the regtrictions of the Profile. In addition there is a section that summarizes other program
verification techniques that can be used with the Profile.

Scheduling Theory

Recent research in scheduling theory has found that accurate analysis of real-time behaviour is
possible given a careful choice of scheduling/dispatching method together with suitable restrictions
on the interactions allowed between tasks. An example of a scheduling method is preemptive fixed
priority scheduling. Example analysis schemes are Rate Monotonic Analysis (RMA) [1] and
Response Time Analysis (RTA) [2].

Priority-based preemptive scheduling is usually used with a Priority Ceiling Protocol (PCP) to
avoid unbounded priority inversion and deadlocks. It provides a model suitable for the analysis of
concurrent real-time systems. The approach supports cyclic and sporadic activities, the idea of
hard, soft, firm, and non-critical components, and controlled inter-process communication and
synchronization. It isalso scalable to programs for distributed systems.

Tool support existsfor RMA and RTA, and for the static ssmulation of concurrent rea-time
programs. The primary aim of analysing the real-time behaviour of a system isto determine
whether it can be scheduled in such away that it is guaranteed to meet its timing constraints.
Whether the timing constraints are appropriate for meeting the requirements of the application
isnot an issue for scheduling analysis. Such verification requires a more formal model of the
program and the application of techniques such as model checking — see section 2.4.

2.1.1 Tasks Characteristics

The various tasks in an application will each have timing constraints. For critical tasks these are
normally defined in terms of deadlines. The deadline is the maximum time within which a task
must compl ete its operation in response to an event.

Each task is classified into one of the following four basic levels of criticality according to the
importance of meeting its deadline:

e Hard
A hard deadline task is one that must meet its deadline. The failure of such atask to meet
its deadline may result in an unacceptable failure at the system level.

e Firm
A firm deadline task is one that must meet its deadline under “average” or “normal”
conditions. An occasional missed deadline can be tolerated without causing system failure
(but may result in degraded system performance). Thereisno value, and thusthereisa
system-level degradation of service, in completing afirm task after its deadline.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 3

Y CS-2003-348 Burns, Dobbing and Vardanega

o Soft
A soft deadline task is also one that must meet its deadline under “average” or “normal”
conditions. An occasional missed deadline can be tolerated without causing system failure
(but may result in degraded system performance). There isvalue in completing a soft task
even if it has missed its deadline.

e Non-critical
A non-critical task has no strict deadline. Such atask istypically abackground task that
performs activities such as system logging. Failure of a non-critical task does not endanger
the performance of the system.

2.1.2 Scheduling Model

At any moment in time, some tasks may be ready to run (meaning that they are able to execute
instructionsif processor time is made available). Others are suspended (meaning they cannot
execute until some event occurs) or blocked (meaning that they await access to a shared resource
that is currently exclusively owned by another task). Suspended tasks may become ready
synchronously (as aresult of an action taken by a currently running task) or asynchronously (asa
result of an external event, such as an interrupt or timeout, that is not directly stimulated by the
current task).

With priority-based preemptive scheduling on a single processor, a priority is assigned to each task
and the scheduler ensures that the highest priority ready task is aways executing. If atask with a
priority higher than the currently running task becomes ready, the scheduler performs a context
switch, as soon asit can, to enable the higher-priority task to resume execution. The term
“preemptive” indicates that this can occur because of an asynchronous event (i.e. one that is not
caused by the running task).

Tasks will normally be required to interact as aresult of contention for shared resources, exchange
of data, and the need to synchronize their activities. Uncontrolled use of such interactions can lead
to a number of problems:

e Unbounded Priority Inversion/ Blocking
where ahigh-priority task is blocked awaiting aresource in use by alow-priority task; asa
result, ready tasks of intermediate priority may hold up the high priority task for an
unbounded amount of time since they will run in preference to the low priority task that has
locked the resource.

» Deadlock
where agroup of tasks (possibly the whole system) block each other permanently due to
circularitiesin the ownership of and the contention for shared resources.

* Livelock
where severa tasks (possibly comprising the whole system) remain ready to run, and do
indeed execute, but which fail to make progress due to circular data dependencies between
the tasks that can never be broken.

* Missed Deadline
where atask failsto complete its response before its deadline has expired due to factors
such as system overload, excessive preemption, excessive blocking, deadlocks, livelocks or
CPU overrun.

Therestricted scheduling model that is defined by the Ravenscar Profile is designed to minimize

the upper bound on blocking time, to prevent deadlocks, and (viatool support) to verify that there
is sufficient processing power available to ensure that all critical tasks meet their deadlines.

4 Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

2.2

In this model, tasks do not interact directly, but instead interact via shared resources known as
protected objects. Each protected object typically provides either aresource access control
function (including arepository for the private data to manage and implement the resource), or a
synchronization function, or a combination of both.

A protected object that is used for resource access control requires a mutual exclusion facility,
commonly known as a monitor or critical region, where at most one task at atime can have access
to the object. During the period that atask has accessto the object, it must not perform any
operation that could result in it becoming suspended. Ada directly supports protected objects and
disallows interna suspension within these objects.

A protected object that is used for synchronization provides a signalling facility, whereby tasks can
signal and/or wait on events. In the Profile definition, the use of protected objects for
synchronization by the critical tasksis constrained so that at most one task can wait on each
protected object. A simplified version of wait/signal isalso provided in the Profile viathe Ada
Real-Time Annex functionality known as suspension objects [RM D.10]. These can be used in
preference to the protected object approach for simple resumption of a suspended task, whereas the
protected object approach should be used when more complex resumption semantics are required,
for exampl e including deterministic (race-condition-free) exchange of data between signaller and
waiter tasks.

The Profile definition assures absence of deadlocks by requiring use of an appropriate locking
policy. Thispolicy requiresaceiling priority to be assigned to each protected object that is no
lower than the highest priority of all its calling tasks, and resultsin the raising of the priority of the
task that is using the protected object to this ceiling priority value. In addition to absence of
deadlocks, this policy also allows an almost optimal time bound on the worst case blocking time to
be computed for use within the schedul ability analysis, thereby eliminating the unbounded priority
inversion problem. Thistime bound is calculated as the maximum time that the object isin use by
lower-priority tasks. Therefore, the smaller the worst-case time bound for this blocking period, the
greater the likelihood that the task set will be schedulable.

The use of priority-based preemptive dispatching defines a mechanism for scheduling. The
scheduling policy is defined by the mapping of tasks to priority values. Many different schemes
exist for different tempora characteristics of the tasks and other factors such as criticality. What
most of these schemes require is an adequate range of distinct priority values. Adaand the
Ravenscar Profile ensure this.

Mapping Ada to the Scheduling Model

The analysis of an Ada application that makes unrestricted use of Adarun-time featuresincluding
tasking rendezvous, select statements and abort is not currently feasible. In addition, the non-
deterministic and potentially unbounded behaviour of many tasking and other run-time calls may
make it impossible to provide the upper bounds on execution time that are required for
schedulability analysis and simulation. Thus Ada coding style rules and subset restrictions must be
followed to ensure that all code within critical tasksis statically time-bounded, and that the
execution of the tasks can be defined in terms of response times, deadlines, cycle times, and
blocking times due to contention for shared resources.

The application must be decomposed into a number of separate tasks, each with asingle thread of
control, with all interaction between these tasks identified. Each task has a single primary
invocation event. The tasks are categorized as time-triggered (meaning that they executein

Guide for the use of the Ada Ravenscar Profile in high integrity systems 5

Y CS-2003-348 Burns, Dobbing and Vardanega

2.3

response to atime event), or event-triggered (meaning that they execute in response to a stimulus
or event external to the task). If atime-triggered task receives aregular invocation time event with
a statically-assigned rate the task is termed periodic or cyclic.

Protected objects must be introduced to provide mutually-exclusive access to shared resources
(e.g. for concurrent access to writable global data) and to implement task synchronization (e.g. via
some event signalling mechanism). This decomposition is normally the result of applying adesign
methodol ogy suitable to describe rea -time systems.

In order to be suitable for schedulability analysis, the task set to be analysed must be staticin
composition and have all its dependencies between tasks via protected objects. Tasks nested inside
other Ada structures cause unwanted visibility dependencies and termination dependencies.
Therefore, thismodel only permits tasks to be created at the library level, at system initialization
time.

Thisimpliesthat all tasksin the program are created at the library level.

Another consegquence of requiring a static task set for schedulability analysis purposesisthat the
Ravenscar Profile must prohibit the dynamic creation of tasks and protected objects via allocators.
Thisimpliesthat the memory requirements for the execution of the task set (e.g. the task stacks)
areresolved prior to, or during, elaboration of the program. In addition, the Profile prohibits the
implementation from implicitly acquiring dynamic memory from the standard storage pool [RM
13.11(17)]. The data structuresthat are required by the run-time system should either be declared
globally, so that the memory requirements can be determined at link time, or in such away asto
cause the storage to be allocated on the stack (of the environment task) during elaboration of the
run-time system.

The Profile places no restrictions on the declaration of large or dynamic-sized Ada objectsin the
application other than prohibiting the implementation from implicitly using the standard storage
pool to acquire the storage for these objects. It is acceptable for the memory for such objectsto be
allocated on the task stack.

Non-Preemptive Scheduling and Ravenscar

The definition of Ravenscar requires preemptive scheduling of tasks. However a similar profile
could be defined that specified non-preemptive execution. Much of the material and guidelines
contained in this report would aso apply to the non-preemptive case. Non-preemptive
implementation for a mono-processor is in between the cyclic executive approach and the
preemptive tasking approach with regard to ease of timing analysis, flexibility with regard to
change, and responsiveness to asynchronous events. In common with the cyclic executive
approach, there is no contention for shared resources, and there is no need to analyse the impact
from asynchronous events. Thereis still, however, the need to break up long code sequences using
voluntary suspension points (e.g. adelay_until_statement with a wakeup time argument that denotes
atimein the past) to obtain reasonabl e responsiveness to asynchronous events.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

2.4 Other Program Verification Techniques

In addition to the provision of support for schedulability analysis, the rational e behind the
Ravenscar Profile definition is also to support other static program verification techniques, and to
simplify the formal certification process. These other techniques are discussed briefly in this
section.

2.4.1 Static Analysis

Static analysisis recognized as a valuable mechanism for verifying software. It is mandated for
safety critical applications that are certified to the UK Defence Standard 00-55 [DS]. Industrial
experience shows that the use of static analysis during development eliminates classes of errors
that can be hard to find during testing. Moreover, these errors can be eliminated by the devel oper
before the code has been compiled or entered into the configuration management system, saving
the cost of repeated code review and testing which results from faults that are discovered during
dynamic testing.

Static analysis as a technology has a fundamental advantage over dynamic testing. If a program
property is shown to hold using static analysis, then the property is guaranteed for all scenarios.
Testing, on the other hand, may demonstrate the presence of an error, but the correct execution of a
test only indicates that the program behaves correctly for the specific set of inputs provided by the
test, and within the specific context that the test harness sets up. For all but the simplest systems,
exhaustive testing of all possible combinations of input values and program contextsisinfeasible.
Typicaly, test cases are devised to represent broad classes of inputs, so that tests can be created
that use arepresentative value from each possible input class. However complex program state
contexts are usually only creatable during integration and system testing, when it may be very
difficult to ssimulate all possible operationa states. Further, the impact of correcting errorsthat are
found only at this stage of the lifecycleis generally large in comparison to errors found during
devel opment.

There are many methods of static analysis. By using combinations of these methods, a variety of
properties can be guaranteed for a program. The following list of forms of analysisis drawn from
astudy of avariety of standardsthat is presented in the ISO Technical Report [GA]. Section 6.2
discusses how these analyses may be applied in the context of a concurrent Ravenscar Profile
program.

Control Flow

Control flow analysis ensures that code iswell structured, and does not contain any syntactically or
semantically unreachable code.

Data Flow

Dataflow analysis ensures that there is no executable path through the program that would result
in access to a variable that does not have a defined value. Dataflow analysisisonly feasible on
code that has valid control flow properties.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 7

Y CS-2003-348 Burns, Dobbing and Vardanega

Information Flow

Information flow analysisis concerned with the dependencies between inputs and outputs within
the code. It checks the specified dependencies against the implemented dependencies to ensure
consistency. To be effective, information flow analysis needs to be performed with knowledge of
the system requirements. It can be a powerful tool for demonstrating properties such as non-
interference between critical and non-critical data.

Symbolic Execution

Symbolic execution generates a model of the function of the software in terms of parallel
assignments of expressions to outputs for each possible path through the code. This can be used to
verify the code without the need for aformal specification.

Formal Code Verification

Formal code verification isthe process of proving the code is correct against aformal specification
of itsrequirements. Each operation is specified in terms of the pre-conditions that need to be
satisfied for the operation to be callable, and the post-conditions that hold following a successful
call tothe operation. The verification process demonstrates that, given the pre-conditions,
execution of the operation always gives rise to the post-conditions. The level of proof depends on
the information provided in the formal specification. This can vary depending on the aspects of
the code that need to be verified; this can vary from the proof of asingle invariant right up to full
functional behaviour.

Proof of absence of run time errorsis a special form of formal code verification. This does not
require the provision of aformal specification of the program. Instead, formal code verification
techniques are used to demonstrate that, at every point in the code where a run-time error may
occur, the pre-conditions on execution of that code and the current set of data valuesin the
expression guarantee that the run-time error cannot occur. Thisis avery valuable property to be
ableto demonstrate, especially in systems where the occurrence of an unexpected run-time
exception is generally unrecoverable, and the overhead of dynamic defensive mechanisms for
preventing all such faultsis unacceptable.

2.4.2 Formal Analysis

The formal analysis of concurrent programs has been afruitful research topic for a number of
years. Current standard techniques alow many important properties of programs to be statically
checked.

Concurrent programs, whilst more expressive than their sequential counterparts, have a number of
distinct error conditions that must be addressed during program development. The most common
of these is deadlock where all processes are blocked on a synchronization primitive with no
processes | eft to undertake the necessary unblocking actions. In general, a concurrent program
should possess two important properties:.

1. Safety - the system of tasks should not get into an unsafe (undesirable) state (for
example; deadlock, livelock).

2. Liveness- all desirable states of the task must be reached eventuadlly (that is, useful
progress should aways be made).

8 Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

In areal-time concurrent system, ‘liveness becomes ‘ bounded liveness' as desirable states must be
reached by known deadlines.

Ada, like all other engineering languages, does not have its semantics defined in aformal
mathematical way. Hence it ishecessary to link a model of the program with the program itself.
Thislink cannot be formal but can be precise. The use of standard patterns for Ada tasks helps this
linkage. The formal model could be derived from the code or, more likely in an engineering
process, the model is derived from requirements, and the code is obtained via a series of
refinements from the model.

There are two general forms for these models and two methods of extracting properties
(behaviours) from these descriptions. First, an algebraic form could be used in one of the
concurrency languages that does have formally defined semantics; examples being CSP and CCS
The other, more common approach, is to view the program as a collection of state-transition
systems.

Verification comes from either a proof theoretic approach or viamodel checking. An algebraic
description can be proved to be deadlock free, for example, by the use of atheorem prover.
Alternatively, a state-transition description (or an algebraic one) can be exercised by an exhaustive
search of the set of states the program can enter. This ‘checking of the model' can deduce that all
safe states, and no unsafe states, can be reached.

The disadvantage of model checking isthat an explosion of states can make it impossible to
terminate the search. However, there have been considerable (and continuing) advancesin the
tools for model checking, and now sizeable systems can be verified in arespectably small number
of hours of processing time. Theorem proving does not have this problem but it isamore skilled
activity and theorem proving tools are not smple to use (i.e. the verification process is not
automatic). A proof theoretic approach aso has the advantage that it can show that a property is
true 'for any number of tasks’; whereas model checking cannot generalizein thisway - it will show
itistruefor six client tasks, say, but for seven the check must be made again. Combinations of
proof and model checking are possible and are the subject of current research.

For real-time systems, it is possible to add time to the concurrency model and to then validate
temporal aspects of program. Timed versions of formalisms such as CSP exist and state-transition
systems with clocks allow timing requirements to be expressed and subsequently verified by model
checking. A common formalism for thistype of state-transition system is called timed automata.
Again, tool support for model checking sets of timed automatais well advanced. One of the very
useful features of model checking toolsisthat they all produce a well-defined counter example for
any failed check.

2.4.3 Formal Certification

In order to achieve formal certification of a software architecture and of its Adaimplementation, it
is necessary to provide verification evidence of safety and reliability of the Adarun-time system as
well as for the application-specific components. The run-time system that is needed to implement
the dynamic semantics of the full Ada concurrency model is complex, and the number of states
that may be represented by its dynamic data structuresislarge. Asaresult, itisvery challenging
for acommercia Adavendor to produce certification evidence to the highest integrity levels for an
entire Ada run-time system.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 9

Y CS-2003-348 Burns, Dobbing and Vardanega

10

The Ravenscar Profile definition greatly reduces the size and complexity of the required run-time
system so asto simplify the process of providing evidence of its safety and reliability. Ada
concurrency features that have major impact on the run-time system semantics, such as abort,
asynchronous transfer of control, multiple entry queues each with alist of waiting tasks, requeue
statements, task hierarchy and dependency, and finalization actions of loca protected objects, are
eliminated. Asaresult, it ispossibleto create not only a small and highly efficient run-time
system implementation, but also one that is amenable to the forms of verification applicableto
sequential code as described in [GA], which may then be used as evidence to support the formal
certification of an entire software system to the highest integrity levels.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

3 The Ravenscar Profile Definition

3.1 Development History

The 8" International Real-Time Ada Workshop (IRTAW) was held in April 1997 at the small

Y orkshire village of Ravenscar. Two position papers[3][4] led to an extended discussion on
tasking profiles. By the end of the workshop, the Ravenscar Profile had been defined [5] in aform
that isamost identical to its current specification.

At the 9" IRTAW [6] (March 1999) the Ravenscar Profile was again discussed at length. The
definition was reaffirmed and clarified. The most significant change was the incorporation of
Suspension Objects. An Ada Letters paper [5] became the de facto defining statement of the
Profile.

By the 10" IRTAW [7] (September 2000) many of the position papers were on aspects of the
Profile and its use and implementation. No mgjor changes were made although an attempt to
standardize on the Restriction identifiers was undertaken. Time was spent on a non-preemptive
version of the Profile. Following the 10" workshop the participants decided to forward the
Ravenscar Profile to the ARG — the SO body in charge of the maintenance of the Adalanguage —
so that its definition could move from a de facto to areal standard. The HRG —the 1SO body in
charge of the high integrity aspects of the Adalanguage — was a so tasked with producing a
Rationale for the Profile, action that has resulted in the production of this guide.

At the 11" IRTAW [8] (April 2002) the formal definition of the profile as formulated by the ARG
was agreed. It was confirmed that the Profile requires task dispatching policy
FIFO_Within_Priorities and locking policy Ceiling_Locking.

3.2 Definition

The definition of the Profile has now been approved by WG9 for inclusion in the revision of the
Ada 95 Standard. The definition is reported here for information only, in aform that matches its
latest formal definition by the ARG [Al 249], [Al 305]; in due course, an appropriate WG9
document shall provide the definitive specification for inclusion in the revised language standard.

An application requests the use of the Ravenscar Profile by means of the configuration pragma
Profile with the Ravenscar identifier:

pragnme Profil e(Ravenscar);

There are, in genera, two distinct ways of defining the details of the Profile. Either by defining
what isin it, or by declaring those parts of Adathat are not. The‘official’ definition defines the
restrictions that are needed to reduce the full tasking model to Ravenscar. However, this givesa
rather negative definition. So we shall first introduce the Profile by focusing on the features it
does contain.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 11

Y CS-2003-348 Burns, Dobbing and Vardanega

3.2.1 Ravenscar Features

3.3

12

Following from the discussion on verification in the previous chapter we are able to define an
adequate set of tasking features. The Profile allows programs to contain:

e Task types and objects, defined at the library level.

* Protected types and objects, defined at the library level, with a maximum of one entry per
object and with a maximum of one task queued at any time on that entry. The entry barrier
must be a single Boolean variable (or a Boolean literal).

e Atomic and Volatile pragmas.

e delay_until_statementS.

» Celiling_Locking policy and FIFO_Within_Priorities dispatching policy.

e TheE'Count attribute for protected entries except within entry barriers.

e TheAdaTask_ldentification package plus task attributes T'ldentity and E'Caller.
e Synchronoustask control.

» Task type and protected type discriminants.

e TheAdaRead Time package.

* Protected procedures as statically bound interrupt handlers.

Together these form a coherent set of features that define an adequate language for expressing the
programming needs of statically defined real-time systems.

Summary of Implications of pragma Profile(Ravenscar)

The following restrictions apply to the aternative mode of operation defined by the Ravenscar
Profile. Thefirst set comes from the existing Ada definition of restrictions:
Restrictions(Max_Protected Entries=>1);

Restrictions(Mux_Task_Entri es=>0);

Restrictions(No_Abort_Statenents);

Restrictions(No_Asynchronous_Control);

Restrictions(No_Dynamc_Priorities);

Restrictions(No_Il nplicit_Heap_Allocations);

Restrictions(No_Task_All ocators);

Restrictions(No_Task_Hi erarchy);

In addition to these restriction identifiers the dispatching and locking policies defined by the
Ravenscar profile are;

Task_Di spat chi ng_Policy(FIFOWthin_Priorities);

Locki ng_Pol i cy(Cei |l i ng_Locki ng);

The following new pragma Restrictions identifiers are defined for the Ravenscar Profile.

No_Calendar
There are no semantic dependencies on package Ada.Calendar.

No_Dynamic_Attachment
Thereisno cal to any of the operations defined in package Ada.Interrupts (Is_Reserved,
Is_Attached, Current_Handler, Attach Handler, Exchange Handler, Detach Handler,
Reference).

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

No_Local_Protected Objects
Protected objects shall be declared only at library-level.

No_Protected Type Allocators
There are no alocators for protected types or types containing protected type components.

No_Relative Delay
There are no delay_relative_statements.

No_Requeue_Statements
There are no requeue_statements.

No_Select Statements
There are no select_statements.

No_Task Attributes Package
There are no semantic dependencies on package Ada.Task_Attributes.

No_Task Termination
All tasks are non-terminating. It isimplementation-defined what happensif atask attempts to
terminate.

Simple_Barriers
The Boolean expression in an entry barrier shall be either a static Boolean expression or a
Boolean component of the enclosing protected object.

Max_Entry_Queue_Length
Max_Entry Queue_L ength defines the maximum number of calls that are queued on an entry.
Violation of thisrestriction results in the raising of Program_Error at the point of the call. For
the Ravenscar Profile, the value of thisrestrictionis 1.

Note that the effect of this restriction applies only to protected entry queues due to the
accompanying restriction of Max_Task_Entries=> 0.

The remainder of the definition concerns errors. The bounded error that is the invocation of one
of the following potentially blocking operations during a protected action shall be detected:

e aprotected entry_call_statement
* adelay_until_statement

« acall to alanguage-defined subprogram that is potentially blocking, for example
Ada.Synchronous_Task_Control.Suspend_Until_True

Thisisindicated by
pragna Det ect _Bl ocki ng;

that forms part of the Ravenscar definition.

Note the detection of these bounded error cases resultsin Program_Error being raised ([RM] 9.5.1
(17)). Potentially blocking operations that occur in aforeign language domain need not be
detected.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 13

Y CS-2003-348

14

Burns, Dobbing and Vardanega

The definition of these new restrictions and the motivation for the complete set of restrictionsis
given in the next chapter. For completeness, the definition of the Ravenscar Profile asit will

appear in the amended Ada reference manual is asfollows:
Task_Di spat ching_Policy(FIFOWthin_Priorities);

pr agma
pr agna
pr agma

pr agna

Locki ng_Pol i cy(Cei | i ng_Locki ng);
Det ect _BI ocki ng;

Restrictions(

Max_Entry_ Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task _Entries => 0,
No_Abort _Stat enents,
No_Asynchronous_Control ,
No_Cal endar,

No_Dynami c_Attachnent,
No_Dynami c_Priorities,

No Inplicit_Heap_ Allocations,
No_Local _Prot ected_hj ect s,
No_Protected Type Allocators,
No_Rel ati ve_Del ay,
No_Requeue_St at enent s,

No_Sel ect _St atenment s,
No_Task_Al | ocators,
No_Task_Attri but es_Package,
No_Task_Hi erarchy,
No_Task_Term nati on,
Sinple_Barriers);

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

4 Rationale

This chapter provides a detailed rational e for the imposition of each restriction and some general
discussion about how to work within the restrictions while still retaining flexibility in the design
and coding processes.

4.1 Ravenscar Profile Restrictions

4.1.1 Static Existence Model

Therestrictions listed below ensure that the set of tasks and interrupts to be analysed is fixed and
has static properties (in particular, base priority) after program elaboration. If avariable task set
were to exigt, then it would be impractical to perform static timing analysis of the program because
of the dynamic nature of the requirements for CPU time and the meeting of deadlines.

No_Task Hierarchy
[RM D.7] All (nonenvironment) tasks depend directly on the environment task of the partition.

Therestriction No_Task Hierarchy prevents the declaration of tasks local to procedures or to
other tasks. Thus tasks may only be created at the library level, i.e. within the declarative part
of library level package specifications and bodies, including child packages and package
subunits.

No Task Allocators
[RM D.7] There are no allocators for task types or types containing task subcomponents.

Therestriction No_Task_Allocators prevents the dynamic creation of tasks viathe execution of
Adaallocators.

No_Task Termination
[Al 305] All tasks are non-terminating. It isimplementation-defined what happens if a task
attemptsto terminate.

The restriction attempts to mitigate the hazard that may be caused by tasks terminating silently.
Real-time tasks normally have an infinite loop as their last statement.

No_Abort_Statements
[RM D.7] There are no abort_statements, and there are no callsto
Task_ldentification.Abort_Task.

Therestriction No_Abort_Statements ensures that tasks cannot be aborted. The removal of
abort statements (and select then abort) significantly reduces the size and complexity of the run-
time system. It also reduces non-determinacy.

No_Dynamic_Attachment
[Al 305] Thereisno call to any of the operations defined in package Ada.Interrupts
(Is_Reserved, Is_Attached, Current_Handler, Attach_Handler, Exchange Handler,
Detach_Handler, Reference).

Guide for the use of the Ada Ravenscar Profile in high integrity systems 15

Y CS-2003-348 Burns, Dobbing and Vardanega

Therestriction No_Dynamic_Attachment excludes use of the operationsin predefined package
Ada.Interrupts, which contains primitives to attach and detach handlers dynamically during
program execution. In conjunction with restriction No_L ocal_Protected Objects (see below)
thisimplies that interrupt handlers can only be attached statically by use of pragma

Attach Handler applying to protected procedures within library-level protected objects. Note
the types and names defined in Ada.Interrupts can be used.

No_Dynamic_Priorities
[W D.7] Thereare no semantic dependencies on the package Ada.Dynamic Priorities.

Therestriction No_Dynamic_Priorities disallows the use of the predefined package
Ada.Dynamic_Priorities, thereby ensuring that the priority assigned at task creation is
unchanged during task execution, except when the task is executing a protected operation and
during which time it inherits the ceiling priority.

4.1.2 Static Synchronization and Communication Model

16

These restrictions are a natural conseguence of the static existence model, since alocally declared
protected object is meaningless for mutual exclusion and task synchronization purposesif it can
only be accessed by onetask. Furthermore, a static set of protected objectsis required for
schedulability analysis.

No_L ocal_Protected Objects
[Al 305] Protected objects shall be declared only at library-level..

Therestriction No_Local_Protected_Objects prevents the declaration of protected objects local
to subprograms, tasks, or other protected objects.

No_Protected Type_ Allocators
[Al 305] There are no allocators for protected types or types containing protected type
components.

Therestriction No_Protected_Type Allocators prevents the dynamic creation of protected
objects via Ada allocators.

No_Select_Statements
[Al 305] There are no select_statements.

Max_Task_Entries=> N
[RM D.7] Specifies the maximum number of entries per task.

For the Ravenscar Profile, the value of Max_Task _Entriesis zero.

Therestrictions Max_Task_Entries=> 0 and No_Select_Statements prohibit the use of Ada
rendezvous for task synchronization and communication. This ensures that these operations are
achieved using only the two supported task synchronization primitives. protected object entries
and suspension objects, which both exhibit time-deterministic execution properties needed for
static timing analysis.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

4.1.3 Deterministic Memory Usage

The Profile contains two restrictions that are designed to prevent implicit dynamic memory
allocation by the implementation. Note that the Profile does not prevent the use of the standard
storage pool or a user-defined storage pool via explicit allocators, although if there were no
application-level visibility or control over how the storage in the standard storage pool was
managed, the use of this pool would not be recommended.

No_Implicit Heap Allocations
[RM D.7] There are no operations that implicitly require heap storage allocation to be
performed by the implementation. The operations that implicitly require heap storage
allocation are implementation defined.

Therestriction No_Implicit_Heap_Allocations prevents the implementation from allocating
memory from the standard storage pool other than as part of the execution of an Ada allocator.

No_Task Attributes Package
[Al 305] There are no semantic dependencies on the package Ada.Task_Attributes.

Therestriction No_Task_Attributes Package prevents use of the predefined package

AdaTask Attributes, which is used to dynamically create attributes of each task in the
application. Attribute creation may cause implicit dynamic allocation of memory. Although an
implementation is allowed to statically reserve space for such attributes and then to impose a
restriction on usage, it isfelt that support of this feature is not compatible with the static nature
of Ravenscar programs.

4.1.4 Deterministic Execution Model

The following restrictions ensure deterministic execution:

Max_Protected Entries=> N
[RM D.7] Specifies the maximum number of entries per protected type. The bounds of every
entry family of a protected unit shall be static, or shall be defined by a discriminant of a subtype
whose corresponding bound is static.

For the Ravenscar Profile, the value of Max_Protected Entriesis 1.

Max_Entry_Queue Length=>N
[Al 305] Soecifies the maximum number of callsthat are queued on an entry. Violation of this
restriction resultsin the raising of Program_Error exception at the point of the call.

For the Ravenscar Profile, the value of Max_Entry_Queue_Lengthis 1, and acall can only be
gueued on a protected entry, since Max_Task EntriesisO.

Therestrictions Max_Protected Entries=> 1 and Max_Entry Queue Length => 1 ensure that
at most one task can be suspended waiting on a closed entry barrier for each protected object
whichis used as atask synchronization primitive. This avoids the possibility of queues of tasks
forming on an entry, with the associated non-determinism of the length of the waiting timein
the queue. It also avoids two or more barriers becoming open simultaneously as the result of a
protected action, with the associated non-determinism of selecting which entry should be
serviced first. The restriction also enables atight time bound on the epilogue code to be
determined.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 17

Y CS-2003-348 Burns, Dobbing and Vardanega

18

The Max_Entry_Queue L ength restriction may only be checkable at run time, in which case
violdaon would result in the raising of the Program_Error exception at the point of the entry

call. Thisisconsistent with the Adarule that states that Program_Error exception is raised upon
calling Suspend_Until_True if another task is waiting on that suspension object [RM D.10]. An
application could further restrict a Ravenscar program so that only onetask is able to call each
entry. A static check could then be provided, but this goes beyond what the Profile defines.

Note that, when the restriction Max_Entry _Queue Length => 1isinforce, pragma
Queuing_Policy ([RM D.4]) has no effect, since there are no queues.

Simple_Barriers

[Al 305] The Boolean expression in an entry barrier shall be either a static Boolean expression
or a value of a Boolean component of the enclosing protected object.

Therestriction Simple_Barriers, coupled with Max_Protected Entries=> 1, ensures a
deterministic execution time and absence of side effects for the evaluation of entry barriers at
the epilogue of protected actions within a protected object that is used for task synchronization.
Thereis also scope for additional optimization by the implementation since the barrier value is
either static or can be read directly from one of the protected object components, without
needing to be computed separately. If the application requires composite entry barrier
expressions, this can be achieved by declaring an additional Boolean in the protected data and
assigning the composite expression to the Boolean whenever its evaluation result may change.
Note the Boolean variable must be declared immediately within the protected object (or type).

No_Requeue Statements

[Al 305] There are no requeue_statements.

Therestriction No_Requeue_Statements ensures deterministic task release from protected entry
barriers used for task synchronization. The requeue_statement in Ada causes the current caller of
aprotected entry to be requeued to a different entry dynamically, thereby making it difficult to
perform static analysis of task release.

No_Asynchronous_Control

[RM D.7] There are no semantic dependencies on the package
Ada.Asynchronous_Task_Control.

Therestriction No_Asynchronous_Control excludes the use of asynchronous suspension of
execution. This ensures that task execution istemporally deterministic. See aso the comments
made on No_Abort_Statements.

No_Relative Delay

[Al 305] There are no delay_relative_statements.

Therestriction No_Relative Delay prohibits use of the delay_relative_statement based on type
Duration. This statement exhibits non-determinism with respect to the absolute time at which
the delay expiresin the case when the delaying task is preempted after calculating the required
relative delay, but before actua suspension occurs. In contrast, the delay_until_statement iS
deterministic and should be used for accurate release of time-triggered tasks.

No_Calendar

[Al 305] There are no semantic dependencies on the package Ada.Calendar.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

Therestriction No_Calendar ensures that all timing is performed using the high precision
afforded by the time type in package Ada.Real_Time, or by an implementation-defined time
type. The Ada.Real_Time time type has a precision of the same order of magnitude as the real-
time clock device on the underlying processor board. In contrast, the time type in package
Calendar generally has much coarser precision than the real-time clock, due to the need to
support a 200 year range, and so its use could result in less accuracy in task rel ease times.

4.1.5 Implicit Restrictions

The set of restriction identifiers for Ada does not represent an orthogonal set of restrictions with
the result that some restrictions are implied by others. For example, No_Select_Statementsimplies
Max_Select Alternatives must be zero.

4.2 Ravenscar Profile Dynamic Semantics

4.2.1 Task Dispatching Policy

The task dispatching policy that is required by pragma Profile(Ravenscar) is
FIFO_Within Priorities[RM D.2].

4.2.2 Locking Policy

Thelocking policy that is required by pragma Profile(Ravenscar) is Ceiling_Locking [RM D.3].
This policy provides one of the lowest worst case blocking times for contention for shared
resources, and so maximizes the schedulability of the task set when preemptive scheduling is used.

4.2.3 Queuing Policy

The queuing policy is not meaningful for pragma Profile(Ravenscar) since no entry queues can
form. Thus queuing policy identifiers FIFO_Queuing and Priority_Queuing have no effect.

4.2.4 Additional Run Time Errors Defined by the Ravenscar Profile

The Adalanguage standard defines a number of concurrency-related run-time checks that may lead
to the raising of an exception. The Ravenscar Profile restrictions greatly reduce the quantity of
these checks, and thus the number of exception cases that can occur. The two concurrency-related
run-time checks that apply to Ravenscar programs are:

» detection of priority ceiling violation as defined by Ceiling_L ocking policy;

« detection of violation of not more than one task waiting concurrently on a suspension object
(viathe Suspend_Until_True operation).
The Ravenscar Profile introduces some additional concurrency-related checks that are potentially
detectable only at execution time:

e the maximum number of callsthat are queued concurrently on an entry must not exceed
one. Program_Error exception israised if the error occurs (pragma
Restrictions(Max_Entry Queue_Length => 1));

e al tasks are non-terminating (pragma Restrictions(No_Task_Termination)).

Guide for the use of the Ada Ravenscar Profile in high integrity systems 19

Y CS-2003-348 Burns, Dobbing and Vardanega

A conforming implementation must document the effect of atask that attemptsto terminate.
Possible effects may include:

» alowing the task to terminate silently;

* holding the task in a permanent pre-terminated state;

e executing an application-specific task termination handler via a non-portabl e feature of the
implementation.

Whatever action is taken by the implementation, the application cannot assume that full task
termination actions (including finalization) have been executed.

4.2.5 Potentially-Blocking Operations in Protected Actions

The Ravenscar Profile requires detection of the following bounded error in the Ada standard, with
the consequential raising of Program_Error exception:

« execution of a potentially-blocking operation during a protected action (pragma
Detect_Blocking).

The Profile definition does however significantly reduce the list of potentially-blocking operations
that may occur during a protected action. In particular, the following potentially-blocking
operations are eliminated by the Profile definition:

* aselect statement

d an accept_statement

e atask entry call

* Qadelay_relative_statement

* aNnabort_statement

e task creation or activation

e anexterna requeue_statement with the same target object as that of the protected action.

The Profile definition does not require detection of the potentially blocking operation that is
defined by the language standard [RM 9.5.1 (16)]. Inthiscase, it is allowed for the detection to
occur at the point of execution of the potentially blocking operation within the called subprogram

body.

The rationale for requiring detection of potentially-blocking operationsisto allow a highly
efficient and temporally deterministic implementation of Ceiling L ocking policy on a
mono-processor. In effect, the ceiling priority alone is sufficient to provide the required mutual
exclusion without the need to use locks such as mutexes once it is guaranteed that the task cannot
suspend co-operatively whilst inside the protected operation. Thisform of locking is also
non-queuing on a mono-processor, with the associated benefit of removing the need to compute
the worst time that atask may wait in the queue.

4.2.6 Exceptions and the No_Exceptions Restriction

20

The genera concern within high integrity systems of the occurrence of unhandled exceptionsis not
addressed directly by the Ravenscar Profile since exceptions relate to the sequential, rather than the
concurrent, part of the language. Consequently, whereas an unhandled exception will cause a

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

sequential program to terminate, and hence offer an immediate opportunity for some program level
control to invoke recovery actions, an unhandled exception during the execution phase of a
concurrent program may not be detected. In particular, an unhandled exception can cause any of
the following effects.

» silent abandonment of the execution of an interrupt handler;
* silent termination of atask;

* premature exit from a protected action.

The Ravenscar Profile statically avoids the possibility that an exception can be raised by an entry
barrier viatherestriction Smple_Barriers. In addition, the Profile imposes the restriction
No_Task Termination that requires the implementation to document the effect of atask attempting
to terminate. Nevertheless, thisisinadequate for most high integrity applications that require static
demonstration of absence of exceptions due to run-time check failure. Some techniques are
presented in section 6.2 to address the topic of proof of absence of the concurrency-related run-
time errors that may occur in a Ravenscar Profile program, using static analysis.

The Ada standard includes the identifier No_Exceptions as avalid argument for the Restrictions
pragma. It should be noted that the inclusion of this pragma does not provide a static guarantee of
exception freedom - it merely guarantees that the application code does not contain any explicit
raise_statement, nor code generation for language-defined checks, nor any exception handlers.
However, it is possible for an exception to be raised automatically by the underlying hardware, or
by build-in code in the run-time system. There is a documentation requirement on the
implementation to define such cases[RM H.4 (25)].

In addition, the language standard defines execution of a program to become erroneousif a
language-defined check is suppressed viathe No_Exceptions restriction and the conditions arise
that would have caused the check to fail [RM H.4 (26)]. Thisis consistent with the suppression of
checks using pragma Suppress[RM 11.5 (26)]. Since erroneous execution results in the
behaviour of a program becoming undefined, the recommendation for high integrity systemsis that
the No_Exceptions restriction should only be used in conjunction with verification and analysis
techniques (see chapter 1) that can statically prove that no exceptions due to run-time check failure
can occur. Inthis case, the No_Exceptions restriction is providing the additional safeguard that
exception raising via explicit raise_statements will be prohibited at compile time.

4.2.7 Access to Shared Variables

The Ravenscar Profile requires all synchronization and communication between tasks and interrupt
handlers to use data which has mutually-exclusive access. This prevents any erroneous execution
that might arise if concurrent access (that includes a write operation) to the same unprotected
shared variable is permitted. Such access control is provided in Ada using one of the following
constructs:

e aprotected object;
e asuspension object;
* an atomic object (to which pragma Atomic applies).
This access control model applies to the operational phase of the application, after program

initialization via elaboration of library-level packagesis complete. For each class of object above,
itis possibleto ensurethat itsinitiaization is completed as part of program elaboration.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 21

Y CS-2003-348 Burns, Dobbing and Vardanega

4.3

22

Thereis an issue however in that the semantics of Ada define task activation and interrupt handler
attachment to occur during library-level elaboration code for objectsthat are declared within
library-level packages. Consequently it isthe case that tasks will execute their declarative part and
may proceed into their sequence_of_statements, and that interrupt handlers may execute, prior to the
elaboration code for program initialization being completed. This scenario could giveriseto the
following undesirabl e effects:

» atask body or interrupt handler may suffer an access-before-elaboration exception;
e atask body or interrupt handler may access uninitialized data;

» atask body or interrupt handler may access unprotected data concurrently that it shares only
with the thread of control that is performing the datainitialization

It is possible to program each task such that it suspends itself at the start of its sequence of
statements, but thisis not possible for interrupt handlers (although an application may be able to
inhibit interruptsif the device alows). Furthermore, the code executed as part of task activation
(prior to the suspension point) may suffer the effects listed above. In order to address thisissue,
the Partition_Elaboration_Policy pragma has been proposed for the amendment of the Ada
standard (see below). If this pragmais used with argument Sequential, then all task activation and
interrupt handler attachment is deferred until after all program elaboration code is complete, i.e.
just prior to the call of the main subprogram. This pragma complements those that are defined by
the Ravenscar Profile to provide the verification that the Profile's goal of controlled accessto
global shared variables is met during program initialization.

Elaboration Control

Although not part of Ravenscar, a closely associated new pragmais Partition _Elaboration_Policy
[Al 265]. If given the argument Sequential, this defines an aternative elaboration behaviour in
which al tasks declared at the library level only proceed to their activation after the environment
task has completed all its elaborations and has reached its ‘begin’. All library-based tasks are then
activated and executed concurrently. This pragma provides a more deterministic start for a
program.

The pragma cannot be used with general Ada programs, but it can be employed with Ravenscar.
Note the pragma al so prohibits the delivery of interrupts until the environment task has completed
its elaboration. Thiswill also be an attractive feature to many users of Ravenscar.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

5.1

Examples of Use

This chapter illustrates some simple uses of the Ravenscar Profile. The Profile can be used with a
variety of coding styles. However if the user is required to perform program analysis, for example
to check the schedulability of the tasks, then certain coding styles are recommended. Indeed, a
small number of templates can cater for alarge class of application needs. Inthefirst eight
sections of this chapter we give examplesthat illustrate the straightforward use of Ravenscar.
After that, in sections 5.9 to 5.12, we show how Ravenscar can dea with requirements that would
appear to lie outside the scope of what is supported by the Profile.

Cyclic Task

Thetask body for acyclic (or periodic) task typically has, asitslast satement, an outermost
infinite loop containing one or more delay_until_statements. The basic form of a cyclic task has just
asingle delay statement either at the start or at the end of the statements within the loop. The
Ravenscar Profile supports only one time type for use as the argument — Ada.Real_Time.Time,
although a user-defined time type could be used.

Remember that task termination is considered to be an error condition in Ravenscar Profile
compliant code since there is no dynamic task creation (and hence the thread of control would be
permanently lost). Hence the loop that is presented in the template below isinfinite.

A cyclic task will not usually contain any other form of voluntary-suspension statement in the
infinite loop, since this would undermine the schedulability anaysis

The Ravenscar Profile supports the use of discriminants for task types and protected types. One
use of adiscriminant isto set differing priorities for task objects or protected objects that are of the
same type by using it as the argument of pragma Priority. Discriminants can aso be used to
indicate the period of acyclic task or other task parameters.

Example 1, Cyclic Template

task type Cyclic(Pri : SystemPriority; Cycle_Tine : Positive) is
pragma Priority(Pri);
end Cyclic;

task body Cyclic is
Next Period : Ada.Real _Tine. Tineg;
Period : constant Ada.Real _Tine. Ti me_Span : =
Ada. Real _Tine. M croseconds(Cycl e_Ti ne);
- Other declarations
begin
- Initialization code
Next Period := Ada. Real _Tinme.C ock + Peri od;
| oop
delay until Next_Period; -- wait one whol e period before executing
- Non-suspendi ng periodi c response code
- May include calls to protected procedures
Next Period := Next_Period + Period;
end | oop;
end Cyclic;

- now we declare two task objects of this type
Cl : Cyclic(20,200);
C2 : Cyclic(15,100);

Guide for the use of the Ada Ravenscar Profile in high integrity systems 23

Y CS-2003-348 Burns, Dobbing and Vardanega

5.2

24

Cyclic tasks normally exchange data through protected operations. In this coding style, there are
no protected entries since the only activation eventisondel ay until . Itisrecommended that all
shared data be placed in protected objects to avoid corruption.

Co-ordinated release of Cyclic Tasks

The simple exampleillustrated above has a number of cyclic tasks that each read the clock and
then suspend for time 'period'. 1t can however by useful for al such tasks to co-ordinate their start
times so that they share a common epoch. This can help to enforce precedence relations across
tasks. To achieve this a protected object is used which reads the clock on creation and then makes
this clock value available to all cyclic tasks.

Example 2, Protected Object Implementing an Epoch

protected Epoch is

function Start_Tine return Ada. Real _Ti ne. Ti ne;
private

pragma Priority(SystemPriority’ Last);

Start : Ada.Real _Tine.Tine := Ada. Real _Tine. d ock;
end Epoch;

prot ected body Epoch is
function Start_Tinme return Ada.Real _Tine.Tine is
begin
return Start;
end Start_Tine;
end Epoch;

Note, a protected object is not strictly needed as a shared variable appropriately initialized will
suffice. A more robust scheme and one that only reads the epoch time once atask actually needsit
isasfollows.

Example 3, Caller Initialized Epoch

protected Epoch is

procedure Get_Start _Time(T : out Ada.Real _Tine.Tine);
private

pragma Priority(SystemPriority’ Last);

Start : Ada. Real _Tine. Ti ne;

First : Boolean := True;
end Epoch;

protected body Epoch is
procedure Get_Start _Time(T : out Ada.Real _Tinme.Tine) is
begin
if First then
First := Fal se;
Start := Ada. Real _Tine. d ock;
end if;
T := Start;
end Get_Start _Time;
end Epoch;

Thisleads to the following further example.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

5.3

54

Example 4, Cyclic Task Using Epoch

task type Cyclic(Pri : SystemPriority; Cycle_Tinme : Positive) is
pragma Priority(Pri);
end Cyclic;

task body Cyclic is
Next Period : Ada.Real _Tine. Tineg;
Period : constant Ada.Real _Tine. Ti me_Span : =
Ada. Real _Tine. M croseconds(Cycl e_Ti ne);
-- Other declarations
begin
-- Initialization code
Epoch. Get _Start _Ti me(Next _Peri od);
Next Period := Next_Period + Period;
| oop
del ay until Next_Peri od; -- wait until next period after epoch
-- Non-suspendi ng periodi c response code
-- May include calls to protected procedures
Next Period := Next_ Period + Period;
end | oop;
end Cyclic;

Cyclic Tasks with Precedence Relations

The use of priorities and a shared epoch can be used to enforce precedence, between tasks with the
same period, if the application can be restricted so that the tasks do not block during execution.
An alternative scheme isto use an offset in time. Here scheduling analysisis used to ensure that
each task has completed before the next is rel eased.

Example 5, Cyclic Tasks with Offsets

task type Cyclic(Pri : SystemPriority; Cycle Tine, Ofset : Natural) is
pragnma Priority(Pri);
end Cyclic;

task body Cyclic is
Next _Period : Ada.Real _Tine. Ti ne;
Period : constant Ada.Real _Tine. Tinme_Span :=
Ada. Real _Ti ne. M croseconds(Cycl e_Ti ne) ;
-- Oher declarations
begi n
-- Initialization code
Next _Period : = Epoch. Start_Ti ne + Ada. Real _Ti ne. M croseconds(Off set);
| oop
delay until Next_Period; -- wait until next period after offset
-- Non-suspendi ng periodi c response code
-- May include calls to protected procedures
Next Period := Next_ Period + Period;
end | oop;
end Cyclic;

First : Cyclic(20,200,0); -- required to conplete with deadline 70
Second : Cyclic(20, 200, 70);

Event-Triggered Tasks

Thetask body for an event-triggered task that conforms to the Profile typically has, asits last
statement, an outermost infinite loop containing as the first statement either a call to a protected
entry or acall to Ada.Synchronous_Task_Control.Suspend_Until_True using a Suspension Object.
The suspension object is used when no other effect is required in the signalling operation; for
example, no dataisto be transferred from signaller to waiter. In contrast, the protected entry is

Guide for the use of the Ada Ravenscar Profile in high integrity systems 25

Y CS-2003-348 Burns, Dobbing and Vardanega

5.5

26

used for more elaborate event signalling, when additional operations must accompany the
resumption of the event-triggered task.

An event-triggered task will not usually contain any other form of voluntary-suspension statement
in the infinite loop.

Example 6, An Event-Triggered Task

- A suspension object, SO is declared in a visible library unit and is
- set to True in another (releasing) task

task type Sporadic(Pri : SystemPriority) is
pragma Priority(Pri);
end Spor adi c;

task body Sporadic is
- Decl arations
begin
- Initialization code
| oop
Ada. Synchr onous_Task_Control . Suspend_Until _True(SO);
- Non-suspendi ng sporadi c response code
end | oop;
end Spor adi c;

Sp : Sporadic(17);

Shared Resource Control using Protected Objects

A protected object used to ensure mutually exclusive access to a shared resource, such as global
data, typically contains only protected subprograms as operations, i.e. no protected entries.
Protected entries are used only for task synchronization purposes where data exchange isinvolved.
A protected procedure should be used when the internal state of the protected data must be altered,
and a protected function should be used for information retrieval from the protected data, when the
data remains unchanged.

The Ada Reference Manual states that the use of any form of voluntary-suspension statement
during the execution of a protected operation isabounded error [RM 9.5.1 (8)]. The Ravenscar
Profile requires, via pragma Detect_Blocking, an implementation to detect this error (and hence to
raise Program_Error exception), other than in the case when suspension is due to execution outside
of the Ada environment, for example within an underlying operating system call or within
imported code that is written in another language.

It is essential to choose the correct value for the ceiling priority of the protected object. By defaullt,
the value is System.Priority’ Last, unless the protected object contains interrupt handlers (see
below). The chosen value must be at least as high as the highest priority task that calls one of the
protected operations. If thisisnot the case, the Ada Reference Manual requires Program_Error
exception to be raised when a task with a priority higher than the ceiling priority makesacall to
one of the protected operations. However, if the ceiling value is higher than necessary, there may
be an increase in the blocking time that high priority tasks will suffer, and consequently a decrease
in the overall schedulability of the system. Tool support may be available to determine the optimal
ceiling value when the calling sequences can be statically analysed.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

5.6

Example 7, Use of Protected Object for Mutual Exclusion
protected Shared_Data is

function Get return Data; -- for some global type, Data
procedure Put(D : in Data);
private
pragma Priority(10); -- Al callers nust have priority no greater than 10
Current : Data; -- Shared data decl aration

end Shared_Dat a;

protected body Shared Data is
function Get return Data is
begin
return Current;
end Get;
procedure Put(D : in Data) is
begin
Current := D
end Put;
end Shared_Dat a;

Task Synchronization Primitives

Task synchronization, in the form of await/signal event model, can be achieved in the Ravenscar
Profile using either a protected entry or a suspension object, as described above for event-triggered
tasks.

The suspension object is the optimized form for a simple suspend/resume operation. The package
Ada.Synchronous_Task_Control is used to declare a suspension object, and the primitives
Suspend_Until_True and Set_True are used for the suspend and resume operations respectively.

The use of protected objects with entries for task synchronization isrestricted by the Ravenscar
Profile. The protected object can have at most one entry declaration; the entry barrier must be a
simple valuethat is either aBoolean literal or a Boolean variable that is part of the protected state;
and at most onetask is allowed to wait on the protected entry at any time. These restrictions
provide the necessary determinism in knowing which waiting task is serviced first when barriers
become true, since there can be at most one such task. This approach is very similar to the
suspension object approach except that:

« Datacan betransferred from signaller to waiter atomically (i.e. without risk of arace
condition) by use of parametersto the protected operations and additional protected data.

« Additional code can be executed atomically as part of signalling by use of the bodies of the
protected operations.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 27

Y CS-2003-348

5.7

28

Burns, Dobbing and Vardanega

Example 8, Event-Triggered Tasks Suspending on a Protected Entry

protected type Event(Ceiling : SystemPriority) is
entry Wait(D : out Data);
procedure Signal (D : in Data);

private
pragma Priority(Ceiling); -- Ceiling priority defined for each object
Current : Data; -- Event data declaration
Signal l ed : Bool ean : = Fal se;

end Event;

protected body Event is
entry Vit (D : out Data) when Signalled is
begin
D := Current;
Signal | ed : = Fal se;
end Wi t;
procedure Signal (D : in Data) is
begin
Current := D
Signalled := True;
end Signal;
end Event;

Event _Cbj ect : Event(15);

task Event_Handler is
pragma Priority(14); ~-- i.e. this nust be not greater than 15
end Event _Handl er;

task body Event_Handler is
-- Declarations, including D of type Data
begi n
-- Initialization code
| oop
Event _(bject. Wi t(D);
-- Non-suspendi ng event handling code
end | oop;
end Event _Handl er;

Minimum Separation between Event-Triggered Tasks

To ensure the timely execution of all tasks in a system it may be necessary to enforce a separation
between sporadic tasks so that they cannot execute more frequently than some agreed value. This
is easily achieved with adelay_until_statement. Note however that this now introduces a second
activation event into the code of the task’s outer loop. In general this can make the task more
difficult to analyse; but in this example it actually facilitates the analysis by ensuring a minimum
separation between task activations.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

5.8

5.9

Example 9, Event-Triggered Task with Minimum Separation

task Event_Handler is
pragma Priority(14);
end Event _Handl er;
task body Event _Handler is
-- Declarations, including D of type Data
M ni mum Separation : constant Ada.Real _Tinme.Ti me_Span : =
-- sone appropriate val ue
Next : Ada.Real _Tine. Ti neg;

begi n
-- Initialization code
| oop
Event _Cbject. Wait(D);
Next := Ada. Real _Tinme.d ock + M ni num Separati on;
-- Non-suspendi ng event handling code
delay until Next; -- this ensures mninmumtenporal separation
end | oop;

end Event _Handl er;

Interrupt Handlers

The code of an interrupt handler will often be used to initiate aresponse in an event-triggered task.
Thisis because the code in the handler itself executes at the hardware interrupt level, and typically
the mgjor part of the processing of the response to the interrupt is moved into an event response
task, which executes at a software priority level with interrupts fully enabled.

In Example 8 above, if signalling isto be achieved via an interrupt, then procedure Signal is
identified as an interrupt handler by pragma Attach Handler. This pragmaincludes an argument
of type Ada.Interrupts.Interrupt_ID that identifies the interrupt to which the handler applies. Note
however that procedure Signal must now be defined as a parameterless procedure so as to match
the definition of pragma Attach Handler.

The ceiling priority of aprotected object that contains an interrupt handler must be in the range of
System.Interrupt_Priority.

Example 10, Interrupt Handling via a Protected Entry

protected Interrupt_Event is
entry Wait (D : out Data);
procedure Signal; -- Mist be paraneterless
private
pragma Attach_Handl er(Signal, <interrupt_id>);
pragma Interrupt_Priority(SystemlInterrupt_Priority’ Last);

-- Wit and Signal will execute with full interrupt | ockout
Current : Data; -- Event data declaration
Signal l ed : Bool ean : = Fal se;

end I nterrupt_Event;

protected body Interrupt_Event is -— simlar to the code in Exanple 8
-- except that the setting of Current is obtained via a register during
-- the execution of Signal rather than as an in paraneter

Catering for Entries with Multiple Callers

In this and the following three sections we illustrate how to cater for situations that appear to need
more functionality than provided by Ravenscar. In doing thiswe are not attempting to say that
Ravenscar will deal with all situationsthat full Adacovers. The tasking features of Ada represent
apowerful set of abstractions for programming concurrent and real-time systems. To gain

Guide for the use of the Ada Ravenscar Profile in high integrity systems 29

Y CS-2003-348 Burns, Dobbing and Vardanega

30

predictability and efficiency Ravenscar has had to drop many of these features, and it is not
appropriate to try and reintroduce them via a combination of programming tricks and conventions.
However there are some situationsin which arequirement in just part of a program seems outside
of the Profile' s definition. These can often be catered for by straightforward techniques that
benefit from the other restrictions of Ravenscar.

Here we focus on the requirement for two (or more) tasksto call the same entry of some protected
object. Asanillustration, consider a situation in which a series of tasks create work items, while
others consume them. If more than 10 (say) outstanding items ever accumulate then the two
separate event-triggered tasks must be released. An atomicity requirement is that the two tasks are
only released if both are available and only when new work items are created.

A non Ravenscar Example

protected Controller is
entry Overload; -- called by tw tasks
procedure Create;
procedure Consune;

private
Work _Itens : Integer := 0;
Rel eased : Bool ean : = Fal se;

end Controller;

protected body Controller is
entry Overl oad when Rel eased is

begin

if Overload Count = 0 then — barrier is closed when both tasks have |eft
Rel eased : = Fal se;

end if;

end Overl oad;
procedure Create is
begin
Wrk_ltens := Wrk_ltens + 1;
Rel eased := (Wrk_Itens > 10 and Overl oad’ Count = 2);
-- barrier is opened when nore than 10 itens and both tasks are waiting
end Create;
procedure Consune is
begin
Wrk_ltens := Wrk_ltens — 1;
end Consune;
end Controller;

In Ravenscar two Controller protected objects are needed, one for each task. To get the required
atomicity the second Controller must be called from the first.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

5.10

Example 11, Using Multiple Protected Objects to Mimic an Entry Queue

protected First_Controller is
entry Overload; -- called by one task
procedure Check_Call ed(OK : out Bool ean);
private
Rel eased : Bool ean : = Fal se;
end First_Controller;

protected body First_Controller is
entry Overl oad when Rel eased is
begin
Rel eased : = False; -- barrier set to Fal se once task has been rel eased
end Overl oad;
procedure Check_Called(OK : out Boolean) is

begin
Rel eased : = (Overl oad’ Count = 1);
K := Released; -- returns True if task waiting

end Check_Call ed;
end First_Controller;

protected Second_Controller is
entry Overload; -- called by the other task
procedure Create;
procedure Consune;

private
Wrk_ltems : Integer := 0;
Rel eased : Bool ean : = Fal se;

end Second_Controller;

protected body Second_Controller is
entry Overl oad when Released is
begin
Rel eased := False; -- barrier set to Fal se once task has been rel eased
end Overl oad;
procedure Create is
begin
Work Itens := Work_ltens + 1;
if Wrk_ltems > 10 and Overload Count = 1 then
First_Control |l er. Check_Cal | ed(Rel eased);
end if; -- if Released is true then the first task has been rel eased
-- and the second one nust al so be rel eased
end Create;
procedure Consune is
begin
Wrk_ltens := Wrk_ltens — 1;
end Consune;
end Second_Controller;

Note that once atask calls an entry then, in Ravenscar, it cannot cancel the call hence the above
algorithmis safe. Inthe full language task calls can be cancelled and therefore the above approach
would not be guaranteed to work.

Catering for Protected Objects with more than one Entry

Toillustrate the way atwo entry protected object can be transformed, consider the standard buffer
with onetask calling the buffer to extract an item and another task calling it to place itemsin the
buffer. Usually both of these calls must be made via entriesin a protected object as the extract cal
must block if the buffer is empty, and the place call must block if the buffer isfull. To comply
with the Ravenscar restriction of only one entry in any protected object, a protected object is used
for mutual exclusion only and two suspension objects are introduced for the necessary conditional
synchronization.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 31

Y CS-2003-348

Example 12, A Bounded Buffer Example In Ravenscar

Burns, Dobbing and Vardanega

package Buffer is
procedure Place_ltem(Item: Sonme_Type);
procedure Extract_lten(ltem: out Some_Type);
end Buffer;

package body Buffer is
protected Buff is
procedure Pl ace(ltem in Sone_Type;
Success : out Bool ean);
procedure Extract(ltem out Sone_Type;
Success : out Bool ean);

private
Buf f er _Ful | Bool ean : = Fal se;
Buf fer _Enpty : Bool ean : = True;

-- other declarations
end Buff;

Non_Ful |, Non_Enpty :

procedure Place Item(ltem: Sonme_Type) is
K : Bool ean;

begin
Buf f. Pl ace(ltem OK);
if not OK then

Ada. Synchr onous_Task_Control . Suspensi on_Obj ect;

Ada. Synchronous_Task_Control . Suspend_Until _True(Non_Full);

-- note this is a task activation event
Buf f.Place(ltem OK); -- OK nust be true
end if;

Ada. Synchr onous_Task_Control . Set _True(Non_Enpty);

end Place_ltem

procedure Extract_Iten{ltem: out Sone_Type) is
K : Bool ean;

begin
Buf f. Extract (ltem OK);
if not K then

Ada. Synchronous_Task_Control . Suspend_Until _True(Non_Enpty);

-- note this is a task activation event
Buff. Extract (Item OK); -- OK nmust be true
end if;
Ada. Synchronous_Task_Control . Set_True(Non_Ful 1);
end Extract_Item

protected body Buff is
procedure Place(ltem in Sone_Type;
Success : out Boolean) is
begin
Success := not Buffer_Full;
if not Buffer_Full then
-- put Iteminto Buffer
Buf fer _Enpty := Fal se;
-- set Buffer_Full if appropriate
end if;
end Pl ace;
procedure Extract(ltem out Sonme_Type;
Success: out Boolean)) is
begin
Success : = not Buffer_Enpty;
if not Buffer_ Enpty then
-- extract Itemfrom Buffer

Buf fer _Full := Fal se;
-- set Buffer_Enpty if appropriate
end if;
end Extract;
end Buff;
end Buffer;

32 Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

5.11 Programming Timeouts

There may be situations where acall to a protected object's entry should be retracted after a period
of timeif the event that should release it has not occurred. In full Adathiswould be:

sel ect
PO. Cal |
Ti meout : = Fal se;
or
delay until Some_Ti ne;
Ti meout := True;
end sel ect;

Identical functionality can be achieved in Ravenscar by the use of an extratask that is event-
triggered and a protected object that is used to pass the timeout value to thistask. Thisis
illustrated below; note the expansion in code needed to accommaodate this effect. The full
language clearly has significant superior expressive power in this, and other, areas.

Example 13, Programming Timeouts in Ravenscar

protected POis
entry Call (Tinmeout : out Bool ean);
procedure Used_To_Rel ease_Cal | ;
procedure Too_Late;

private
Ti med_Qut : Bool ean : = Fal se
Rel ease : Bool ean : = Fal se
end PO

protected body PO is
procedure Too_Late is

begin
if Call’Count = 1 then
Timed_Qut := True
Rel ease : = True
end if;

end Too_Late;
procedure Used To Release _Call is
begin
Ti med_Qut : = Fal se
Rel ease : = True;
end Used_To_Rel ease_Cal | ;
entry Call (Tinmeout : out Bool ean) when Rel ease is

begin
Ti meout := Tinmed_Out;
Rel ease : = Fal se
-- further non-suspending code if necessary
end Call;
end PO,

cont...

Guide for the use of the Ada Ravenscar Profile in high integrity systems 33

Y CS-2003-348 Burns, Dobbing and Vardanega

5.12

34

Example 13, Programming Timeouts in Ravenscar continued

protected Tiner_Control is
entry Wait(Wait_Tine : out Ada.Real Tine.Tine);
procedure Set_Time(Wait_Tinme : Ada.Real _Tine. Tine);

private
Ti meout : Ada. Real _Ti me. Ti ne;
Rel eased : Bool ean : = Fal se;

end Tiner_Control;

protected body Timer_Control is
entry Wait(Wait_Tine : out Ada.Real Tine.Tine) when Released is

begin
Wait_Tine := Tineout;
Rel eased : = Fal se;
end Wi t;
procedure Set _Time(Wait_Tinme : Ada.Real _Tine.Tine) is
begin
Ti meout := Wait_Tine;
Rel eased : = True;

end Set _Ti ne;
end Tiner_Control;

task Tiner; -- note this task has nore than one activation event

task body Tiner is
T : Ada. Real _Ti ne. Ti ne;
begin
| oop
Timer_Control . Vi t(T);
delay until T;
PO. Too_Lat e;
end | oop;
end Ti ner;

- application calls the follow ng
Ti mer _Control . Set _Ti me(Sormre_Ti ne) ;
PO Cal | (Ti meout);

Further Expansions to the Expressive Power of Ravenscar

If static timing analysisis not of interest to the application program and a more general model of
tasks and interruptsis required, this can still be achieved with reasonabl e expressive power within
the subset definition. However, as noted earlier, Ravenscar is not a substitute for the full language
when that level of expressive power is needed.

« Dynamic creation and termination of tasks can be simulated by declaring a pool of event-
triggered tasks at program start-up, each containing an infinite loop which has a suspending
operation asitsfirst statement, such that its execution can be invoked dynamically by one of
the task synchronization primitives. Thus, by changing the settings of suspension objects
and entry barriers, it is possible for certain tasks to have their execution disabled whilst
others have execution enabled.

« Dynamic exchange of interrupt handlers, often required for applications performing mode
change, can be simulated by embodying all the different handling code for a particular
interrupt in one interrupt handler protected procedure, with each of the different actions
being coded as case alternativesin a case statement, dependent on a mode selector. By
changing the value of the mode selector, the same handler procedure can perform different
response actions at various times during program execution.

» Dynamic task priority change is also generally associated with mode change. This can be
simulated by use of a separate event response task for each mode of operation (and

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

assigning adifferent priority to each task as required), such that the execution of each task
that belongs to a dormant mode is suspended until signalled when its mode becomes active.

« A similar effect to requeue can be achieved by completing the protected entry body and
returning a status result to the caller, which can then emit a subsequent protected entry call
to the intended destination of the requeue statement. If each protected entry is called only
by a single task, then this aternative technique does not introduce any race conditions.

Similarly if static timing analysisis not of interest, the classic non-timed rendezvous operations
can still be achieved within the subset definition by use of suspension objects for synchronization
and protected object entries for communication.

Note that no conditional form of suspension is supported by the subset. This can be simulated if a
suspension object is used by polling the state of the suspension object (viathe Current_State
function in package Ada.Synchronous Task Control), or if a protected entry is used by polling the
value of the protected data which controls the synchronization (i.e. the barrier Boolean).

Guide for the use of the Ada Ravenscar Profile in high integrity systems 35

Y CS-2003-348 Burns, Dobbing and Vardanega

36 Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

6.1

6.2

Verification of Ravenscar Programs

In chapter 1 the motivation for the Profile was described in terms of the need to verify the temporal
behaviour of concurrent real-time programs. In this chapter we give an introduction to the forms
of verification that can be used with Ravenscar to deliver dependable systems.

The approach to verification in the presence of Adatasking is similar in many ways to that
traditionally used for cyclic executives. Each thread of control isindependently verified for
conformance with its precise/formal specification, for example by performing requirements-based
testing or by use of static analysistools on its sequential behaviour. Then, the program as awhole
isverified against al itstiming constraints. This|atter stage differs from the cyclic executive
approach in the presence of priority-based preemptive task scheduling in that it can be automated
by the use of, for example, a Response Time Analysis (RTA) tool to verify that a given task set
meets its deadlines. The tool-based approach greatly simplifies the process of verification of
timing constraints during development, and of re-verification after the system has undergone
modification during maintenance.

The effects of arbitrary dynamic preemption can be statically analysed by considering all accesses
to the global state of the program as being volatile, e.g. two successive reads to the same global
state variable may deliver different values (asfor reads of values delivered by an external device).

The core set of Ravenscar Profile run-time system packages can be devel oped to the most stringent
software devel opment standards so that these packages are suitable for inclusion in an application
that requires certification against an applicable standard such as RTCA DO-178B [DQ].

In this chapter we look at four levels of verification:
« Static analysis of sequential code
e Staticanalysis of concurrent code
e Scheduling andysis

e Formal anaysis

Static Analysis of Sequential Code

As discussed in the introduction, Ravenscar is silent about those features of the sequentia
language that should be used with the Profile (apart from requiring no implicit use of the heap).
Similarly, it is not appropriate here to discuss the forms of static analysis that should be used to
verify the functional behaviour of each task. The reader isreferred to the ISO Technica Report
Guidefor the use of Adain high integrity applications[GA].

Static Analysis of Concurrent Code

The two main goals of applying static analysis techniques to Ravenscar programs are:

» toobtain the same level of proof and data/ information flow analysis for concurrent
programs as is currently achievable for a sequential program,;

» toobtain proof of absence of the concurrency-related run-time errors, to supplement the
proof of absence of run-time errors that is currently achievable for sequentia code.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 37

Y CS-2003-348 Burns, Dobbing and Vardanega

The concurrency-related run-time errors that apply to Ravenscar programs are described in
sections 4.2.4 and 4.2.5.

In addition, it is highly desirable if the implementation-defined effect of task termination in the
presence of the No_Task Termination restriction can be eliminated.

The remainder of this section addresses various techniques for producing static analysis evidence
to meet the above goals. These verification processes are made possible by the following
assertions about the behaviour of avalid Ravenscar program:

» Eachtask and interrupt handler execution is deferred until after program elaboration is
complete.

¢ Tasks do not terminate.

e All task communication is via protected shared variables (predominantly using protected
objects).

« All protected shared variables areinitialized during library-level elaboration code.

6.2.1 Program-wide Information Flow Analysis

38

Current technology supports data flow analysis, information flow analysis, and proof based on pre-
and post-conditions and invariants, for sequential code only. The goal isto extend thisto
Ravenscar programs that include tasks, protected objects and interrupt handlers.

The data dependency information that is currently used to analyse sequentia programs can be
applied to each task and each interrupt handler in the concurrent program as an independent entity.
Thus the existing tools and techniques can verify each thread of control inisolation, including its
use of privately accessed global data. Thisthen leaves only the issue of the verification of the
interactions between the threads of control as represented by the set of protected shared variables.

The protected shared variables are required to be initialized by the library-level elaboration codein
order to ensure that uninitialized shared datais not used. If initialization were instead performed
during the operation phase, a race condition could be introduced. For a suspension object,
initialization is defined by the Ada standard to occur at the point of declaration. For a protected
object or an atomic object, all fields should be initialized either as part of object elaboration, or
using library-level package elaboration code. In conjunction with the use of pragma
Partition_Elaboration_Policy(Sequential) this ensures that no thread of control can access any
shared state that has not been fully initialized.

After the initialization phase is complete, the protected shared variables can be modelled for data
and information flow analysis purposesif we assume that their datais volatile. Since the data can
be updated at any time due to the effects of preemption and interrupt occurrence, any specific
task's view of a protected shared variable must assume that the value may change at any time. For
example, two successive reads by atask of a protected shared variable may deliver different results
and similarly, the value read by atask following awrite by the same task cannot be assumed to be
the written value. Thisvolatility isthe same abstraction as that used to model access to external
program data, such as that which has an address clause or is an imported variable (viapragma
Import). Thus, assuming that the static analysis technique supports access to volatile external data,
concurrent access to protected data can be modelled in the same way. Asaresult, each thread of
control can now be described both in terms of its sequential data and information flow, and in
terms of itsinteractions with volatile protected shared variables.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

Having obtained the analysis of each thread of control that includes its interactions with the
protected state, it isthen possible to combine the anaysesto form the overall data and information
flow for the program as awhole, across the task and interrupt handler boundaries. This alows the
designer to make assertions about how the entire program should behave in terms of the effect that
it has on its external inputs (including interrupts) to produce its external outputs. These assertions
can then be verified by the analysis to the same degree of confidence asis currently achievablein a
sequential program.

Thisform of gtatic analysis does not address the timing or ordering properties of the program.
Later sectionsin this chapter address these topics by describing the use of RTA and other forms of
formal analysis, such as model checking, which can prove statically the timing properties of the
program.

6.2.2 Absence of Run-time Errors

Exigting static analysis techniques can be used to prove absence of run-time errors due to
language-defined exceptions within sequentia code. The corresponding guidance on the
sequential code constructs that may be used to achieve this goal is contained in the Technical
Report [GA]. These techniques can be independently applied to each individual thread of control
(task, main program or interrupt handler) of a Ravenscar program.

In order to extend these existing techniquesto a full Ravenscar program, it is necessary to address
the various forms of run-time check failure that relate directly to the concurrency features. These
can be broken down into the following groups:

» Errorsduring program elaboration, such as access-before-elaboration or use of uninitialized
data

e Errorsafter program elaboration is complete, during the normal operation phase of the
application, in particular the exceptions that are cited in sections 4.2.4 and 4.2.5.

» Erroneous behaviour during normal operation, in particular concurrent access to
unprotected shared variables (see section 4.2.7).

* Implementation-defined behaviour as aresult of violation of the No_Task_Termination
restriction.

The following sub-sections discuss various techniques that can be applied to verify statically that
these forms of error cannot occur.

Elaboration Errors

Within a sequential program, detection of access before elaboration errorsis generally
straightforward during program devel opment due to the repeatable nature of the elaboration order,
and the raising of Program_Error exception at the point of failure, causing the program to
terminate. Having obtained a correct elaboration order during development, this ordering is
usually predictable except when a switch to a different compiler vendor, or an upgrade to anew
product version from the same vendor that uses a different algorithm for any units that have
implementation-defined ordering, is performed. Thisimplicit order variation can be prevented by
explicit use of elaboration order pragmas, once a correct order has been established.

Within a concurrent program however, access to global datathat isnot yet initialized by the
elaboration code may occur as aresult of race conditions that vary between devel opment mode and
deployment mode, due to factors such as the use of hardware of differing performance or memory
access times, inclusion or exclusion of checking code, differencesin interpretation of priority,

Guide for the use of the Ada Ravenscar Profile in high integrity systems 39

Y CS-2003-348 Burns, Dobbing and Vardanega

40

scheduling variations etc. These race conditions are more likely to be present because of the Ada
rulethat alibrary-level task shall be activated by its master package prior to the execution of that
master's body elaboration code, and also prior to the execution of the elaboration code of later
library unitsin the overall program elaboration order. Another contributing factor to the race
condition is that having completed its activation, the Ada task proceedsinto its normal execution
code, and so must be programmed to immediately suspend to prevent this code from executing
whilst program elaboration is still incomplete. Similar concerns apply to the execution of interrupt
handlers after attachment - an interrupt may trigger execution of a handler prior to completion of
program elaboration, and in this case, the handler cannot be programmed to suspend, of course.
Such an error may actually occur silently - the task or interrupt handler may read an uninitialized
value of a shared variable and not cause any exception to be raised, even in the presence of
pragma Normalize_Scalars.

There are severa solutions that can mitigate this hazard statically. The most obvious oneisto
ensure that all shared variables of a Ravenscar program areinitialized at the point of declaration.
However thisisinappropriate in the case when elaboration code in the body is needed to set a
correct initial value. Logically, itishighly desirable if we can assert that the dynamic semantics of
the program are unaffected whether global shared datais initialized at the point of declaration, or
by library package body elaboration code, assuming a correct elaboration order for the sequential
elaboration code has been enforced using elaboration control pragmas.

In order to achieve the static guarantee that al library units have been elaborated prior to the
activation of any task and prior to the invocation of any interrupt handler, the
Partition_Elaboration_Policy pragma has been approved for the next revision of the Ada standard.
If this pragmais used with argument Sequential, then all task activation and interrupt handler
attachment is deferred until after all program elaboration code is complete, i.e. just prior to the call
of the main subprogram (see also section 4.2.7).

Execution Errors Causing Exceptions

Sections 4.2.4 and 4.2.5 identify the concurrency-related run-time checks that are required of a
conformant implementation of the Profile. In the following sub-sections, we examine techniques
for static elimination of these error conditions.

Max_Entry_Queue_Length and Suspension Object Check

The static detection of absence of entry queue length violation may be achieved by applying
further constraints on the application code, namely that at most one task object can call each
protected entry. Thisalso implies that the task objects, protected objects and protected entries are
statically identified. Static identification of an object excludes its name being determined
dynamically such as viaafunction result, adynamic array index, the dereferencing of an access
valueetc. A lessrestrictive scheme that shows that there is no program state in which more than
one task may be calling the same protected object would require more extensive analysis, such as
the use of model checking (see section 6.4). The same approach can be applied to the static
detection of absence of more than one task waiting on each suspension object at any time.

Priority Ceiling Violation Check

The static detection of absence of priority ceiling violation can be achieved assuming the following
further constraints:

» al task objects and protected objects have a static priority (this may be supplied viaa static
expression of atype discriminant for example);

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

» the protected object call chain (including nested protected object calls) that is made by each
task object and each interrupt handler is statically determinable, by requiring static
identification of the target protected object in al cases.

Potentially Blocking Operations in a Protected Action

The static detection of absence of execution of a potentially blocking operation within a protected
action isfeasible given the additional constraint on the use of indirect subprogram calls, which
then allows the call trees to be statically determined. The presence of any of the following
constructsin any protected or subprogram body in the call tree that is rooted in a protected
operation body would then be statically disallowed:

e aprotected entry_call_statement;
* Qadelay_statement;
e acal to Ada.Synchronous Task_Control.Suspend_Until_True;

e acall to any other language-defined subprogram that is defined to be potentially blocking
[RM 9.5.1 (8-16)].

In addition, the determination of the call trees would enable static detection of an external
subprogram call with the same target protected object as that of the protected action, assuming the
restriction that the target protected object is always statically identified.

A dlightly less restrictive scheme may be possible that uses formal verification methods such as
model checking (see section 6.4) to determine if a program state exists such that a protected action
would cause execution of a potentialy blocking operation (which may be within conditionally-
executed code, although this style is not recommended).

It may also be possible to support detection of potentially blocking operations in the presence of
indirect procedure callsif apre-condition that specifies a non-blocking property is asserted prior to
each indirect call, and that property is shown to be satisfied statically by all possible procedures
that can be invoked by that call. Similarly, the check for circularity in the protected object call
chain may be possible even in the case of non-statically identified protected objects, by imposing a
pre-condition that none of the potentially called protected objects invoke operations of any
protected objects that are higher in the call chain.

Task Termination

The Ravenscar Profile defines a static task set and prohibits dynamic task creation. Theintentis
that all tasks are created during program start-up, but in any mode of operation, some of them may
be dormant, waiting on a synchronization event. A task that is no longer required to be executed
would wait on its event indefinitely. In this model, task termination is considered to be an error
case and hencetherestriction No_Task Termination is required by the Profile. The effect of
violation of the No_Task_Termination restriction is implementation-defined.

Task termination within the restrictions of the Profile can occur only as aresult of normal exit
from the task body, or as aresult of an unhandled exception.

» The case of avoidance of normal exit can be statically analysed if acoding restriction is
placed on the task body code - the final statement must either be an infinite loop or else be a
compound statement (such as a conditional or case statement) that can only cause an infinite
loop to be executed.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 41

Y CS-2003-348 Burns, Dobbing and Vardanega

6.3

» The case of showing absence of exceptions by static analysis has already been coveredin
section 4.2.6 and in the sub-sections above.

The combination of these two techniques can be used to ensure statically that task termination
cannot occur, and hence also that no implementati on-defined behaviour that results from task
termination can be invoked.

Use of Unprotected Shared Variables

Theintent of the Profileis that tasks and interrupt handlers should not make concurrent use of an
unprotected shared variable - all interactionsinvolving tasks or interrupt handlers are
recommended to be via protected and atomic objects, where an atomic object is either a suspension
object or one that has pragma Atomic applied to it or itstype. The avoidance of unprotected
shared variablesis generally arequirement of high integrity systems, although detection of this
erroneous case is hot mandated by the Ravenscar Profile definition.

The static detection of absence of unprotected shared variables can be achieved assuming the
restriction that the use of all global variables of unprotected type by each task object and by each
interrupt handler is statically identifiable. All global objects that are either of a protected type or
an atomic type may be safely shared, and so no static identification is required for these. Static
verification can then ensure that no unprotected global variable is accessed by more than one
thread of control.

Note that if atask object or interrupt handler shares global data only with program elaboration
code, i.e. the elaboration code initializes global datathat is subsequently privately used by asingle
task or interrupt handler, then this data does not need to be protected if the
Partition_Elaboration_Policy pragmais used with the argument Sequential, since this pragma
ensures that the elaboration is complete prior to any task execution or interrupt attachment (and
hence there can be no sharing violation).

Scheduling Analysis

The use of scheduling theory was noted in Chapter 1, here we provide more details on the
procedure to be followed. The aimisto introduce the form thisanalysistakes asit is not
appropriate within this report to give afull tutorial on this material; such material can be found in
text books (for example [9] and [10]). Ravenscar facilitates the use of these techniques as it
supports priority-based dispatching and ceiling locking on protected objects. But, to apply these
techniques, further constraints on application code must be made. All tasks must have asingle
invocation event and allow other parameters to be analysed or measured — see below.

In this section priority assignment is considered first, then two forms of analysis are introduced:
Rate Monotonic Analysis and Response Time Analysis.

6.3.1 Priority Assignment

42

The use of priority-based preemptive dispatching defines a mechanism for scheduling. The
scheduling policy is defined by the mapping of tasks to priority values. Many different schemes
exist depending on the temporal characteristics of the task and other factors such as criticality. For
hard deadline tasks it is usually assumed that the following three parameters are known:

T —Period; timeinterval between consecutive arrivals of the task

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

D — Deadline; required latest completion time for the task (relative to its arrival)

C — Computation time; worst case execution time needed for the task to complete one
activation.

For periodic tasks, T isthetime interval between releases. For sporadic tasks, T isthe minimum
inter-arrival time for the event that releases the task. The three parameters (T,D,C) are dways
given in the same time units. So (30ms, 20ms, 2.73ms) defines atask that (at maximum) is
released every 30ms; must complete within 20ms; and that has a maximum computation time of
2.73ms. These latter values are obtained either by measurement or by some form of static timing
analysis (or a combination of the two).

If all tasks are hard and criticality itself is not taken into account (because we require al tasks to
always meet their deadline) then there is an optimal algorithm for assigning priority if D <=T for
all tasks. By optimal we mean that the algorithm is as good as any other fixed priority scheme.
The optimal algorithm is called Deadline Monotonic and simply assigns priority based on deadline
— the shorter the deadline the higher the priority. Inthe specia casewhen D =T for all tasks this
scheme is known as Rate Monotonic.

An important property of fixed priority dispatching is that the lower priority tasks are the most
vulnerableto missing a deadlineif there is arun-time problem such as atask executing for more
than its assumed maximum C. Because of this property the systems designer may wish to place
the highly critical tasks at higher priorities than the Deadline Monotonic scheme would advise.
This may reduce schedulability but is perfectly valid and is amenable to Response Time Analysis
(see below).

Another reason to raise atask priority isto reducejitter on input and/or output actions. Higher
priority tasks have a more regular execution pattern and hence important events such as reading a
sensor or writing to an actuator will occur with less variation from one period to the next.
Scheduling analysis will only ensure that a task compl etes somewhere between its release and its
deadline. One way of reducing jitter is thus to reduce the deadline of the tasks that perform jitter-
sengitive I/O. If thisis done then the Deadline Monotonic priority assignment scheme will
automatically allocate a higher priority.

Most scheduling schemes assume that each task is assigned a unique priority. Any Adaruntime
for Ravenscar will support at least 32 priorities (and may indeed support many more). Although
maximum schedulability does require distinct priorities for the tasks, it is unusual for an
application to be so close to being unschedulable that it requires these unique priorities. Response
Time Analysis can again deal with shared priority values. It should also be noted that that some
rea -time kernels can exploit the knowledge that tasks share priority to reduce the memory
requirement. Thisisachieved by noting that two (or more) tasks that share a priority level never
execute at the same time and hence can ‘share’ atask stack.

Once a priority map has been agreed for the set of tasks within the application the priorities for the
protected objects can be assigned systematically.

6.3.2 Rate Monotonic Utilization-based Analysis

For a constrained set of temporal characteristics there exists avery simple schedulability test that
quickly verifiesif al deadlines will always be met. The constraints are that D=T for all tasks, and
that priorities are assigned using the Rate Monotonic scheme. In practice this means that all tasks
are hard and periodic. Each task must finish before its next release and there is no additional

Guide for the use of the Ada Ravenscar Profile in high integrity systems 43

Y CS-2003-348 Burns, Dobbing and Vardanega

requirement to control jitter. If we assume, initialy, that the program does not contain protected
objects (i.e. all tasks execute independently) then the schedulability test is simply a matter of
checking the utilization of the task set. For each task the fraction of a complete processor it needs
isgiven by C/T. If thisis summed across all tasks this gives the total utilization of the application.
Clearly this value must not be more than 1.0 or the system is never going to be schedulable. The
actual upper bound (which islessthan 1.0) is given by the following formulawhich is afunction
of n, the number of tasks in the system.

i[%j < n(2'" -1

i=1 i

Asn gets arbitrarily large, this expression converges on asingle value. Thisisthe famous‘Rate
Monotonic’ result, which says that a utilization of lessthan 0.69 will aways furnish a schedul able
system.

Once protected objects (POs) are introduced, blocking can occur. Here atask when released can
be prevented from executing by the currently executing ‘low’ priority task running with a*high’
ceiling value whilein a PO. For each task, the maximum blocking time, B, can be calculated.
Thisisthe maximum time alower priority task can be executing with a priority equal or higher
than the task currently under consideration. As noted in Chapter 1, the use of Immediate Priority
Ceiling Protocol (IPCP) on POs does reduce blocking to its minimum value. The utilization test is
now augmented with the result that each task must be examined in turn; so for task j:

>[5|8 =n2t -

ii=1 i

Note the blocking term for the lowest priority task is 0 asit cannot suffer blocking.

The simplicity of the utilization-based test makesit a very attractive oneto use. But remember, it
isfor the constrained set of task characteristics. Moreover, it isanecessary but not sufficient test.
If the application passes the test all timing constraintswill be met. But if it fails the test it may ill
be schedulable. A better test is needed in these circumstances. The following is one such
example.

6.3.3 Response Time Analysis

Response time analysisis a general technique. It will deal with any priority assignment scheme
and any relationship between D and T, (dthough its simple form requires D<=T). Moreover, itisa
necessary and sufficient scheme for most situations. Like the utilization-based method it is easily
incorporated into tools — many of which already exi<t.

Theform of the andysisis quite straightforward. Firstly, the worst-case (longest) compl etion time
for each task is calculated. Thisis known asthe task responsetime, R. Secondly, these R values
are compared, trivially, with the deadlines to make sure that R islessthan D for all tasks. The
response time equation is as follows (the hp function delivers the set of task with priority higher
than task i):

R:Ci+BI+Z 5C

J
jChp(i) Tj

44 Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

As ceiling functions are used, the unit for timeis chosen so that all parameters are represented as
integers.

The equation is solved by forming a recurrence relation:

C()k

W =C+B+) T_I C,
jiOhp(i) | 7j

Theinitid value of the iteration variable is the task’ s computation time. Iteration continues until
either the same value is obtained on two successive iterations (in which case the response time has
been calculated) or the value rises higher than the task’ s deadline (in which case the task is not
schedulable).

The above description represents the ‘textbook’ version of the analysis. The engineering version
requires extra terms to capture the overhead of actua implementation. Firstly, overheads such as
context switches can be assigned to the task that caused them (by incorporating them into the C
parameter). Next, the kernel overheads associated with manipulating the delay queue, handling
clock interrupts and the releasing of tasks must be factored in. The specific form this takes will
depend on the structure of the kernel — but the kernel must provide the data needed to model this
overhead. Thisisadocumentation requirement specified in the Real-Time Annex whichis
discussed further in the following section. For an example on how to include thistermin the
analysis see the textbooks [9] and [10]. Finally, the overheads incurred by the application’s
interrupts must be accounted for. We must know a bound on the arrival of such interrupts, and the
execution time of each attached handler must be known. Putting these values together allows a set
of interrupt overhead terms to be included in the Response Time Analysis.

The appropriate use of the Ravenscar Profile and the scheduling results outlined in the previous
three sections provide a sound engineering basis for constructing high integrity real-time systems.
Thetheory is mature and tool support is available.

6.3.4 Documentation Requirement on Run-time Overhead Parameters

There are a number of placesin the Reference Manua where documentation requirements and
metrics are required of an implementation. Those of most relevance to Ravenscar are:

e C.1(12- 20) concerning the interrupt model

e (C.3.1(15,16) concerning overheads of interrupts

e D.2.2(14 - 16) concerning maximum duration of priority inversion

» D.8(33 - 45) concerning clock accuracy

e D.9(8, 11, 13) concerning precision of delay until

» D12 (6) concerning interrupt blocking

« D.12(7) concerning overhead involved with the use of protected objects

Unfortunately, thisis not acomprehensive list of the data needed to fully model the overheads
caused by the run-time system. Typically also needed are:

* Cost of context switches between tasks

» Cost of handling delay queue operations

Guide for the use of the Ada Ravenscar Profile in high integrity systems 45

Y CS-2003-348 Burns, Dobbing and Vardanega

6.4

46

Both of these factors may, depending on the implementation of gqueues with the run-time system,
depend on the number of tasksin the application's program. Nevertheless, if timing analysisisto
be used on a Ravenscar programi it is necessary to have one of the following:

e Evidence of al necessary parameters
* A means by which the programmer can measure these parameters

» Formulae by which these parameters can be calculated.

Formal Analysis of Ravenscar Programs

The Ravenscar profile supports only a simple concurrency model with the error conditions being
relatively easy to avoid. For example, the use of shared resources (via projected objects with
ceiling priorities) cannot lead to deadlock. Nevertheless, to gain avery high level of assurance it
may be necessary to formally analyse a Ravenscar program. Asoutlined in Section 2.4, such
analysis takes the form of either mechanized proof (viaatheorem prover) or model checking.

Thereis already experience of using model checking to validate Ravenscar programs. Itis
possible to add worst-case and best-case execution times for state transitions and to then check that
deadlines are never missed. Alternatively, model checking can be used to validate the top-level
description of the timing constraints — leaving scheduling analysis to check deadline satisfaction
once execution times from the implementation are known. Typical of the verification that can be
achieved with this approach is to check some end-to-end deadline through a number of tasks
assuming each task itself meetsits timing requirements. Each task is represented by an automaton
and each protected object by a shared variable (there are no problems with mutual exclusionin
these formal models).

Aswith Adaitself, there can never be aformal map between a Ravenscar program and its model.
However, the use of standard paradigms and libraries of associated (reusable) models allows a high
integrity process to be defined.

This demonstrates that formal approach can be applied effectively to Ravenscar programs, but this
does not imply that all high integrity Ravenscar programs need thislevel of verification. For many
systems, static analysis of each task will be sufficient to generate the appropriate level of
confidence.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

7 Extended Example

The example presented in this chapter is designed to illustrate the expressive power of the
Ravenscar Profile and the associated coding paradigms that aim to facilitate off-line scheduling
analysis.

The example uses al of the concurrency components permitted by the Profile. The structure of the
example system models, on areduced and simplified scale, the operation of real-world embedded
rea-time systems. The presentation of the example also outlines the information required for, and
obtained from, the execution of deadline monaotonic priority assignment and off-line scheduling
analysis.

7.1 A Ravenscar Application Example

The system in question includes a periodic process that handles orders for a variable amount of
workload. Whenever the request level exceeds a certain threshold, the periodic process farms the
excess load out to a supporting sporadic process. While such orders are executed, the system may
receive interrupt requests from an external source. Each interrupt treatment records an entry in an
activation log. When specific conditions hold, the periodic process rel eases a further sporadic
process to perform a check on the interrupt activation entries recorded in the intervening period.
The policy of work delegation adopted by the system allows the periodic process to constantly
ensure the discharge of a guaranteed level of workload. The correct implementation of this policy
also requires that the periodic processis given a higher priority than those assigned to the sporadic
processes, so that guaranteed work can be performed in preference to subsidiary activities.

Figure 1, overleaf, shows an HRT-HOQOD [11] like representation of the system, while the legend,
in figure 1b, recalls the meaning of the symbols and notations used in the diagram.

In HRT-HOOD terms, the system comprises:

e 4 active (i.e. threaded) objects respectively called: Regular_Producer, On_Call_Producer,
Activation Log_Reader, External_Event Server;

» 1 passive (i.e. unthreaded) object called Production_Workload;
« 3 protected objects respectively called: Request_Buffer, Event_Queue, Activation_L og

Guide for the use of the Ada Ravenscar Profile in high integrity systems 47

Y CS-2003-348 Burns, Dobbing and Vardanega

{Pr| Request_Buffer g

C| Regular_Producer ™ 7

Dieposit

¢8| On_Coll Producer ™ &

Start |

On_Call_Producer_Operayion Exteirud Interrtpr —===== =

é { Pr| Event_Quene
: 1 | Externcl_Event Server él].

System. Interrupt| Priority'Last

Production_Workload

Small_Whetstone

(Emmm’_Evem_Scmr_Opcrm.‘o-}
b A

r/—s| ACIiVﬂTiOﬂ_LDg_REEdE[\ A Pr Activation_Log Y 13

—7

Act.'vm.'on_Lsg_Rmdxr_O@ i
I

Figure 1: Schematic architecture of the example Ravenscar application.

legend:
Object tags:
Tag Fosition Meaning
n Right side of ohject Base prioaty of object intetnal task or protected object
8 Top-left corner of ohject Sporadic Dbjﬁct 1¢, threaded object incotpotating a sporadic task)
C yclic object (1e., threaded object incotporating a petiodic task)
I Intettupt sporarhc: object (1.e., threaded object incotporating an intetrupt sporadic task)
Pr Protected ohiject (ie., nnthreaded object providing protected operations)
P

Passive ohiject (1.e., unthreaded object providing unprotected aperations)

Operation exported by the object for users to invoke

—— Object invecation of exported operation

Internal operation of threaded object

Figure 1b: Legend for the symbols and notationsin figure 1.
The operation of the system proceeds as follows:

Regular_Producer, which figure 1 tags as Cyclic, embeds a fixed-rate periodic task that
carries out a given amount of workload. The example represents the execution of this
workload by the invocation of the well-known Small_Whetstone procedure exported by the
shared Passive object Production_Workload.

48 Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

* When Regular_Producer determines that the required amount of workload exceedsits
ceiling capacity, it delegates the excess workload out to On_Call_Producer.
On_Call_Producer, which figure 1 tags as Sporadic, embeds a sporadic task whose
activation is specifically invoked to take over the excess workload of Regular_Producer.

e The sporadic activation and the associated workload transfer occur by means of atypical
Ravenscar data-oriented synchronization: Regular_Producer invokes the Start operation
exported by On_Call_Producer with a parameter characterising the service request. The
Start operation enqueues the request in a private queue embedded within the Pr otected
object Request_Buffer. We need to protect the buffer because we allow new service
reguests to come in while the sporadic task is busy executing old ones. Thisfollows from
the decision to assign Regular_Producer a higher base priority than that of
On_Call_Producer, which we opted for to ensure the discharge of a guaranteed level of
workload in preference to the execution of subsidiary activities.

* A successful enqueueing releases the On_Call_Producer sporadic task, which indefinitely
waits on an empty queue. The sporadic task fetches the request parameter from the top of
the queue and performs the requested amount of workload in the same way as
Regular_Producer. Aninvocation of Start fails when the queue held within Request_ Buffer
isfull; for example, as aresult of a (transient) rate of requests faster than service execution.
Static analysis of the relationship between the maximum frequency of activation requests
and the longest service time incurred by the sporadic task of On_Call_Producer should be
used to prevent failure events of this kind.

* Whilethe system carries out the required level of workload (whether regular or excess), an
externa device may occasionally raise an interrupt to signal itscall for attention. In
keeping with the Ravenscar programming model, the exampl e application maps the arrival
of the external interrupt to the invocation of a protected procedure. Object Event_Queue
exports the procedure in question, which we call Signal.

» Theservice associated with the raising of the interrupt is carried out by the sporadic task
embedded in External_Event_Server, which istagged | nterrupt-activated sporadic. To
simplify the coding of the example, and in keeping with the programming model that
minimizes the amount of activity performed at interrupt priority, we have limited the extent
of thisinterrupt service to the storing of an activation record in a protected buffer. The
recording occurs by invocation of procedure Write exported by Pr otected object
Activation _Log. The use of a protected buffer to hold the activation record offers the
natural mechanism to preserve dataintegrity in the face of independent read and write
activities.

* Inorder for the system to monitor the arrival of service requests from the external device,
when certain conditions hold, the periodic process embedded in Regular_Producer requests
the task embedded in the Sporadic object Activation Log Reader to examine the latest
activation record stored by the interrupt service carried out by External_Event_Server.
Activation_Log_Reader does this by invoking the Read procedure of Activation_Log. This
style of work partitioning between Regular_Producer and Activation_Log Reader usesthe
Ravenscar concurrency mechanisms to allocate activities with differing degrees of
importance to distinct tasks. This approach aids system modelling. It also favoursthe
specialization of Ravenscar tasks, which is away of using the Profile definition to facilitate
static analysis of the system.

e Theactivation request issued by Regular_Producer for this purpose uses the other form of
synchronization permitted by the Ravenscar Profile: the data-l ess synchronization supported
by suspension objects. Procedure Signal exported by Activation Log Reader performs this
synchronization on a suspension object internally held by the object. AsHRT-HOOD
provides no specific object representation for suspension objects, we have used the

Guide for the use of the Ada Ravenscar Profile in high integrity systems 49

Y CS-2003-348 Burns, Dobbing and Vardanega

7.2

50

convention that procedures by the name Signal exported by Sporadic objects be understood
as implemented by invocation of a private suspension object embedded within the object.
Conversely, procedures by the name Start exported by Sporadic objects are implemented by
invocation of the Deposit procedure exported by an associated Pr otected object. (Note that
Signal is aso the name of the protected procedure attached to an interrupt, which dispatches
the activation event to | nterrupt-activated sporadic objects.)

Code

The Ravenscar Profile model does not inherently require the application to use any particular
coding style for the execution of cyclic and sporadic tasks, protected objects, and interrupt
handlers. However, if the application is required to perform schedulability analysis, certain task
templates (patterns or stereotypes) and corresponding coding styles are useful in defining the
activitiesthat are to be analysed. These task templates were described in Chapter 5 and are used to
code the example application outlined above.

Note that, in order to emphasise the stereotype nature of the task templatesin the example, we
have relegated all the parametric components of the application code into support packages named
with“_Parameters’ trailer added to the name of the corresponding base package. (The code of
these support packagesis provided in the closing section of this example.)

The Ravenscar-compliant HRT-HOOD coding convention has individual terminal objectsin the
system implemented as distinct library-level packages that carry the name of the corresponding
object. An HRT-HOOD terminal object is one that cannot be further decomposed and therefore
contains at most one type of primitive Ravenscar concurrency component. As each package,
associated with aterminal object, by definition contains a single task or protected object, the
corresponding entity carries the name of the enclosing package (and thus of the corresponding
object).

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

Cyclic Task

The example uses one cyclic task, named Regular_Producer, the code of which is shown below.
The non-suspending operation of Regular_Producer and its supporting definitions are defined in
the Regular_Producer_Parameters package shown at the end of this section.

Reqular Producer

wi t h Regul ar _Producer _Par anet er s;
package Regul ar _Producer is
task Regul ar _Producer is
-- assigned by deadline nobnotonic analysis
pragma Priority(Regul ar_Producer _Paraneters. Regul ar _Producer_Priority);
end Regul ar _Producer;
end Regul ar _Producer;

wi t h Regul ar _Producer _Par anet er s;
wi th Ada. Real _Ti ne;
with Activation_Manager;
package body Regul ar _Producer is
Period : constant Ada.Real _Tine. Tinme_Span :=
Ada. Real Tine.MIliseconds
(Regul ar _Producer _Par anet ers. Regul ar _Producer _Peri od);
task body Regul ar _Producer is
use Ada. Real _Ti ne;
-- for periodic suspension
Next _Tine : Ada. Real _Ti ne. Ti ne;
begin
-- for tasks to achieve sinmultaneous activation
Acti vati on_Manager. Synchroni ze_Activation_Cyclic(Next Tine);
| oop
Next _Tinme := Next_Time + Period,;
-- non-suspendi ng operation code
Regul ar _Producer _Par anet ers. Regul ar _Producer _Qper ati on;
-- tine-based activation event

delay until Next_Tine; -- delay statement at end of |oop
end | oop;
exception
when ot hers =>
-- last rites: we leave it to "null" for the sake of sinplicity
nul | ;

end Regul ar _Producer;
end Regul ar _Producer;

Event-response (Sporadic) Tasks

The example application includes three sporadic tasks, one per type of sporadic activation
permitted by the profile: the activation of On_Call_Producer uses a protected object with a
suspending entry; the activation of Activation _Log_Reader uses a suspension object; and the
activation of External_Event Server uses a protected object with a suspending entry attached to an
interrupt. Wefirst look at the code of the respective sporadic tasks and then turn our attention to
the corresponding synchronization objects.

The non-suspending operation of On_Call_Producer and its supporting definitions are defined in
the On_Call_Producer_Parameters package shown at the end of this section.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 51

Y CS-2003-348 Burns, Dobbing and Vardanega

On_Call Producer

with On_Cal | _Producer_Paramneters;
package On_Cal | _Producer is
-- non-suspendi ng operation w th queuing of data
function Start(Activation_Paraneter : Positive) return Bool ean;
task On_Cal |l _Producer is
-- assigned by deadline nobnotonic analysis
pragma Priority(On_Call _Producer_Paraneters. On_Cal |l _Producer Priority);
end On_Cal |l _Producer;
end On_Cal | _Producer;

with Request_Buffer;
wi th Activation_Manager;
package body On_Cal | _Producer is
-- to hide the inplenentation of the event buffer
function Start(Activation_Paraneter : Positive) return Boolean is
begin
return Request_Buffer. Deposit(Activation_Paraneter);
end Start;
task body On_Call _Producer is
Current _Workl oad : Positive;
begin
-- for tasks to achieve sinmultaneous activation
Act i vati on_Manager. Acti vati on_Spor adi c;
| oop
-- suspendi ng request for activation event with data exchange
Current _Workl oad : = Request _Buffer. Extract;
-- non-suspendi ng operation code
On_Cal | _Producer _Paraneters. On_Cal | _Producer_Operation
(Current _Workl oad) ;

end | oop;
exception
when ot hers =>
-- last rites
nul | ;

end On_Cal | _Producer;
end On_Cal | _Producer;

The non-suspending operation of Activation_Log Reader and its supporting definitions are
defined in the Activation_L og_Reader Parameters package shown at the end of this section.

52 Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega

Activation Log Reader

with Activation_Log_Reader_Paraneters;
package Activation_Log Reader is
-- non-suspendi ng paraneterl|less operation
--+ with no queuing of activation requests
procedure Signal;
task Activation_Log Reader is
-- assigned by deadline nonotonic anal ysis
pragma Priority
(Activation_Log_Reader_Paraneters. Activation_Log_Reader_Priority);
end Activation_Log Reader;
end Activation_Log_Reader;

wi t h Ada. Synchronous_Task_Control ;
wi th Activation_Manager;
package body Activation_Log_Reader is
Local _Suspensi on_Obj ect : Ada. Synchronous_Task_Control . Suspensi on_Cbj ect ;
procedure Signal is
begin
Ada. Synchr onous_Task_Control . Set _True(Local _Suspensi on_Obj ect) ;
end Signal;
procedure Wait is
begin
Ada. Synchronous_Task_Cont rol . Suspend_Unti |l _True
(Local _Suspensi on_Q(hj ect) ;
end Wait;
task body Activation_Log Reader is
begin
-- for tasks to achieve sinmultaneous activation
Acti vati on_Manager. Acti vati on_Spor adi c;
| oop
-- suspendi ng paraneterl ess request of activation event
Wi t ;
-- non-suspendi ng operation code
Activation_Log Reader_ Paraneters. Acti vati on_Log_Reader _Operati on;

end | oop;
exception
when ot hers =>
-- last rites
nul | ;

end Activation_Log_Reader;
end Activation_Log Reader;

Y CS-2003-348

The non-suspending operation of External_Event_Server and its supporting definitions are defined

in the External_Event_Server Parameters package shown at the end of this section.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

53

Y CS-2003-348 Burns, Dobbing and Vardanega

54

External Event Server

with External _Event_Server_Paraneters;
package External _Event_Server is
task External _Event_Server is
pragma Priority
(External _Event _Server _Par anet ers. Ext ernal _Event _Server_Priority);
end External Event_Server;
end External _Event_Server;

wi th Event _Queue;
with System
wi th Activation_Manager;
package body External _Event_Server is
procedure Wait renanmes Event _Queue. Handl er. Wai t;
task body External Event _Server is
begin
-- for tasks to achieve sinmultaneous activation
Act i vati on_Manager. Acti vati on_Spor adi c;
| oop
-- suspendi ng request for external activation event
Wi t ;
-- non-suspendi ng operation code
Ext ernal _Event _Server_Paraneters. Server _QOperati on;

end | oop;
exception
when ot hers =>
-- last rites
nul | ;

end External Event_Server;
end External _Event_Server;

Shared Resource Control Protected Object

The exampl e application uses one protected object, named Activation_L og, to control accessto a
shared resource. The auxiliary package Activation _Log_Parameters shown at the end of this
section defines all the parameters that characterize the activity of Activation_L og.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

Activation Log

with Activation_Log Paraneters;
wi th Ada. Real _Ti ne;
package Activation_Log is
type Range_Counter is nod 100;
protected Activation_Log is
-- must be ceiling of users' priority
pragnma Priority(Activation_Log_Paraneters. Activation_Log_Priority);
-- records interrupt service activation: non-suspendi ng operation
procedure Wite,;
-- retrieves the last activation record: non-suspendi ng operation
procedure Read
(Last _Activation : out Range_Counter;
Last _Active_Tine : out Ada.Real _Tinme.Tinme);
private
Activation_Counter : Range_Counter := O;
Activation_Tinme : Ada.Real _Tine. Tineg;
end Activation_Log;
procedure Wite renanes Activation_Log. Wite;
procedure Read
(Last _Activation : out Range_Counter;
Last _Active_Tine : out Ada.Real _Tine. Time)
renanmes Activation_Log. Read;
end Activation_Log;

package body Activation_Log is
protected body Activation_Log is
procedure Wite is

begin
Activation_Counter := Activation_Counter + 1;
Activation_Tinme := Ada. Real _Ti ne. d ock;
end Wite;
procedure Read(Last_Activation : out Range_Counter;
Last _Active_Time : out Ada.Real _Tine.Tinme) is
begin
Last _Activation := Activation_Counter;
Last _Active Tine := Activation_Tine;
end Read;

end Activation_Log;
end Activation_Log;

Task Synchronization Primitives

The suspension object is the optimized form for a simple suspend/resume operation. The package
Ada.Synchronous_Task_Control is used to declare a suspension object, and the primitives
Suspend_Until_True and Set_True are used for the suspend and resume operations respectively.
We have seen an example of use of the former in the code of Activation Log_Reader shown
above, whereby the Activation _Log Reader package exports a Signal procedure that invokes
Set_True on the local suspension object on which the Activation_Log_Reader sporadic task
suspends by invoking Suspend Until_True within the call to itsinternal Wait operation.

As mentioned earlier, the activation of On_Call_Producer is controlled by the use of a protected
object named Request_Buffer, which provides a suspending entry named Extract and a releasing
procedure named Deposit.

The auxiliary package Request_Buffer Parameters shown at the end of this section defines al the
parameters that characterize the activity of Request_Buffer.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 55

Y CS-2003-348

56

Request Buffer

Burns, Dobbing and Vardanega

package Request _Buffer is
function Deposit(Activation_Paraneter : in Positive) return Bool ean;
function Extract return Positive;

end Request_Buffer;

wi th Request_Buf fer_Paraneters;
package body Request Buffer is
type Request_Buffer_lndex is
nod Request _Buf fer _Paranet ers. Request _Buf f er _Range;
type Request_Buffer_T is array(Request_Buffer_Index) of Positive;
prot ected Request _Buffer is
-- must be ceiling of users' priority
pragma Priority(Request_Buffer_Paraneters. Request _Buffer_Priority);
procedur e Deposit

(Activation_Parameter : in Positive;
Response . out Bool ean);
entry Extract(Activation_Parameter : out Positive);
private

M/_Request _Buffer : Request_Buffer_T,;
Insert_Index : Request Buffer_Index := Request_ Buffer_Index'First;
Extract _I ndex : Request_Buffer_lndex := Request_Buffer_Index'First;
-- the Request Buffer is initially enpty
Current _Size : Natural := 0;

-- the guard is initially cl osed

-- so that the first call to Extract will block

Barrier : Bool ean : = Fal se;
end Request_Buffer;
-- we encapsulate the call to protected procedure Deposit in a function
-- that returns a Bool ean val ue designating the success or failure of
-- the operation. This coding style allows for a nore el egant coding

-- of the call

function Deposit(Activation Paraneter : in Positive) return Boolean is
Response : Bool ean;

begin

Request _Buf f er. Deposi t (Acti vati on_Paranmeter, Response);

return Response;
end Deposit;
-- we encapsulate the call to protected entry Extract in a function
-- that returns the Positive val ue designating the workload | evel passed
-- by Regul ar _Producer on to On_Call_Producer. This coding style all ows
-- for a nore elegant coding of the call
function Extract return Positive is

Activation_Paraneter : Positive;
begin

Request Buffer. Extract (Activati on_Paraneter);

return Activation_Paraneter;
end Extract;

cont...

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega

Request Buffer Continued

Y CS-2003-348

protected body Request Buffer is
entry Extract(Activation_Paraneter : out Positive)
when Barrier is

begin
Activation_Paranmeter := M/_Request_Buffer(Extract_| ndex);
Extract _Index := Extract_lndex + 1;

Current_Size := Current_Size - 1;
-- we close the barrier when the buffer is enpty

-- this also prevents the counter from becom ng negative

Barrier := (Current_Size /= 0);

end Extract;
procedur e Deposit
(Activation_Parameter : in Positive;
Response . out Boolean) is
begi n
if Current_Size < Natural (Request_Buffer_Index'Last) then
M/_Request _Buffer (Il nsert_Ilndex) := Activation_Paraneter;
Insert_Index := Insert_Index + 1;
Current_Size := Current_Size + 1;
Barrier := True;
Response : = True;
el se

-- there is no roomfor insertion, hence the Deposit

-- with a failure (we mght have used as well
-- policy as long as the call returned)
Response : = Fal se;
end if;
end Deposit;
end Request_Buffer;
end Request _Buffer;

returns
an over-witing

Interrupt Handler

The example system handles one externa interrupt, which is serviced by the interrupt sporadic task
External_Event_Server. Event_Queue is the protected object that provides the Signal procedure
attached to the interrupt and the Wait suspending entry invoked by External_Event_Server.

The auxiliary package Event_Queue_Parameters shown at the end of the section holds al the

definitions required by Event_Queue.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

57

Y CS-2003-348 Burns, Dobbing and Vardanega

58

Event Queue

with External _Event_Server_Paraneters;
package Event _Queue is
protected Handler is
-- nmust be in the range of SystemInterrupt_Priority
pragma Interrupt_Priority
(External _Event _Server Paraneters. Event _Queue_Priority);
procedure Signal;
entry Wait;
pragna Attach_Handl er
(Si gnal , External _Event _Server _Paraneters. The_Interrupt);

private
-- entry barrier nust be sinple (i.e. bool ean expression)
Barrier : Bool ean : = Fal se;

end Handl er;

end Event _Queue;

package body Event_ Queue is
protected body Handler is
procedure Signal is
begin
Barrier := True;
end Signal;
entry Wait when Barrier is
begin
Barrier := False;
end Wait;
end Handl er;
end Event _Queue;

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega

7.3 Scheduling Analysis

In order to use the deadline monotonic algorithm to assign prioritiesto all tasks and protected
objectsin the above application example we need to determine the respective real-time attributes.
Thisisdonein table 1.

Y CS-2003-348

Task name Task type Period/ |Deadline| Execution | Response Priority
Minimum time time
interarrival
time
Regular_Producer Cyclic 1000 500 7
On_Call_Producer Sporadic 1,000 800 5
Activation Log Reader | Sporadic 1,000 1,000 3
External_Event_Server | Interrupt sporadic| 5,000 100 11
Protected object name User tasks Ceiling priority
Regular_Producer (Deposit),
Request_Buffer On_Call_Producer (Extract) 9
External interrupt (Signal), System.Interrupt_
Event_Queue External_Event_Server (Wait) Priority'Last
_— External_Event_Server (Write),
Activation_Log Activation_Log_Reader (Read) 13

Table 1: Real-time attributes of tasks and protected objects in example application. All time valuesare
in milliseconds.

As soon as we know the worst-case execution time of the non-suspending internal operations
performed by the tasks of our example, we can use response time analysis to confirm the feasibility
of the real-time attributes of the task set in table 1.

Aswe mentioned above and as figure 1 illustrates, the example application uses the
Small_Whetstone algorithm to control the computational workload of Regular_Producer,
On_Call_Producer and Activation_Log_Reader. Theway this occursis shown in the respective
auxiliary packages.

Knowing the processing power of the designated target processor and the runtime overheads
associated to the execution of the Ravenscar tasking model (e.g. select and context switch time;
insert and remove from delay queue; insert and remove from single-position entry queue) we may
achieve precise estimates of the required execution time for all tasks and thus allow the use of
response time analysis.

By way of example, for one particular assignment of computational workload to the tasks in the
system and for the priority assignment shown in table 1, we obtain the schedule of execution
shown in figure 2 for the region near the time of system activation (which assumes the arrival of
the 1% external interrupt at notional time 0) and in figure 3 for one compl ete activation of all tasks
in the task set.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 59

Y CS-2003-348 Burns, Dobbing and Vardanega

Ous 4ms Bmis 12ms 16mis 20ms 24ms 2Bms F2ms 3bnis

REGULAR_PROD\&ER |

ON_C‘ALL_PRODL@IJ
»\C'nvﬁ'non_l_o@lﬁzn

EXTERMAL_EWEMW

el

2

Dus 4mis Bms 12ms 16mis 20ms 24ms 28Bms F2ms Ib6mis

legend:
I:I tazk BCtivity \ imerrupt arval v rf:!‘- enterfleave prtected objectithe nureric pararaster identifiez the abject conce med)

D runtiroe sxtivity O tazk mady ——— tesk preemiption period B task zzlection pericd

Figure 2: Schedule of task execution near the time of system activation.

s 200ms 100ms IX0ms Ams 500ms BO0mis T0ms 20ms X0 ms
! !] ! ; :l ! ! H 2

REGULAR_PROD\&%R ?”P

i

' H ' H ' 1
ON_CALL_PRO DL@-_F}R : : : : : ||
AC‘HV&'HON_LD@EADER
b
EXWTERMAL_EVEM ERVER
2
s 200ms 100ms I00ms 400ms 500ms BO0mis TO0ms B00ms K00ms

legend:
I:l tazk aotivity \ inmte rrupt accivel t’ r:-\- enterfleave protected object |:| pretected operation

D Cuntiroe activity O taak mady O end of activation

Figure 3: Schedule of execution for one complete activation of all tasksin the example application.

60 Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

7.4 Auxiliary Code

The auxiliary code includes the various operation parameter packages referred to in the earlier
descriptions as well as the Activation Manager.

Reqular Producer operation parameters
with Auxiliary;

with System
package Regul ar_Producer _Paraneters is
Regul ar _Producer _Priority : constant SystemPriority := 7;
Regul ar _Producer _Period : constant Natural := 1_000; -- in mlliseconds

procedure Regul ar_Producer_Qperati on;
end Regul ar _Producer _Paraneters;

with On_Cal | _Producer;
wi th Producti on_Workl oad;
with Activation_Log_Reader;
with Ada. Text |G
package body Regul ar _Producer _Paraneters is
-- approxi mately 5,001, 000 processor cycles of Wetstone |oad
-- on an ERC32 (a radiation-hardened SPARC for space use) at 10 Hz
Regul ar _Producer _Workl oad : constant Positive := 756;
-- approximately 2,500,500 processor cycles
On_Call _Producer_Workl oad : constant Positive := 278;
-- the paranmeter used to query the condition
-- for the activation of On_Call _Producer

Activation_Condition : constant Auxiliary. Range_Counter := 2;
procedure Regul ar _Producer_COperation is
begin

-- we execute the guaranteed | evel of workload
Pr oducti on_Wor kl oad. Smal | _Whet st one(Regul ar _Pr oducer _Wor kl oad) ;
-- then we check whether we need to farm excess |oad out to
-- On_Call _Producer
if Auxiliary.Due_Activation(Activation_Condition) then
-- if yes, then we issue the activation request with a paraneter
-- that deternines the workload request
if not On_Call _Producer. Start(On_Call _Producer_Workl oad) then
-- we capture and report failed activation
Ada. Text 1O Put Line("Failed sporadic activation.");
end if;
end if;
-- we check whether we need to rel ease Activation_Log
if Auxiliary.Check Due then
Activati on_Log_Reader. Signal ;
end if;
-- finally we report nom nal conpletion of the current activation
Ada. Text | O. Put _Line("End of cyclic activation.");
end Regul ar _Producer _Qperati on;
end Regul ar _Producer _Par aneters;

Guide for the use of the Ada Ravenscar Profile in high integrity systems 61

Y CS-2003-348 Burns, Dobbing and Vardanega

On _Call Producer operation parameters

with System

package On_Cal | _Producer_Paraneters is
On_Cal | _Producer_Priority : constant SystemPriority := 5;
procedure On_Cal | _Producer_Operation(Load : Positive);

end On_Cal | _Producer_Paraneters;

wi th Producti on_Workl oad;
with Ada. Text |G
package body On_Call _Producer_Paraneters is
procedure On_Cal | _Producer_Operation(Load : Positive) is
begin
-- we execute the required anbunt of excess workl oad
Producti on_Wor kl oad. Snal | _Whet st one(Load) ;
-- then we report nom nal conpletion of current activation
Ada. Text _I O Put _Li ne("End of sporadic activation.");
end On_Cal | _Producer _Qperati on;
end On_Cal | _Producer_Paraneters;

Activation Log Reader operation parameters

with System
package Activation_Log Reader_Paraneters is
Activation_Log_Reader_Priority : constant SystemPriority := 3;

procedure Activation_Log_Reader_Qperati on;
end Activation_Log Reader _Paraneters;

wi th Producti on_Workl oad;
with Activation_Log;
wi th Ada. Real _Ti ne;
with Ada. Text |G
package body Activation_Log_Reader_Parameters is
-- approxi mately 1,250,250 processor cycles of Wetstone |oad
-- on an ERC32 (a radiation-hardened SPARC for space use) at 10 Hz

Load : constant Positive := 139;

procedure Activation_Log_Reader_Operation is
Interrupt_Arrival _Counter : Activation_Log. Range_Counter := O;
Interrupt_Arrival _Tinme : Ada.Real _Tine. Tineg;

begin

-- we performsone work
Producti on_Wor kl oad. Snal | _Whet st one(Load) ;
-- then we read into the Activation_Log buffer
Activation_Log. Activation_Log. Read(Interrupt_Arrival _Counter,
Interrupt _Arrival _Tine);
-- and finally we report nom nal conpletion of current activation
Ada. Text | O. Put _Line("End of paraneterless sporadic activation.");
end Activation_Log_Reader_Operati on;
end Activation_Log Reader Paraneters;

62 Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

External Event Server operation parameters

with Ada. | nterrupts. Nanes;
with System
package External _Event_Server_Paraneters is
-- a target-specific interrupt
The_Interrupt : constant Ada.Interrupts.Interrupt ID:=
Ada. I nterrupts. Nanes. External _I nterrupt_2;
-- the interrupt priority should be at the appropriate |evel
-- (we set it to ‘Last because the exanple handles no other interrupts)
Event _Queue_Priority : constant SystemInterrupt_Priority :=
System Interrupt_Priority’ Last;
-- the interrupt sporadic priority is determined by deadline
-- nonotoni c analysis
Ext ernal _Event _Server_Priority : constant SystemPriority := 11;
procedure Server_Qperation;
end External _Event_Server_Paraneters;

with Activation_Log;
package body External _Event_Server_Paraneters is
procedure Server_Operation is
begin
-- we record an entry in the Activation_Log buffer
Activation_Log. Wite;
end Server_QOperation;
end External Event _Server Paraneters;

Request Buffer operation parameters

with System

package Request Buffer_Paraneters is
-- the request buffer priority nmust ceiling of its users’ priorities
Request _Buffer_Priority : constant SystemPriority := 9;
-- proper analysis will determ ne the appropriate size of the request
-- buffer
Request _Buffer_Range : constant Positive := 5;

end Request _Buffer_Paraneters;

Guide for the use of the Ada Ravenscar Profile in high integrity systems 63

Y CS-2003-348 Burns, Dobbing and Vardanega

64

The Activation_Manager provides two facilities.

« A common epoch for al tasksin the system (using the mechanism described in Example 4
of Section 5.2).

e A mechanism for al tasks to suspend until acommon time, in order to achieve a
co-ordinated rel ease after elaboration. This achieves the effect of
pragma Partition_Elaboration_Policy(Sequential);.

Activation Manager internals

wi th Ada. Real _Ti ne;
package Activation_Manager is

use Ada. Real _Ti ne;
function Cock return Ada.Real Tine. Time renames Ada. Real _Ti ne. d ock;
-- global start tine relative to which all periodic events
-- in systemw |l be schedul ed
System Start_Tinme : Ada. Real _Ti nme. Ti ne;
-- relative offset of task activation after elaboration (mlliseconds)
Rel ative_Offset : constant Natural := 100;
Task_Start_Tinme : Ada. Real _Ti ne. Ti me_Span;
-- absolute tinme for synchronization of task activation after el aboration
Activation_Tinme : Ada. Real _Ti me. Ti me;
procedure Synchroni ze_Acti vati on_Spor adi c;
procedure Synchroni ze_Activation_Cyclic
(Next _Time : out Ada.Real Tine. Tine);

end Activation_Manager;

with System
package body Activation_Manager is

procedure Synchroni ze_Activation_Sporadic is
begin
delay until Activation_Time;
end Synchroni ze_Activation_Spor adi c;
procedure Synchroni ze_Activation_Cyclic
(Next _Time : out Ada.Real _Tine.Tine) is
begin
Next _Tine := Activation_Tine;
delay until Activation_Time;
end Synchroni ze_Activation_Cyclic;
procedure Initialize is
pragma Priority(SystemPriority’ Last);
begin
System Start_Tine : = C ock;
Task_Start_Time := Ada.Real _Time.M I 1liseconds (Relative_Ofset);
Activation Tinme := System Start_Tine + Task_Start_Ti ne;
end Initialize;

begin

Initialize;

end Activati on_Manager;

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

Auxiliary definitions and services

package Auxiliary is
type Range_Counter is nod 5;
function Due_Activation(Param: Range_Counter) return Bool ean;
type Run_Counter is nod 1_000;
Factor : constant Natural := 3;
function Check_Due return Bool ean;
end Auxiliary;

package body Auxiliary is
Request _Counter : Range_Counter := 0;
Run_Count : Run_Counter := 0;
-- we establish an arbitrary criterion for the activation of
-- On_Cal | _Producer
function Due_Activation(Param: Range_Counter) return Boolean is
begin
Request _Counter := Request_Counter + 1;
-- we nake an activation due according to the caller’s input paraneter
return (Request_Counter = Param;
end Due_Activation;
-- we establish an arbitrary criterion for the activation of
-- Activation_Log_Reader
function Check_Due return Boolean is
Di visor : Natural;
begin
Run_Count := Run_Count + 1,
Di visor := Natural (Run_Count) / Factor;
-- we force a check due according to an arbitrary criterion
return ((Divisor*Factor) = Natural (Run_Count));
end Check_Due;
end Auxiliary;

Guide for the use of the Ada Ravenscar Profile in high integrity systems 65

Y CS-2003-348 Burns, Dobbing and Vardanega

66 Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

8

Definitions, Acronyms, and Abbreviations

Allocator
An Ada construct used to create an object dynamically [RM 4.8].

Atomic
An operation performed by atask which is guaranteed to produce the same effect asif it were
executing in total isolation and without interruption.

Blocked
The state of atask when its execution is prevented, while waiting for mutually-exclusive access
to a shared resource which is currently held by alower priority task.

Bounded error
An implementation- or language-defined error in the application program whose effect is
predictable and documented.

Ceiling priority
The priority of ashared resource. The static default priority of all processesthat use the
resource must be less than or equal to the ceiling priority.

Context switch
The replacement of one task by another as the executing task on a processor.

Critical region
A sequence of statements that must appear to be executed indivisibly.

Critical task
A task whose deadline is significant and whose failure to meet its deadline could cause system
failure.

CSP (Communicating Sequential Processes)
A notation for specifying and analyzing concurrent systems.

CSS (Calculus of Communicating Systems)
An algebrafor specifying and reasoning about concurrent systems.

Cyclic executive
A scheduler that uses procedure calls to execute each periodic processin a predetermined
sequence at a predetermined rate.

Cyclictask
A task whose execution is repeated based on afixed period of time, also known as a periodic
task.

Deadline
The maximum time allowed to atask to produce a response following itsinvocation.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 67

Y CS-2003-348 Burns, Dobbing and Vardanega

68

Deadlock
A situation where a group of tasks (possibly the whole system) block each other permanently.

Dynamic testing
An analysis method that determines properties of the software by observing its execution (cf
static analysis).

Erroneous execution
A program state in which execution of the program becomes unpredictable as the result of an
error. The errors that result in this state are defined in the language reference manual [RM 1.1.5
(9-10)].

Environment Task
The implicit outermost task which executes the program el aboration code and then calls the
main subprogram (if any) [RM 10.2 (8)].

Epilogue
The code executed by the Ada run-time system to service the entry queues as defined in RM
9.5.3(13).

Event-Triggered Task
A task whose invocation is triggered either by an asynchronous action by another task, or by an
externa stimulus such as an interrupt.

Finalization
An Ada operation which occurs for controlled objects at the point of their destruction [RM
7.6.1].

Firm deadline task
A task whose failure to meet a deadline does not necessarily cause afailure of the application
program. Thereis no value in completing a firm task after its deadline.

Hard deadline task
A task whose failure to meet a deadline may cause afailure of the application program.

IPCP (Immediate Priority Ceiling Protocol, aso known as Priority Ceiling Emulation)
A technique to minimize the blocking time for contention for shared resources, protected by a
protected object. Thisis provided by the locking policy Ceiling_Locking in Ada[RM D.3].

Jitter
The variation in time between the occurrence of a periodic event and a period of the same
frequency.

Library level
Theleve at which an object which has global accessibility [RM 3.10.2 (22)].

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

Livelock
A situation where severa tasks (possibly comprising the whole system) remain ready to run,
and execute, but fail to make progress.

Liveness
The property that a set of tasks will reach all desirable states.

M ode change
A change in operating characteristics of a system that requires a co-ordinated change in the
operation of severa different processesin the system.

M onitor
A module containing one or more critical regions; all variables that must be accessed under
mutual exclusion are hidden and all procedure calls are guaranteed to execute with mutual
exclusion.

M utex
A locking mechanism used to ensure mutually exclusive access to a shared resource.

Non-critical task
A task with no strict timing requirements.

Overhead
The execution time within the Ada run-time system which must be included in the
schedulability analysis.

PBPS (Priority-Based Preemptive Scheduling)
This ensuresthat, if ahigh priority task becomes ready to run when alower priority task is
executing on the processor, the high priority task will replace the lower priority task
immediately as the executing task.

PCP (Priority Ceiling Protocol)
A set of techniques that bound the blocking time for contention for shared resources. One such
protocol, implemented in Ada, is IPCP.

Periodic task
A task whose execution is repeated based on afixed period of time, also known as a cyclic task.

Preemptive fixed priority scheduling
A scheduling method in which each process has a static priority and the scheduler ensures that
the currently selected processis the ready process with the highest priority.

Priority inversion
This occurs when a high-priority task is blocked waiting for a shared resource (including the
CPU itself) currently in use by alow-priority task.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 69

Y CS-2003-348 Burns, Dobbing and Vardanega

70

Protected object
An Ada construct which is used to provide mutually-exclusive access to shared resources and as
atask synchronization primitive.

Race condition
A timing condition that causes processes to operate in an unpredictable sequence so that
operation of the system may be incorrect.

Ready
The state of atask when it is no longer suspended. The task, however, will not execute whilst
al the available processor resource can be used by higher priority ready tasks.

RMA (Rate Monotonic Analysis)
A mathematical method based on utilization which is used to prove that a set of tasks with static
(and simple) characteristics will meet its deadlines in the presence of PBPS.

RTA (Response Time Analysis)
A mathematical method based on calculating latest completion time which is used to prove that
aset of tasks with static characteristics will meet its deadlinesin the presence of PBPS.

Safety
The property that a set of tasks cannot reach any undesirable state from any desirable state.

Soft deadline task
A task whose failure to meet a deadline does not necessarily cause afailure of the application
program. Thereis value in completing a soft task evenif it has missed its deadline.

Spor adic task
An event-triggered task with defined minimum inter-arrival time.

Static analysis
A group of analysis techniques that determine properties of the system from analysis of the
program code (c.f. dynamic testing).

Suspended
The state of atask when its execution is stopped due to execution of a language-defined
construct that waits for a given time (e.g. adelay statement) or an event.

Suspending oper ation
An operation which causes the current task to be suspended until released by another task, a
timer event or an interrupt handler.

Suspension object
An Ada construct [RM D.10] which is used for basic task synchronization, i.e. suspend and
resume, which do not involve data transfer.

Timetriggered task
A task whose invocation is triggered by the expiry of adelay set by that task.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

WG9
The Ada Working Group, ISO/IEC JTCU/SC22/WGO. It is the group tasked with the
interpretation and maintenance of the Ada Language Standard.

Worst case execution time
A maximum bound on the time required to execute some sequential code.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 71

Y CS-2003-348 Burns, Dobbing and Vardanega

72 Guide for the use of the Ada Ravenscar Profile in high integrity systems

Burns, Dobbing and Vardanega Y CS-2003-348

9 References

[Al 249] Ravenscar Profile for high integrity systems. ARG, 2002.
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Als/Al-00265.TXT

[Al 265] Partition elaboration policy for high integrity systems. ARG, 2002.
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Als/Al-00265.TXT

[Al 305] New pragma and additional restriction identifiers for real-time systems. ARG,
2002.
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Als/Al-00305.TXT

[DQO] DO-178B Software Considerationsin Airborne Systems and Equipment
Certification, RTCA Inc, Washington D.C. 1992.

[DY U.K. Ministry of Defence 00-55 Requirements of Safety Related Softwarein
Defence Equipment, 1997.

[GA] Guide for the use of Ada Programming Language in High Integrity Systems,
ISO/IEC TR 15942, 2000.

[RM] Ada 95 Reference Manual, International Standard ANSI/ISO/IEC-8652:1995,
January 1999.

Guide for the use of the Ada Ravenscar Profile in high integrity systems 73

Y CS-2003-348 Burns, Dobbing and Vardanega

10 Bibliography

74

[1]

[2]

(3]

[4]

[5]
[6]

[7]

(8]

[9]

Lui, C. and Layland, J., Scheduling algorithms for multiprogramming in a hard real-time
environment, JACM, 20 (1), 46 - 61, 1973.

Joseph, M. and Pandya, P., Finding response timesin areal-time system, BCS Computer
Journal, 29 (5), 390 - 395, 1986.

Burns, A. and Wellings, A.J., Restricted Tasking Models, Ada Letters, XVII (5), 27 - 32,
1997.

Dobbing, B. and Richard-Foy, M., T-SMART - Task Safe, Minimal Ada Realtime Toolset,
Ada Letters, XVII (5), 45 - 50, 1997.

Burns, A., The Ravenscar Profile, Adaletters, X1X (4), 49 - 52, 1999.

Session Summary, The Ravenscar Profile and Implementation Issues, Ada Letters, X1X (2),
12 - 14, 1999.

Session Summary, Status and Future of the Ravenscar Profile, Ada Letters, XXI (1), 5- 8,
2001.

Session Summary, Ravenscar Profile, Proceedings of the 11th International Real-Time Ada
Worshop, Ada Letters (to appear in 2003).

Burns, A. and Wellings, A.J., Real-Time Systems and Programming Languages, 3rd Edition,
Addison Wed ey, 2001.

[10] Liu, JW.S., Real-Time Systems, Prentice Hall, 2000.

[11] Burns, A. and Wellings, A.J., HRT-HOOD: A design method for hard real-time Ada, Real-

Time Systems, 6 (1), 73 - 114, 1994.

Guide for the use of the Ada Ravenscar Profile in high integrity systems

