
© ISO 2003 – All rights reserved

Reference number of working document: ISO/IEC JTC1 SC22 WG11 N0485
Date: 2003-08-11

Reference number of document: ISO/IEC CD1 11404 (revision)

Committee identification: ISO/IEC JTC1 SC22 WG11

SC22 Secretariat: US

Information technology — General Purpose Datatypes (GPD)

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to
change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: International standard
Document subtype: if applicable
Document stage: (20) Preparatory
Document language: E

ISO/IEC CD1 11404 (revision)

ii © ISO 2003 – All rights reserved

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from ISO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose
without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
as shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56
CH-1211 Geneva 20
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved iii

Contents Page

Foreword .. ix

Introduction .. x

1 Scope.. 1

2 Normative references ... 2

3 Terms and definitions... 2

4 Conformance ... 8
4.1 Direct conformance .. 9
4.2 Indirect conformance.. 9
4.3 Conformance of a mapping standard ... 10
4.4 Program text conformance .. 10

5 Conventions used in this International Standard .. 10
5.1 Formal syntax.. 10
5.2 Text conventions... 11

6 Fundamental notions.. 12
6.1 Datatype ... 12
6.2 Value space.. 12
6.3 Datatype properties .. 13
6.3.1 Equality .. 13
6.3.2 Order... 13
6.3.3 Bound ... 14
6.3.4 Cardinality.. 14
6.3.5 Exact and approximate... 14
6.3.6 Numeric .. 15
6.4 Primitive and non-primitive datatypes.. 15
6.5 Datatype generator ... 16
6.6 Characterizing operations.. 16
6.7 Datatype families... 17
6.8 Aggregate datatypes... 17
6.8.1 Homogeneity.. 18
6.8.2 Size ... 18
6.8.3 Uniqueness .. 18
6.8.4 Aggregate-imposed identifier uniqueness ... 18
6.8.5 Aggregate-imposed ordering... 18
6.8.6 Access method.. 19
6.8.7 Recursive structure .. 19
6.9 Provisions associated with datatypes .. 20

7 Elements of the Datatype Specification Language.. 22
7.1 IDN character-set... 22
7.2 Whitespace .. 23
7.3 Lexical objects... 23
7.3.1 Identifiers ... 23
7.3.2 Digit-string ... 24
7.3.3 Character-literal and string-literal ... 24
7.3.4 Keywords ... 25

ISO/IEC CD1 11404 (revision)

iv © ISO 2003 – All rights reserved

7.4 Annotations ... 25
7.5 Values... 26
7.5.1 Independent values... 26
7.5.2 Dependent values.. 27
7.6 GPD program text.. 28

8 Datatypes ... 29
8.1 Primitive datatypes ... 29
8.1.1 Boolean .. 31
8.1.2 State.. 32
8.1.3 Enumerated.. 32
8.1.4 Character.. 33
8.1.5 Ordinal.. 35
8.1.6 Date-and-Time ... 36
8.1.7 Integer .. 37
8.1.8 Rational .. 38
8.1.9 Scaled... 39
8.1.10 Real... 40
8.1.11 Complex ... 42
8.1.12 Void... 44
8.2 Subtypes and extended types ... 44
8.2.1 Range ... 45
8.2.2 Selecting .. 46
8.2.3 Excluding ... 46
8.2.4 Size ... 47
8.2.5 Explicit subtypes... 48
8.2.6 Extended .. 48
8.2.7 Override.. 49
8.3 Generated datatypes... 49
8.3.1 Choice .. 50
8.3.2 Pointer .. 53
8.3.3 Procedure... 54
8.4 Aggregate Datatypes .. 57
8.4.1 Record .. 59
8.4.2 Class... 61
8.4.3 Set ... 62
8.4.4 Bag ... 64
8.4.5 Sequence ... 65
8.4.6 Array ... 67
8.4.7 Table ... 69
8.5 Defined datatypes ... 71
8.6 Provisions .. 72
8.6.1 General parameters for provisions ... 72
8.6.2 Aggregate-specific features... 76
8.6.3 Aggregate-component-identifier uniqueness .. 76
8.6.4 Usage-specific features.. 77

9 Declarations... 78
9.1 Type declarations.. 78
9.1.1 Renaming declarations... 79
9.1.2 New datatype declarations... 79
9.1.3 New generator declarations ... 79
9.2 Value declarations... 80
9.3 Termination declarations ... 80
9.4 Normative datatype declarations... 80
9.5 Lexical operations... 80
9.5.1 Import ... 81

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved v

9.5.2 Eval ... 81

10 Defined datatypes and generators .. 82
10.1 Defined datatypes ... 82
10.1.1 Natural number.. 82
10.1.2 Modulo.. 83
10.1.3 Bit ... 83
10.1.4 Bit string... 84
10.1.5 Character string... 84
10.1.6 Time interval .. 85
10.1.7 Octet ... 86
10.1.8 Octet string .. 86
10.1.9 Private .. 87
10.1.10 Object identifier ... 87
10.2 Defined generators.. 89
10.2.1 Stack... 90
10.2.2 Tree... 90
10.2.3 Cyclic enumerated .. 91
10.2.4 Optional.. 91

11 Mappings.. 93
11.1 Outward Mappings.. 93
11.2 Inward Mappings... 94
11.3 Reverse Inward Mapping.. 95
11.4 Support of Datatypes.. 96
11.4.1 Support of equality.. 96
11.4.2 Support of order .. 96
11.4.3 Support of bounds .. 96
11.4.4 Support of cardinality ... 96
11.4.5 Support for the exact or approximate property ... 97
11.4.6 Support for the numeric property.. 97

12 Annex A (informative): Character-set standards... 98

13 Annex B: (informative) Recommendation placement of annotations ... 101
13.1 B.1 Type-attributes.. 101
13.2 B.2 Component-attributes .. 101
13.3 B.3 Procedure-attributes .. 102
13.4 B.4 Argument-attributes ... 102

14 Annex C: (informative) Implementation notions of datatypes ... 103
14.1 C.1 StorageSize ... 103
14.2 C.2 Mode .. 103
14.3 C.3 Floating-Point.. 104
14.4 C.4 Fixed-Point .. 104
14.5 C.5 Tag ... 105
14.6 C.6 Discriminant .. 105
14.7 C.7 StorageSequence ... 105
14.8 C.8 Packed ... 105
14.9 C.9 Alignment .. 105
14.10 C.10 Form... 105

15 Annex D: (informative) Syntax for the Common Interface Definition Notation 106

16 Annex E: (informative) Example mapping to Pascal ... 114
16.1 E.1 General Purpose Primitive Datatypes .. 114
16.1.1 E.1.1 Boolean... 114
16.1.2 E.1.2 State .. 114
16.1.3 E.1.3 Enumerated .. 114

ISO/IEC CD1 11404 (revision)

vi © ISO 2003 – All rights reserved

16.1.4 E.1.4 Character .. 114
16.1.5 E.1.5 Ordinal .. 114
16.1.6 E.1.6 Date-and-time... 115
16.1.7 E.1.7 Integer ... 115
16.1.8 E.1.8 Rational... 115
16.1.9 E.1.9 Scaled ... 116
16.1.10 E.1.10 Real ... 117
16.1.11 E.1.11 Complex.. 117
16.1.12 E.1.12 Void ... 119
16.2 E.2 General Purpose Generated Datatypes.. 119
16.2.1 E.2.1 Choice... 119
16.2.2 E.2.2 Pointer... 120
16.2.3 E.2.3 Procedure ... 120
16.2.4 E.2.4 Record... 121
16.2.5 E.2.5 Set ... 121
16.2.6 E.2.6 Bag .. 121
16.2.7 E.2.7 Sequence.. 122
16.2.8 E.2.8 Array.. 123
16.2.9 E.2.9 Table.. 123
16.3 E.3 GPD Subtypes... 124
16.3.1 E.3.1 Range .. 124
16.3.2 E.3.2 Selecting... 124
16.3.3 E.3.3 Excluding.. 124
16.3.4 E.3.4 Size.. 124
16.3.5 E.3.5 Explicit subtypes ... 124
16.3.6 E.3.6 Extended... 124
16.4 E.4 GPD-Defined Datatypes ... 124
16.4.1 E.4.1 Natural number .. 124
16.4.2 E.4.2 Modulo .. 124
16.4.3 E.4.3 Bit .. 125
16.4.4 E.4.4 Bit string ... 125
16.4.5 E.4.5 Character string ... 126
16.4.6 E.4.6 Time interval... 126
16.4.7 E.4.7 Octet.. 126
16.4.8 E.4.8 Octetstring.. 126
16.4.9 E.4.9 Private ... 127
16.4.10 E.4.10 Object identifier ... 127
16.5 E.5 Defined Generators .. 128
16.5.1 E.5.1 Stack ... 128
16.5.2 E.5.2 Tree ... 128
16.5.3 E.5.3 Cyclic enumerated... 128
16.5.4 E.5.4 Optional .. 128
16.6 E.6 Type-Declarations... 129
16.6.1 E.6.1 Renaming declarations ... 129
16.6.2 E.6.2 Datatype declarations ... 129
16.6.3 E.6.3 Generator declarations ... 129

17 Annex F: (informative) Example mapping to MUMPS ... 131
17.1 F.1 GPD Primitive Datatypes.. 131
17.1.1 F.1.1 Boolean... 131
17.1.2 F.1.2 State .. 132
17.1.3 F.1.3 Enumerated .. 132
17.1.4 F.1.4 Character .. 132
17.1.5 F.1.5 Ordinal... 132
17.1.6 F.1.6 Date and Time .. 132
17.1.7 F.1.7 Integer ... 132

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved vii

17.1.8 F.1.8 Rational ... 132
17.1.9 F.1.9 Scaled.. 132
17.1.10 F.1.10 Real.. 132
17.1.11 F.1.11 Complex.. 133
17.1.12 F.1.12 Void ... 133
17.2 F.2 GPD Generated Types .. 133
17.2.1 F.2.1 Choice ... 133
17.2.2 F.2.2 Pointer... 133
17.2.3 F.2.3 Procedure ... 133
17.2.4 F.2.4 Record... 133
17.2.5 F.2.5 Set.. 134
17.2.6 F.2.6 Bag .. 134
17.2.7 F.2.7 Sequence .. 134
17.2.8 F.2.8 Array.. 134
17.2.9 F.2.9 Table.. 134
17.3 F.3 GPD Subtypes ... 134
17.4 F.4 GPD Defined Datatypes.. 134
17.4.1 F.4.1 Natural number .. 134
17.4.2 F.4.2 Modulo .. 134
17.4.3 F.4.3 Bit .. 134
17.4.4 F.4.4 Bit string ... 134
17.4.5 F.4.5 Character string ... 135
17.4.6 F.4.6 Time interval ... 135
17.4.7 F.4.7 Octet .. 135
17.4.8 F.4.8 Octet string... 135
17.4.9 F.4.9 Private ... 135
17.4.10 F.4.10 Object identifier.. 135
17.5 F.5 Type-Declarations and Defined Datatypes... 135

18 Annex G: (informative) Resolved issues from the first edition of this International
Standard... 136

18.1 G.1 Scope... 136
18.2 G.2 Conformance .. 137
18.3 G.6 Fundamental Notions... 137
18.3.1 G.6.6 Characterizing operations.. 138
18.4 G.7 Elements of the Datatype Specification Language... 138
18.5 G.8 Datatypes .. 139
18.5.1 G.8.1.4 Character... 139
18.5.2 G.8.1.8 Rational ... 139
18.5.3 G.8.1.9 Scaled .. 139
18.5.4 G.8.1.10 Real .. 140
18.5.5 G.8.1.12 Void.. 140
18.5.6 G.8.2.2 Selecting.. 140
18.5.7 G.8.3.2 Pointer ... 141
18.5.8 G.8.4.1 Record ... 141
18.5.9 G.8.4.2 Set .. 142
18.5.10 G.8.4.3 Bag... 142
18.5.11 G.8.4.5 Array .. 142
18.6 G.9 Declarations.. 143
18.7 G.10 Defined datatypes .. 143
18.7.1 G.10.1.1 Natural number... 143
18.7.2 G.10.1.2 Modulo... 143
18.7.3 G.10.1.3 Bit... 144
18.7.4 G.10.1.5 Character string.. 144
18.7.5 G.10.2 Defined generators.. 144
18.8 G.11 Mappings... 145

ISO/IEC CD1 11404 (revision)

viii © ISO 2003 – All rights reserved

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved ix

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 11404 was prepared by Technical Committee ISO/IEC JTC1, Information Technology, Subcommittee
SC22, Programming languages, their environments, and system software interfaces.

ISO/IEC CD1 11404 (revision)

x © ISO 2003 – All rights reserved

Introduction

Introduction to the Second Edition (published in 200x)

This second edition incorporates recent technologies and improvements since the first edition of this
International Standard. The following improvements have been incorporated into the second edition:

 Change title to reflect actual usage. The use of this International Standard is no longer simply a tool for
communicating among programming languages (old title: "Language Independent Datatypes"), this
International Standard is used for formal description of conceptual datatypes in binding (or binding-
independent) standards and used as formalization of metadata for data elements, data element concepts,
and value domains (see ISO/IEC 11179-3). The old title was potentially misleading because readers
might believe that this International Standard is only useful for programming languages. The new title
"General Purpose Datatypes" captures the essence of the standard and its use.

 Incorporate latest technologies. Provide enhancements to the use of ISO/IEC 11404 as a data type
nomenclature reference for current programming languages, interface languages and data representation
languages, specifically Java, IDL, Express, and XML.

 Support for semi-structured and unstructured data aggregates. Semi-structured data and unstructured
data includes aggregates where datatyping and navigation may be unknown or unspecified in advance.
For example, some systems permit "discovery" (or "introspection") of data. In some cases, the datatype
may be unknown in advance (e.g., a compilation time), but may be discovered and process at runtime
(e.g., via datatype libraries or metadata registries).

 Support for data longevity, versioning, and migration. There is a need to support, from a datatyping
perspective, obsolete and reserved features, such as data elements and permissible values
(enumerations and states). Marking features as "obsolete" allows processing, compilation, and runtime
systems to "flag" or diagnose old (deprecated) features, while still maintaining compatibility, thus it is
possible to support transitions from past to present. Similarly, marking features as "reserved" allows
processing, compilation, and runtime systems to "flag" or diagnose potential incompatibilities with future
systems, thus it is possible to support transitions from present to future.

 Extensibility of datatypes and value spaces. There is a need to support some kind of extensibility
concept. For example: (1) a GPD specification of an aggregate contains the elements A and B; (2) an
application creates an aggregate with the elements A, B, and C; (3) are the application's "extensions" of
the aggregate acceptable/conforming with the GPD specification in #1? The answer to #3 is dependent
upon the intent and design of the specification in #1: in some cases extensions are permitted, in some
cases extensions are not permitted. The extensibility concept would allow the user of GPD datatypes to
describe the kind of extensions permitted. This feature is particularly important in (1) data conformance,
(2) application runtime environments that permit "discovery" or "introspection". This feature is available
via the "provision()" capability.

Some features that are not incorporated within GPD are:

 Namespace capability. Given the larger number of declarations, a namespace capability is necessary.

 Data representation. Although these features are a part of GPD annotations, there is no standardization
of data representation in these annotations. This step is an important link for data interoperability.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved xi

Introduction to the First Edition (published in 1996)

Many specifications of software services and applications libraries are, or are in the process of becoming,
International Standards. The interfaces to these libraries are often described by defining the form of
reference, e.g. the “procedure call”, to each of the separate functions or services in the library, as it must
appear in a user program written in some standard programming language (Fortran, COBOL, Pascal, etc.).
Such an interface specification is commonly referred to as the “<language> binding of <service>”, e.g. the
“Fortran binding of PHIGS” (ISO/IEC 9593-1:1990, Information processing systems — Computer Graphics —
Programmer’s Hierarchical Interactive Graphics System (PHIGS) language bindings — Part 1: FORTRAN).

This approach leads directly to a situation in which the standardization of a new service library immediately
requires the standardization of the interface bindings to every standard programming language whose users
might reasonably be expected to use the service, and the standardization of a new programming language
immediately requires the standardization of the interface binding to every standard service package which
users of that language might reasonably be expected to use. To avoid this n-to-m binding problem, ISO/IEC
JTC1 (Information Technology) assigned to SC22 the task of developing an International Standard for
Language-Independent Procedure Calling and a parallel International Standard for Language-Independent
Datatypes, which could be used to describe the parameters to such procedures.

This International Standard provides the specification for the Language-Independent Datatypes [called
General Purpose Datatypes in the second edition of this International Standard]. It defines a set of datatypes,
independent of any particular programming language specification or implementation, that is rich enough so
that any common datatype in a standard programming language or service package can be mapped to some
datatype in the set.

The purpose of this International Standard is to facilitate commonality and interchange of datatype notions, at
the conceptual level, among different languages and language-related entities. Each datatype specified in
this International Standard has a certain basic set of properties sufficient to set it apart from the others and to
facilitate identification of the corresponding (or nearest corresponding) datatype to be found in other
standards. Hence, this International Standard provides a single common reference model for all standards
which use the concept datatype. It is expected that each programming language standard will define a
mapping from the datatypes supported by that programming language into the datatypes specified herein,
semantically identifying its datatypes with datatypes of the reference model, and thereby with corresponding
datatypes in other programming languages.

It is further expected that each programming language standard will define a mapping from those Language-
Independent (LI) Datatypes which that language can reasonably support into datatypes which may be
specified in the programming language. At the same time, this International Standard will be used, among
other applications, to define a “language-independent binding” of the parameters to the procedure calls
constituting the principal elements of the standard interface to each of the standard services. The production
of such service bindings and language mappings leads, in cooperation with the parallel Language-
Independent Procedure Calling mechanism, to a situation in which no further “<language> binding of
<service>” documents need to be produced: Each service interface, by defining its parameters using LI
datatypes, effectively defines the binding of such parameters to any standard programming language; and
each language, by its mapping from the LI datatypes into the language datatypes, effectively defines the
binding to that language of parameters to any of the standard services.

COMMITTEE DRAFT ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 1

Information technology — General Purpose Datatypes (GPD)

Editor's Note: The previous edition of this standard was titled Information technology — Programming
languages, their environments, and system software interfaces — Language-independent datatypes.
The title has been changed (1) to reflect current, broader usage than just programming languages, and
(2) to conform to ISO/IEC Directives, 4th edition, Part 2, subclause D.2, that states "The title shall not
contain details that might imply an unintentional limitation of the scope of the document".

1 Scope

This International Standard specifies the nomenclature and shared semantics for a collection of datatypes
commonly occurring in programming languages and software interfaces, referred to as the General Purpose
Datatypes (GPD). It specifies both primitive datatypes, in the sense of being defined ab initio without
reference to other datatypes, and non-primitive datatypes, in the sense of being wholly or partly defined in
terms of other datatypes. The specification of datatypes in this International Standard is "general purpose" in
the sense that the datatypes specified are classes of datatypes of which the actual datatypes used in
programming languages and other entities requiring the concept datatype are particular instances. These
datatypes are general in nature, they serve a wide variety of information processing applications.

This International Standard expressly distinguishes three notions of "datatype", namely:

 the conceptual, or abstract, notion of a datatype, which characterizes the datatype by its nominal values
and properties;

 the structural notion of a datatype, which characterizes the datatype as a conceptual organization of
specific component datatypes with specific functionalities; and

 the implementation notion of a datatype, which characterizes the datatype by defining the rules for
representation of the datatype in a given environment.

This International Standard defines the abstract notions of many commonly used primitive and non-primitive
datatypes which possess the structural notion of atomicity. This International Standard does not define all
atomic datatypes; it defines only those which are common in programming languages and software
interfaces. This International Standard defines structural notions for the specification of other non-primitive
datatypes and provides a means by which datatypes not defined herein can be defined structurally in terms of
the GPDs defined herein.

This International Standard defines a partial terminology for implementation notions of datatypes and provides
for, but does not require, the use of this terminology in the definition of datatypes. The primary purpose of this
terminology is to identify common implementation notions associated with datatypes and to distinguish them
from conceptual notions. Specifications for the use of implementation notions are deemed to be outside the
scope of this International Standard, which is concerned solely with the identification and distinction of
datatypes.

ISO/IEC CD1 11404 (revision)

2 © ISO 2003 – All rights reserved

This International Standard specifies the required elements of mappings between the GPDs and the
datatypes of some other language. This International Standard does not specify the precise form of a
mapping, but rather the required information content of a mapping.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 8601:2000, Data elements and interchange formats — Information interchange — Representation of
dates and times

ISO/IEC 8824:2002, Information technology — Abstract Syntax Notation One (ASN.1)

ISO/IEC 8825:2002, Information technology — ASN.1 Encoding Rules

ISO/IEC 8825:2002, Data elements and interchange formats — Information interchange — Representation of
dates and times

ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Character Set (UCS) —
Part 1: Architecture and Basic Multilingual Plane

ISO/IEC 11179-3:2003, Information technology — Metadata Registries (MDR) — Part 3: Metamodel and
basic attributes

ISO/IEC 14977:1996, Information technology — Syntactic metalanguage — Extended BNF

3 Terms and definitions

For the purposes of this document, the following terms, abbreviations, and definitions apply.

NOTE These definitions might not coincide with accepted mathematical or programming language definitions of the
same terms.

3.1
actual parametric datatype
datatype appearing as a parametric datatype in a use of a datatype generator, in contrast to the formal-
parametric-types appearing in the definition of the datatype generator

3.2
actual parametric value
value appearing as a parametric value in a reference to a datatype family or datatype generator, in contrast to
the formal-parametric-values appearing in the corresponding definitions

3.3
aggregate datatype
generated datatype each of whose values is made up of values of the component datatypes, in the sense that
operations on all component values are meaningful

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 3

3.4
annotation
descriptive information unit attached to a datatype, or a component of a datatype, or a procedure (value), to
characterize some aspect of the representations, variables, or operations associated with values of the
datatype

NOTE The specification of annotations are outside the scope of this International Standard.

3.5
approximate
property of a datatype indicating that there is not a 1-to-1 relationship between values of the conceptual
datatype and the values of a valid computational model of the datatype

3.6
bounded
property of a datatype, meaning both bounded above and bounded below

3.7
bounded above
property of a datatype indicating that there is a value U in the value space such that, for all values s in the
value space, s ≤ U

3.8
bounded below
property of a datatype indicating that there is a value L in the value space such that, for all values s in the
value space, s ≥ L

3.9
characterizing operations (of a datatype)
collection of operations on, or yielding, values of the datatype that distinguish this datatype from other
datatypes with identical value spaces

3.10
characterizing operations (of a datatype generator)
collection of operations on, or yielding, values of any datatype resulting from an application of the datatype
generator that distinguish this datatype generator from other datatype generators and produce identical value
spaces from identical parametric datatypes

3.11
component datatype
datatype which is a parametric datatype to a datatype generator

NOTE I.e., a datatype on which the datatype generator operates.

3.12
datatype
set of distinct values, characterized by properties of those values, and by operations on those values

3.13
datatype declaration 1, verb
means provided by this International Standard for the definition of a datatype which is not itself defined by this
International Standard

ISO/IEC CD1 11404 (revision)

4 © ISO 2003 – All rights reserved

3.14
datatype declaration 2, noun
instance of use of a datatype declaration

3.15
datatype family
collection of datatypes which have equivalent characterizing operations and relationships, but value spaces
that differ in the number and identification of the individual values

3.16
datatype generator
generator
operation on datatypes, as objects distinct from their values, that generates new datatypes

3.17
defined datatype
datatype defined by a type-declaration.

3.18
defined generator
datatype generator defined by a type-declaration

3.19
exact
property of a datatype indicating that every value of the conceptual datatype is distinct from all others in any
valid computational model of the datatype.

3.20
formal-parametric-type
identifier, appearing in the definition of a datatype generator, for which a datatype will be substituted in any
reference to a (defined) datatype resulting from the generator

3.21
formal-parametric-value
identifier, appearing in the definition of a datatype family or datatype generator, for which a value will be
substituted in any reference to a (defined) datatype in the family or resulting from the generator

3.22
general purpose datatype
GPD
datatype defined by this International Standard

3.23
GPD-generated datatype
GPD datatype
datatype defined by the means of datatype definition provided by this International Standard

3.24
generated datatype
datatype defined by the application of a datatype generator to one or more previously-defined datatypes

3.25
generated internal datatype
datatype defined by the application of a datatype generator defined in a particular programming language to
one or more previously-defined internal datatypes

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 5

3.26
generator declaration 1, verb
means provided by this International Standard for the definition of a datatype generator which is not itself
defined by this International Standard

3.27
generator declaration 2, noun
instance of use of generator declaration

3.28
instruction
provision that conveys an action to be performed [ISO/IEC Guide 2]

3.29
internal datatype
datatype whose syntax and semantics are defined by some other standard, specification, language, product,
service or other information processing entity

3.30
inward mapping
conceptual association between the internal datatypes of a language and the general purpose datatypes
which assigns to each GPD either a single semantically equivalent internal datatype or no equivalent internal
datatype

3.31
lower bound
value L such that, for all values s in the value space in a datatype which is bounded below, L ≤ s

3.32
mandatory requirement
requirement of a normative document that must necessarily be fulfilled in order to comply with that document
[adapted from ISO/IEC Guide 2]

NOTE A "mandatory requirement" is also known as an "exclusive requirement".

3.33
mapping (of datatypes)
formal specification of the relationship between the internal datatypes that are notions of, and specifiable in, a
particular programming language and the general purpose datatypes specified in this International Standard

3.34
mapping (of values)
corresponding specification of the relationships between values of the internal datatypes and values of the
general purpose datatypes

3.35
meta-identifier
«EBNF» name of a non-terminal symbol [ISO/IEC 14977]

NOTE See note in 5.1 concerning the context of the specialized usage of this term.

3.36
non-terminal symbol
«EBNF» syntactic part of the language being defined [ISO/IEC 14977]

ISO/IEC CD1 11404 (revision)

6 © ISO 2003 – All rights reserved

NOTE See note in 5.1 concerning the context of the specialized usage of this term.

3.37
normative document
document that provides rules, guidelines or characteristics for activities or their results [adapted from ISO/IEC
Guide 2]

NOTE 1 The term "normative document" is a generic term that covers such documents as standards and technical
specifications.

NOTE 2 A "document" is to be understood as any medium with information recorded on or in it, such as a paper
document or program code.

3.38
optional requirement
requirement of a normative document that must be fulfilled in order to comply with a particular option
permitted by that document [adapted from ISO/IEC Guide 2]

NOTE An optional requirement may be either: (1) one of two or more alternative requirements; or (2) an additional
requirement that must be fulfilled only if applicable and that may otherwise be disregarded.

3.39
order
mathematical relationship among values

NOTE See 6.3.2.

3.40
ordered
property of a datatype which is determined by the existence and specification of an order relationship on its
value space

3.41
outward mapping
conceptual association between the internal datatypes of a language and the general purpose datatypes that
identifies each internal datatype with a single semantically equivalent general purpose datatype

3.42
parametric datatype
datatype on which a datatype generator operates to produce a generated-datatype

3.43
parametric value 1
value which distinguishes one member of a datatype family from another

3.44
parametric value 2
value which is a parameter of a datatype or datatype generator defined by a type-declaration

NOTE See 9.1.

3.45
primitive datatype
identifiable datatype that cannot be decomposed into other identifiable datatypes without loss of all semantics
associated with the datatype

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 7

3.46
primitive internal datatype
datatype in a particular programming language whose values, conceptually, are not constructed in any way
from values of other datatypes in the language

3.47
provision
expression of normative wording that takes the form of a statement, an instruction, a recommendation or a
requirement [adapted from ISO/IEC Guide 2]

NOTE These types of provision are distinguished by the form of wording they employ; e.g. instructions are expressed
in the imperative mood, recommendations by the use of the auxiliary "should" and requirements by the use of the auxiliary
"shall".

3.48
recommendation
provision that conveys advice or guidance [ISO/IEC Guide 2]

3.49
representation (of a general purpose datatype)
mapping from the value space of the general purpose datatype to the value space of some internal datatype
of a computer system, file system or communications environment

3.50
representation (of a value)
sign(s) of that value in the representation of the datatype

NOTE In this context, the term "sign" is used in its terminological sense (e.g., a symbol) and not in its mathematical
sense (e.g., positive of negative).

3.51
regular value
element of a value space that is subject to a datatype's properties and characterizing operations

3.52
requirement
provision that conveys criteria to be fulfilled [ISO/IEC Guide 2]

3.53
sentence
«EBNF» sequence of symbols that represents the start symbol [ISO/IEC 14977]

NOTE See note in 5.1 concerning the context of the specialized usage of this term.

3.54
sentinel value
element of a value space that is not subject to a datatype's properties and characterizing operations

3.55
sequence
«EBNF» ordered list of zero or more items [ISO/IEC 14977]

NOTE See note in 5.1 concerning the context of the specialized usage of this term.

ISO/IEC CD1 11404 (revision)

8 © ISO 2003 – All rights reserved

3.56
start symbol
«EBNF» non-terminal symbol that is defined by one or more syntax rules but does not occur in any other
syntax rule [ISO/IEC 14977]

NOTE See note in 5.1 concerning the context of the specialized usage of this term.

3.57
statement
provision that conveys information [ISO/IEC Guide 2]

3.58
subsequence
«EBNF» sequence within a sequence [ISO/IEC 14977]

NOTE See note in 5.1 concerning the context of the specialized usage of this term.

3.59
subtype
datatype derived from another datatype by restricting the value space to a subset whilst maintaining all
characterizing operations

3.60
terminal symbol
«EBNF» sequence of one or more characters forming an irreducible element of a language [ISO/IEC 14977]

NOTE See note in 5.1 on the context of the specialized usage of this term.

3.61
upper bound
value U such that, for all values s in the value space in a datatype which is bounded below, s ≤ U

3.62
value space
set of values for a given datatype

3.63
variable
computational object to which a value of a particular datatype is associated at any given time; and to which
different values of the same datatype may be associated at different times

4 Conformance

An information processing product, system, element or other entity may conform to this International Standard
either directly, by utilizing datatypes specified in this International Standard in a conforming manner (4.1), or
indirectly, by means of mappings between internal datatypes used by the entity and the datatypes specified in
this International Standard (4.2).

NOTE The general term information processing entity is used in this clause to include anything which processes
information and contains the concept of datatype. Information processing entities for which conformance to this
International Standard may be appropriate include other standards (e.g. standards for programming languages or
language-related facilities), specifications, data handling facilities and services, etc.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 9

4.1 Direct conformance

An information processing entity which conforms directly to this International Standard shall:

1. specify which of the datatypes and datatype generators specified in Clause 8 and Clause 10 are provided
by the entity and which are not, and which, if any, of the declaration mechanisms in Clause 9 it provides;
and

2. define the value spaces of the general purpose datatypes used by the entity to be identical to the value
spaces specified by this International Standard; and

3. use the notation prescribed by Clause 7 through Clause 10 of this International Standard to refer to those
datatypes and to no others; and

4. to the extent that the entity provides operations other than movement or translation of values, define
operations on the general purpose datatypes which can be derived from, or are otherwise consistent with,
the characterizing operations specified by this International Standard.

NOTE 1 This International Standard defines a syntax for the denotation of values of each datatype it defines, but, in
general, requirement 3 does not require conformance to that syntax. Conformance to the value-syntax for a datatype is
required only in those cases in which the value appears in a type-specifier, that is, only where the value is part of the
identification of a datatype.

NOTE 2 The requirements above prohibit the use of a type-specifier defined in this International Standard to designate
any other datatype. They make no other limitation on the definition of additional datatypes in a conforming entity, although
it is recommended that either the form in Clause 8 or the form in Clause 10 be used.

NOTE 3 Requirement 4 does not require all characterizing operations to be supported and permits additional
operations to be provided. The intention is to permit addition of semantic interpretation to the general purpose datatypes
and generators, as long as it does not conflict with the interpretations given in this International Standard. A conflict arises
only when a given characterizing operation could not be implemented or would not be meaningful, given the entity-
provided operations on the datatype.

NOTE 4 Examples of entities which could conform directly are language definitions or interface specifications whose
datatypes, and the notation for them, are those defined herein. In addition, the verbatim support by a software tool or
application package of the datatype syntax and definition facilities herein should not be precluded.

4.2 Indirect conformance

An information processing entity which conforms indirectly to this International Standard shall:

1. provide mappings between its internal datatypes and the general purpose datatypes conforming to the
specifications of Clause 11 of this International Standard; and

2. specify for which of the datatypes in Clause 8 and Clause 10 an inward mapping is provided, for which an
outward mapping is provided, and for which no mapping is provided.

NOTE 1 Standards for existing programming languages are expected to provide for indirect conformance rather than
direct conformance.

NOTE 2 Examples of entities which could conform indirectly are language definitions and implementations, information
exchange specifications and tools, software engineering tools and interface specifications, and many other entities which
have a concept of datatype and an existing notation for it.

ISO/IEC CD1 11404 (revision)

10 © ISO 2003 – All rights reserved

4.3 Conformance of a mapping standard

In order to conform to this International Standard, a standard for a mapping shall include in its conformance
requirements the requirement to conform to this International Standard.

NOTE 1 It is envisaged that this International Standard will be accompanied by other standards specifying mappings
between the internal datatypes specified in language and language-related standards and the general purpose datatypes.
Such mapping standards are required to comply with this International Standard.

NOTE 2 Such mapping standards may define "generic" mappings, in the sense that for a given internal datatype the
standard specifies a parameterized general purpose datatype in which the parametric values are not derived from
parametric values of the internal datatype nor specified by the standard itself, but rather are required to be specified by a
"user" or "implementor" of the mapping standard. That is, instead of specifying a particular general purpose datatype, the
mapping specifies a family of general purpose datatypes and requires a further user or implementor to specify which
member of the family applies to a particular use of the mapping standard. This is always necessary when the internal
datatypes themselves are, in the intention of the language standard, either explicitly or implicitly parameterized. For
example, a programming language standard may define a datatype INTEGER with the provision that a conforming
processor will implement some range of Integer; hence the mapping standard may map the internal datatype INTEGER to
the general purpose datatype:

integer range (min..max)

and require a conforming processor to provide values for "min" and "max".

4.4 Program text conformance

A program text that conforms to this International Standard shall:

1. conform to the syntax rules specified in Clauses 5, 7, 8, and 9 of this International Standard;

2. conform to the datatyping provisions of Clauses 6, 7, 8, 9, and 10 of this International Standard.

5 Conventions used in this International Standard

5.1 Formal syntax

This International Standard defines a formal datatype specification language. The notation defined in ISO/IEC
14977, Extended Backus-Naur Form (EBNF), is used in defining that language. Table 5-1 summarizes the
ISO/IEC 14977 EBNF syntactic metalanguage.

NOTE The terms meta-identifier, non-terminal symbol, sentence, sequence, start symbol, subsequence, and terminal
symbol have special meaning in the context of EBNF notation (see Clause 3, Definitions).

Table 5-1 — Summary of ISO/IEC 14977 EBNF Syntactic Metalanguage Notation

Representation ISO/IEC 10646-1 Character Names Metalanguage Symbol
' ' apostrophe first quote symbol
" " quotation mark second quote symbol
(* *) left parenthesis with asterisk,

asterisk with right parenthesis
start/end comment symbols

() left parentheses, right parenthesis start/end group symbols
[] left square bracket, right square bracket start/end option symbols
{ } left curly bracket, right curly bracket start/end repeat symbols
? ? question mark special sequence symbol

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 11

 - hyphen-minus except symbol
 , comma concatenate symbol
 = equals sign defining symbol
 | vertical line definition separator symbol
 * asterisk repetition symbol
 ; semicolon terminator symbol

EXAMPLE 1 The following syntax rules illustrate repetition (asterisk and curly brackets) and option square brackets:

aa = "A" ;
bb = 3 * aa, "B" ;
cc = 3 * [aa], "C" ;
dd = {aa}, "D" ;
ee = aa, {aa}, "E" ;
ff = 3 * aa, 3 * [aa], "F" ;

Terminal strings defined by these rules are as follows:

aa: A
bb: AAAB
cc: C AC AAC AAAC
dd: D AD AAD AAAD AAAAD etc.
ee: AE AAE AAAE AAAAE AAAAAE etc.
ff: AAAF AAAAF AAAAAF AAAAAAF

EXAMPLE 2 The following syntax rules illustrate a definitions list (vertical line), an exception (hyphen-minus), and
comments (parentheses and asterisks):

letter = "A" | "B" | "C" | "D" | "E" | "F"
| "G" | "H" | "I" | "J" | "K" | "L" | "M"
| "N" | "O" | "P" | "Q" | "R" | "S" | "T"
| "U" | "V" | "W" | "X" | "Y" | "Z" ;
vowel = "A" | "E" | "I" | "O" | "U" ;
consonant = letter - vowel ; (* These examples are from ISO/IEC 14977 *)

Terminal strings defined by these rules are as follows:

letter: A B C D E F G H I J etc.
vowel: A E I O U
consonant: B C D F G H J K L M etc.

5.2 Text conventions

Within the text:

 A reference to a terminal symbol syntactic object consists of the terminal symbol in fixed width courier,
e.g. type.

 A reference to a non-terminal symbol syntactic object consists of the non-terminal-symbol in fix width italic
courier, e.g. type-declaration.

 Mathematical notation, properties, and characterizing operations are in bold, e.g., InOrder(x,y).

ISO/IEC CD1 11404 (revision)

12 © ISO 2003 – All rights reserved

 Non-italicized words which are identical or nearly identical in spelling to a non-terminal-symbol refer to the
conceptual object represented by the syntactic object. In particular, xxx-type refers to the syntactic
representation of an "xxx datatype" in all occurrences.

6 Fundamental notions

6.1 Datatype

A datatype is a set of distinct values, characterized by properties of those values and by operations on those
values. Characterizing operations are included in this International Standard solely in order to identify the
datatype.

The term general purpose datatype is used to mean a datatype defined by this International Standard. The
term general purpose datatypes (plural) refers to some or all of the datatypes defined by this International
Standard. The term GPD datatype refers to datatypes generated by or datatypes declared by use of this
International Standard.

The term internal datatype is used to mean a datatype whose syntax and semantics are defined by some
other standard, language, product, service or other information processing entity.

NOTE The datatypes included in this standard are "common", not in the sense that they are directly supported by,
i.e. "built-in" to, many languages, but in the sense that they are common and useful generic concepts among users of
datatypes, which include, but go well beyond, programming languages.

6.2 Value space

A value space is the collection of values for a given datatype. The value space of a given datatype can be
defined in one of the following ways:

 enumerated outright, or

 defined axiomatically from fundamental notions, or

 defined as the subset of those values from some already defined value space which have a given set of
properties, or

 defined as a combination of arbitrary values from some already defined value spaces by a specified
construction procedure.

A distinct value may belong to the value spaces of many datatypes, such as subtypes of those datatype (see
8.2).

A value space contains regular values and may contain sentinel values. The properties and characterizing
operations of a datatype shall apply to regular values. The properties and characterizing operations may
apply to sentinel values.

NOTE A numeric datatype, which includes characterizing operations such as IsEqual and InOrder, may include
sentinel values such as not-a-number, indeterminate, not-applicable, +infinity, -infinity, and so on. These
characterizing operations are not defined for sentinel values.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 13

6.3 Datatype properties

The model of datatypes used in this International Standard is said to be an "abstract computational model". It
is "computational" in the sense that it deals with the manipulation of information by computer systems and
makes distinctions in the typing of data units which are appropriate to that kind of manipulation. It is "abstract"
in the sense that it deals with the perceived properties of the data units themselves, rather than with the
properties of their representations in computer systems.

NOTE 1 It is important to differentiate between the values, relationships and operations for a datatype and the
representations of those values, relationships and operations in computer systems. This International Standard specifies
the characteristics of the conceptual datatypes, but it only provides a means for specification of characteristics of
representations of the datatypes.

NOTE 2 Some computational properties derive from the need for the data units to be representable in computers.
Such properties are deemed to be appropriate to the abstract computational model, as opposed to purely representational
properties, which derive from the nature of specific representations of the data units.

NOTE 3 It is not proper to describe the datatype model used herein as "mathematical", because a truly mathematical
model has no notions of "access to data units" or "invocation of processing elements", and these notions are important to
the definition of characterizing operations for datatypes and datatype generators.

6.3.1 Equality

In every value space there is a notion of equality, for which the following rules hold:

 for any two instances (a, b) of values from the value space, either a is equal to b, denoted a = b, or a is
not equal to b, denoted a ≠ b;

 there is no pair of instances (a, b) of values from the value space such that both a = b and a ≠ b;

 for every value a from the value space, a = a;

 for any two instances (a, b) of values from the value space, a = b if and only if b = a;

 for any three instances (a, b, c) of values from the value space, if a = b and b = c, then a = c.

On every datatype, the operation Equal is defined in terms of the equality property of the value space, by:

 for any values a, b drawn from the value space, Equal(a,b) is true if a = b, and false otherwise.

6.3.2 Order

A value space is said to be ordered if there exists for the value space an order relation, denoted ≤, with the
following rules:

 for every pair of values (a, b) from the value space, either a ≤ b or b ≤ a, or both;

 for any two values (a, b) from the value space, if a ≤ b and b ≤ a, then a = b;

 for any three values (a, b, c) from the value space, if a ≤ b and b ≤ c, then a ≤ c.

For convenience, the notation a < b is used herein to denote the simultaneous relationships: a ≤ b and a ≠ b.

ISO/IEC CD1 11404 (revision)

14 © ISO 2003 – All rights reserved

A datatype is said to be ordered if an order relation is defined on its value space. A corresponding
characterizing operation, called InOrder, is then defined by:

 for any two values (a, b) from the value space, InOrder(a, b) is true if a ≤ b, and false otherwise.

NOTE There may be several possible orderings of a given value space. And there may be several different
datatypes which have a common value space, each using a different order relationship. The chosen order relationship is
a characteristic of an ordered datatype and may affect the definition of other operations on the datatype.

6.3.3 Bound

A datatype is said to be bounded above if it is ordered and there is a value U in the value space such that,
for all values s in the value space, s ≤ U. The value U is then said to be an upper bound of the value space.
Similarly, a datatype is said to be bounded below if it is ordered and there is a value L in the space such
that, for all values s in the value space, L ≤ s. The value L is then said to be a lower bound of the value
space. A datatype is said to be bounded if its value space has both an upper bound and a lower bound.

NOTE The upper bound of a value space, if it exists, must be unique under the equality relationship. For if U1 and
U2 are both upper bounds of the value space, then U1 ≤ U2 and U2 ≤ U1, and therefore U1 = U2, following the second
rule for the order relationship. And similarly the lower bound, if it exists, must also be unique.

On every datatype which is bounded below, the niladic operation Lowerbound is defined to yield that value
which is the lower bound of the value space, and, on every datatype which is bounded above the niladic
operation Upperbound is defined to yield that value which is the upper bound of the value space.

6.3.4 Cardinality

A value space has the mathematical concept of cardinality: it may be finite, denumerably infinite (countable),
or non-denumerably infinite (uncountable). A datatype is said to have the cardinality of its value space. In the
computational model, there are three significant cases:

 datatypes whose value spaces are finite,

 datatypes whose value spaces are exact (see 6.3.5) and denumerably infinite,

 datatypes whose value spaces are approximate (see 6.3.5), and therefore have a finite or denumerably
infinite computational model, although the conceptual value space may be non-denumerably infinite.

Every conceptually finite datatype is necessarily exact. No computational datatype is non-denumerably
infinite.

NOTE For a denumerably infinite value space, there always exist representation algorithms such that no two distinct
values have the same representation and the representation of any given value is of finite length. Conversely, in a non-
denumerably infinite value space there always exist values which do not have finite representations.

6.3.5 Exact and approximate

The computational model of a datatype may limit the degree to which values of the datatype can be
distinguished. If every value in the value space of the conceptual datatype is distinguishable in the
computational model from every other value in the value space, then the datatype is said to be exact.

Certain mathematical datatypes having values which do not have finite representations are said to be
approximate, in the following sense:

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 15

Let M be the mathematical datatype and C be the corresponding computational datatype, and let P be
the mapping from the value space of M to the value space of C. Then for every value v' in C, there is a
corresponding value v in M and a real value h such that P(x) = v' for all x in M such that | v - x | < h. That
is, v' is the approximation in C to all values in M which are "within distance h of value v". Furthermore,
for at least one value v' in C, there is more than one value y in M such that P(y) = v'. And thus C is not
an exact model of M.

In this International Standard, all approximate datatypes have computational models which specify, via
parametric values, a degree of approximation, that is, they require a certain minimum set of values of the
mathematical datatype to be distinguishable in the computational datatype.

NOTE The computational model described above allows a mathematically dense datatype to be mapped to a
datatype with fixed-length representations and nonetheless evince intuitively acceptable mathematical behavior. When
the real value h described above is constant over the value space, the computational model is characterized as having
"bounded absolute error" and the result is a scaled datatype (8.1.9). When h has the form c • | v |, where c is constant
over the value space, the computational model is characterized as having "bounded relative error", which is the model
used for the Real (8.1.10) and Complex (8.1.11) datatypes.

6.3.6 Numeric

A datatype is said to be numeric if its values are conceptually quantities (in some mathematical number
system). A datatype whose values do not have this property is said to be non-numeric.

NOTE The significance of the numeric property is that the representations of the values depend on some radix, but
can be algorithmically transformed from one radix to another.

6.4 Primitive and non-primitive datatypes

In this International Standard, datatypes are categorized, for syntactic convenience, into:

 primitive datatypes, which are defined axiomatically without reference to other datatypes, and

 generated datatypes, which are specified, and partly defined, in terms of other datatypes.

In addition, this International Standard identifies structural and abstract notions of datatypes. The structural
notion of a datatype characterizes the datatype as either:

 conceptually atomic, having values which are intrinsically indivisible, or

 conceptually aggregate, having values which can be seen as an organization of specific component
datatypes with specific functionalities.

Aggregate datatypes may be:

 conceptually structured, having both designators (i.e., access methods) and datatypes known prior to use
of the aggregate datatype, or

 conceptually semi-structured, have either designators and datatypes known prior to use of the aggregate
datatype, or

 conceptually unstructured, having neither designators and datatypes known prior to use of the aggregate
datatype.

NOTE 1 For semi-structured datatypes and unstructured datatypes, the designators (i.e., access methods) and
datatypes may be discovered via "introspection".

ISO/IEC CD1 11404 (revision)

16 © ISO 2003 – All rights reserved

All primitive datatypes are conceptually atomic, and therefore have, and are defined in terms of, well-defined
abstract notions. Some generated datatypes are conceptually atomic but are dependent on specifications
which involve other datatypes. These too are defined in terms of their abstract notions. Many other datatypes
may represent objects which are conceptually atomic, but are themselves conceptually aggregates, being
organized collections of accessible component values. For aggregate datatypes, this International Standard
defines a set of basic structural notions (see 6.8) which can be recursively applied to produce the value space
of a given generated datatype. The only abstract semantics assigned to such a datatype by this International
Standard are those which characterize the aggregate value structure itself.

NOTE 2 The abstract notion of a datatype is the semantics of the values of the datatype itself, as opposed to its
utilization to represent values of a particular information unit or a particular abstract object. The abstract and structural
notions provided by this International Standard are sufficient to define its role in the universe of discourse between two
languages, but not to define its role in the universe of discourse between two programs. For example, Array datatypes
are supported as such by both Fortran and Pascal, so that Array of Real has sufficient semantics for procedure calls
between the two languages. By comparison, both linear operators and lists of Cartesian points may be represented by
Array of Real, and Array of Real is insufficient to distinguish those meanings in the programs.

6.5 Datatype generator

A datatype generator is a conceptual operation on one or more datatypes which yields a datatype. A datatype
generator operates on datatypes to generate a datatype, rather than on values to generate a value.
Specifically, a datatype generator is the combination of:

 a collection of criteria for the number and characteristics of the datatypes to be operated upon,

 a construction procedure which, given a collection of datatypes meeting those criteria, creates a new
value space from the value spaces of those datatypes, and

 a collection of characterizing operations which attach to the resulting value space to complete the
definition of a new datatype.

The application of a datatype generator to a specific collection of datatypes meeting the criteria for the
datatype generator forms a generated datatype. The generated datatype is sometimes called the resulting
datatype, and the collection of datatypes to which the datatype generator was applied are called its parametric
datatypes.

6.6 Characterizing operations

The set of characterizing operations for a datatype comprises those operations on, or yielding values of, the
datatype that distinguish this datatype from other datatypes having value spaces which are identical except
possibly for substitution of symbols.

The set of characterizing operations for a datatype generator comprises those operations on, or yielding
values of, any datatype resulting from an application of the datatype generator that distinguish this datatype
generator from other datatype generators which produce identical value spaces from identical parametric
datatypes.

NOTE 1 Characterizing operations are needed to distinguish datatypes whose value spaces differ only in what the
values are called. For example, the value spaces (one, two, three, four), (1, 2, 3, 4), and (red, yellow, green, blue) all
have four distinct values and all the names (designations) are different. But one can claim that the first two support the
characterizing operation Add(), while the last does not:

Add(one, two) = three; and Add(1,2) = 3; but Add(red, yellow) ≠ green

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 17

It is this characterizing operation (Add) which enables one to recognize that the first two datatypes are the same datatype,
while the last is a different datatype.

NOTE 2 The characterizing operations for an aggregate datatype are compositions of characterizing operations for its
datatype generator with characterizing operations for its component datatypes. Such operations are, of course, only
sufficient to identify the datatype as a structure.

NOTE 3 The characterizing operations on a datatype may be:

 niladic operations which yield values of the given datatype,

 monadic operations which map a value of the given datatype into a value of the given datatype or into a value of
datatype Boolean,

 dyadic operations which map a pair of values of the given datatype into a value of the given datatype or into a value
of datatype Boolean,

 n-adic operations which map ordered n-tuples of values, each of which is of a specified datatype, which may be the
given datatype or a parametric datatype, into values of the given datatype or a parametric datatype.

NOTE 4 In general, there is no unique collection of characterizing operations for a given datatype. This International
Standard specifies one collection of characterizing operations for each datatype (or datatype generator) which is sufficient
to distinguish the (resulting) datatype from all other datatypes with value spaces of the same cardinality. While some
effort has been made to minimize the collection of characterizing operations for each datatype, no assertion is made that
any of the specified collections is minimal.

NOTE 5 IsEqual is always a characterizing operation on datatypes with the equality property.

NOTE 6 InOrder is always a characterizing operation on ordered datatypes (see 6.3.2).

6.7 Datatype families

If there is a one-to-one symbol substitution which maps the entire value space of one datatype (the domain)
into a subset of the value space of another datatype (the range) in such a way that the value relationships and
characterizing operations of the domain datatype are preserved in the corresponding value relationships and
characterizing operations of the range datatype, and if there are no additional characterizing operations on the
range datatype, then the two datatypes are said to belong to the same family of datatypes. An individual
member of a family of datatypes is distinguished by the symbol set making up its value space. In this
International Standard, the symbol set for an individual member of a datatype family is specified by one or
more values, called the parametric values of the datatype family.

6.8 Aggregate datatypes

An aggregate datatype is a generated datatype, each of whose values is, in principle, made up of values of
the parametric datatypes. The parametric datatypes of an aggregate datatype or its generator are also called
component datatypes. An aggregate datatype generator generates a datatype by

 applying an algorithmic procedure to the value spaces of its component datatypes to yield the value space
of the aggregate datatype, and

 providing a set of characterizing operations specific to the generator.

Unlike other generated datatypes, it is characteristic of aggregate datatypes that the component values of an
aggregate value are accessible through characterizing operations.

ISO/IEC CD1 11404 (revision)

18 © ISO 2003 – All rights reserved

Aggregate datatypes of various kinds are distinguished one from another by properties which characterize
relationships among the component datatypes and relationships between each component and the aggregate
value. This subclause defines those properties.

The properties specific to an aggregate are independent of the properties of the component datatypes. (The
fundamental properties of arrays, for example, do not depend on the nature of the elements.) In principle, any
combination of the properties specified in this subclause defines a particular form of aggregate datatype,
although most are only meaningful for homogeneous aggregates (see 6.8.1) and there are implications of
some direct access methods (see 6.8.5).

6.8.1 Homogeneity

An aggregate datatype is homogeneous, if and only if all components must belong to a single datatype. If
different components may belong to different datatypes, the aggregate datatype is said to be heterogeneous.
The component datatype of a homogeneous aggregate is also called the element datatype.

NOTE 1 Homogeneous aggregates view all their elements as serving the same role or purpose. Heterogeneous
aggregates divide their elements into different roles.

NOTE 2 The aggregate datatype is homogeneous if its components all belong to the same datatype, even if the
element datatype is itself an heterogeneous aggregate datatype. Consider the datatype label_list defined by:

type label = choice (state(name, handle)) of ((name): characterstring, (handle): integer);

type label_list = sequence of (label);

Formally, a label_list value is a homogeneous series of label values. One could argue that it is really a series of
heterogeneous values, because every label value is of a choice datatype (see 8.3.1). The choice datatype generator is
clearly heterogeneous because it is capable of introducing variation in element type. But sequence (see 8.4.4) is
homogeneous because it itself introduces no variation in element type.

6.8.2 Size

The size of an aggregate-value is the number of component values it contains. The size of the aggregate
datatype is fixed, if and only if all values in its value space contain the same number of component values.
The size is variable, if different values of the aggregate datatype may have different numbers of component
values. Variability is the more general case; fixed-size is a constraint.

6.8.3 Uniqueness

An aggregate-value has the uniqueness property if and only if no value of the element datatype occurs more
than once in the aggregate-value. The aggregate datatype has the uniqueness property, if and only if all
values in its value space do.

6.8.4 Aggregate-imposed identifier uniqueness

An aggregate-value has the identifier uniqueness property if and only if no identifier (e.g., label, index) of the
element datatype occurs more than once in the aggregate-value. The aggregate datatype has the identifier
uniqueness property, if and only if all values in its value space do.

6.8.5 Aggregate-imposed ordering

An aggregate datatype has the ordering property, if and only if there is a canonical first element of each non-
empty value in its value-space. This ordering is (externally) imposed by the aggregate value, as distinct from

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 19

the value-space of the element datatype itself being (internally) ordered (see 6.3.2). It is also distinct from
the value-space of the aggregate datatype being ordered.

EXAMPLE The type-generator sequence has the ordering property. The datatype characterstring is defined as
sequence of (character(repertoire)). The ordering property of sequence means that in every value of type
characterstring, there is a first character value. For example, the first element value of the characterstring value
"computation" is 'c'. This is different from the question of whether the element datatype character(repertoire) is
ordered: is 'a' < 'c'? It is also different from the question of whether the value space of datatype characterstring is
ordered by some collating-sequence, e.g. is "computation" < "Computer"?

6.8.6 Access method

The access method for an aggregate datatype is the property which determines how component values can
be extracted from a given aggregate-value.

An aggregate datatype has a direct access method, if and only if there is an aggregate-imposed mapping
between values of one or more “index” (or “key”) datatypes and the component values of each aggregate
value. Such a mapping is required to be single- valued, i.e. there is at most one element of each aggregate
value which corresponds to each (composite) value of the index datatype(s). The dimension of an aggregate
datatype is the number of index or key datatypes the aggregate has.

An aggregate datatype is said to be indexed, if and only if it has a direct access method, every index datatype
is ordered, and an element of the aggregate value is actually present and defined for every (composite) value
in the value space of the index datatype(s). Every indexed aggregate datatype has a fixed size, because of
the 1-to-1 mapping from the index value space. In addition, an indexed datatype has a "partial ordering" in
each dimension imposed by the order relationship on the index datatype for that dimension; in particular, an
aggregate datatype with a single ordered index datatype implicitly has the ordering imposed by sequential
indexing.

An aggregate datatype is said to be keyed, if and only if it has a direct access method, but either the index
datatypes or the mapping do not meet the requirements for indexed. That is, the index (or key) datatypes
need not be ordered, and a value of the aggregate datatype need not have elements corresponding to all of
the key values.

An aggregate datatype is said to have only indirect access methods if there is no aggregate-imposed index
mapping. Indirect access may be by position (if the aggregate datatype has ordering), by value of the
element (if the aggregate datatype has uniqueness), or by some implementation-dependent selection
mechanism, modeled as random selection.

NOTE 1 The access methods become characterizing operations on the aggregate types. It is preferable to define the
types by their intrinsic properties and to see these access properties be derivable characterizing operations.

NOTE 2 The sequence datatype generator (see 8.4.4) is said to have indirect access because the only way a given
element value (or an element value satisfying some given condition) can be found is to traverse the list in order until the
desired element is the "Head". In general, therefore, one cannot access the desired element without first accessing all
(undesired) elements appearing earlier in the sequence. On the other hand, Array (see 8.4.5) has direct access because
the access operation for a given element is "find the element whose index is i" – the ith element can be accessed without
accessing any other element in the given Array. Of course, if the Array element which satisfies a condition not related to
the index value is wanted, access would be indirect.

6.8.7 Recursive structure

A datatype is said to be recursive if a value of the datatype can contain (or refer to) another value of the
datatype. In this International Standard , a recursive capability is supported by the type-declaration facility
(see 9.1), and recursive datatypes can be described using type-declaration in combination with choice

ISO/IEC CD1 11404 (revision)

20 © ISO 2003 – All rights reserved

datatypes (8.3.1) or pointer datatypes (8.3.2). Thus recursive structure is not considered to be a property of
aggregate datatypes per se.

EXAMPLE LISP has several "atomic" datatypes, collected under the generic datatype "atom", and a "list" datatype which
is a sequence of elements each of which can be an atom or a list. This datatype can be described using the Tree
datatype generator defined in 10.2.2.

6.9 Provisions associated with datatypes

A provision is the fundamental unit of normative wording in a normative document, such as a standard or
specification. A provision is an "expression of normative wording that takes the form of a statement, an
instruction, a recommendation or a requirement". Auxiliary verbs such as "shall" (mandatory requirement),
"should" (recommendation), and "may" (optional requirement) are used in normative wording to express
provisions.

This International Standard contains many provisions. Some provisions apply to datatypes in general, e.g., a
datatype consists of a value space, properties, and characterizing operations — a "statement" provision.
Some provisions apply to specific datatypes, e.g., a mapping to the GPD integer datatype shall be a
datatype that is numeric — a "requirement" provision. Declarations may contain provisions describe via
annotations (outside the scope of this International Standard). Declarations may contain provisions
associated with datatype families, as described by the provision() type-attribute.

A datatype that includes provisions for a datatype is called a normative datatype. A normative datatype is
associated with a family of datatypes that conform to the normative data. A normative includes a
characterizing operation IsConforming(NDT,DT) that determines if a datatype DT conforms to the provisions
of NDT.

EXAMPLE The normative datatype address_label_standard is a record that contains 6 components.

// shorthand for "mandatory data element" provision
normative MDE = provision(obligation=require, target=type, scope=identifier, subset=defined),

// shorthand for "optional data element" provision
normative ODE = provision(obligation=permit, target=type, scope=identifier, subset=defined),

// shorthand for "extended data element" provision
normative XDE = provision(obligation=permit, target=type, scope=identifier, subset=undefined),

normative address_label_standard =
record XDE
(

name MDE: characterstring,
address MDE: characterstring,
city MDE: characterstring,
state_province MDE: characterstring,
postal_code MDE: characterstring,
country_code ODE: characterstring,

),

It is not possible to instantiate a normative datatype directly, but it is possible to instantiate an implementation (of the
normative datatype) that conforms to the normative datatype. The following are examples of datatypes (implementations)
that conform to the normative datatype address_label_standard. It is possible to instantiate the following datatypes.

// address_label_1 conforms because it has all the mandatory data elements
type address_label_1 =
record
(

name: characterstring, // mandatory data element

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 21

address: characterstring, // mandatory data element
city: characterstring, // mandatory data element
state_province: characterstring, // mandatory data element
postal_code: characterstring, // mandatory data element

),

// address_label_2 conforms because it has all the mandatory data elements,
// and the optional data element (present in address label 2) conforms to
// the requirements in the normative datatype
type address_label_2 =
record
(

name: characterstring,
address: characterstring,
city: characterstring,
state_province: characterstring,
postal_code: characterstring,
country_code: characterstring, // optional data element

),

// address_label_3 conforms because it has the data elements
// of address_label_2 and the XDE permits the definition of
// additional data elements
type address_label_3 =
record
(

name: characterstring,
address: characterstring,
city: characterstring,
state_province: characterstring,
postal_code: characterstring,
country_code: characterstring,
telephone_number: characterstring, // extended data element

),

The following are examples of datatypes that do not conform to the datatype.

// address_label_4 does not conform because it is missing
// mandatory data elements "state_province" and "postal_code"
type address_label_4 =
record
(

name: characterstring,
address: characterstring,
city: characterstring,

),

// address_label_5 does not conform because its optional data element
// conflicts with the definition of the normative datatype
type address_label_5 =
record
(

name: characterstring,
address: characterstring,
city: characterstring,
state_province: characterstring,
postal_code: characterstring,
country_code: integer,

),

Defined provisions for a datatype, that datatype can only be a datatype family

ISO/IEC CD1 11404 (revision)

22 © ISO 2003 – All rights reserved

7 Elements of the Datatype Specification Language

This International Standard defines a datatype specification language, in order to formalize the identification
and declaration of datatypes conforming to this International Standard. The language is a subset of the
Interface Definition Notation defined in ISO/IEC 13886:1996, Information technology — Programming
languages — Language-independent procedure calling, which is completely specified in Annex D. This
clause defines the basic syntactic objects used in that language.

7.1 IDN character-set

The following productions define the character-set of the datatype specification language.

letter = "a" | "b" | "c" | "d" | "e" |
 "f" | "g" | "h" | "i" | "j" |
 "k" | "l" | "m" | "n" | "o" |
 "p" | "q" | "r" | "s" | "t" |
 "u" | "v" | "w" | "x" | "y" |
 "z" | "A" | "B" | "C" | "D" |
 "E" | "F" | "G" | "H" | "I" |
 "J" | "K" | "L" | "M" | "N" |
 "O" | "P" | "Q" | "R" | "S" |
 "T" | "U" | "V" | "W" | "X" |
 "Y" | "Z" ;
digit = "0" | "1" | "2" | "3" | "4" |
 "5" | "6" | "7" | "8" | "9" ;
special = "(" | (* left parenthesis *)
 ")" | (* right parenthesis *)
 "." | (* full stop *)
 "," | (* comma *)
 ":" | (* colon *)
 ";" | (* semicolon *)
 "=" | (* equals sign *)
 "/" | (* solidus *)
 "*" | (* asterisk *)
 "-" | (* hyphen-minus *)
 "{" | (* left curly bracket *)
 "}" | (* right curly bracket *)
 "[" | (* left square bracket *)
 "]" ; (* right square bracket *)
underscore = "_" ; (* low line *)
apostrophe = "'" ; (* apostrophe *)
quote = '"' ; (* quotation mark *)
escape = "!" ; (* exclamation point *)
space = " " (* space *)
non-quote-character = letter |
 digit |
 underscore |
 special |
 apostrophe |
 space ;
bound-character = non-quote-character |
 quote ;
added-character = ? not defined by this International Standard ? ;

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 23

These productions are nominal. Lexical productions are always subject to minor changes from
implementation to implementation, in order to handle the vagaries of available character-sets. The following
rules, however, always apply:

1. The bound-characters, and the escape character, are required in any implementation to be associated
with particular members of the implementation character set.

2. The character space is required to be bound to the "space" member of ISO/IEC 10646-1:2000, but it only
has meaning within character-literals and string-literals.

3. A bound-character is required to be associated with the member having the corresponding symbol, if any,
in any implementation character-set derived from ISO/IEC 10646-1:2000.

4. An added-character is any other member of the implementation character-set which is bound to the
member having the corresponding symbol in an ISO/IEC 10646-1 character-set. An added-character may
be referenced by name, by 8-digit short UCS identifier, or by 4-digit short UCS identifier, as specified by
ISO/IEC 10646-1. For example, "!QUOTATION MARK!", "!U00000022!", and "!U+0022!" are all
equivalent: a string literal that contains the one character quotation mark.

7.2 Whitespace

A sequence of one or more space characters, horizontal tabs, end of line characters, or newline characters
except within a character-literal or string-literal (see 7.3), shall be considered whitespace. Any use of this
International Standard may define any other characters or sequences of characters not in the above character
set to be whitespace as well, such as vertical tabulators, end of page indicators, etc..

A comment is either of:

 Any sequence of characters beginning with the sequence /* (solidus, asterisk) and terminating with the
first occurrence thereafter of the sequence */ (asterisk solidus).

 Any sequence of characters beginning with the sequence // (solidus, solidus) and terminating with the
occurrence thereafter of a newline character sequence.

Every character of a comment shall be considered whitespace.

With respect to interpretation of a syntactic object under this International Standard, any annotation (see 7.4)
is considered whitespace.

Any two lexical objects which occur consecutively may be separated by whitespace, without effect on the
interpretation of the syntactic construction. Whitespace shall not appear within lexical objects.

Any two consecutive keywords or identifiers, or a keyword preceded or followed by an identifier, shall be
separated by whitespace.

7.3 Lexical objects

The lexical objects are all terminal symbols except those defined in 7.1, and the objects identifier, digit-string,
character-literal, string-literal.

7.3.1 Identifiers

An identifier is a terminal symbol used to name a datatype or datatype generator, a component of a
generated datatype, or a value of some datatype.

ISO/IEC CD1 11404 (revision)

24 © ISO 2003 – All rights reserved

identifier = initial-letter-like, { pseudo-letter-like } ;
initial-letter-like = letter-like |
 special-like ;
letter-like = letter |
 ISO/IEC-10176-extended-letter ;
pseudo-letter-like = letter |
 digit |
 underscore ;
digit-like = digit |
 ISO/IEC-10176-extended-digit ;
special-like = underscore |
 ISO/IEC-10176-extended-special ;

Multiple identifiers with the same spelling are permitted, as long as the object to which the identifier refers can
be determined by the following rules:

1. An identifier X declared by a type-declaration or value-declaration shall not be declared in any
other declaration.

2. The identifier X in a component of a type-specifier (Y) refers to that component of Y which Y declares
X to identify, if any, or whatever X refers to in the type-specifier which immediately contains Y, if any,
or else the datatype or value which X is declared to identify by a declaration.

7.3.2 Digit-string

A digit-string is a terminal-symbol consisting entirely of digits. It is used to designate a value of some
datatype, with the interpretation specified by that datatype definition.

digit-string = digit-like, { digit-like } ;
digit-like = digit |
 ISO/IEC-10176-extended-digit ;

7.3.3 Character-literal and string-literal

A character-literal is a terminal-symbol delimited by apostrophe characters. It is used to designate a
value of a character datatype, as specified in 8.1.4.

character-literal = apostrophe, any-character, apostrophe ;
any-character = bound-character |
 added-character |
 escape-character ;
escape-character = escape, character-name, escape ;
character-name = identifier, { " ", identifier } ;

A string-literal is a terminal-symbol delimited by quote characters. It is used to designate values of time
datatypes (8.1.6), bitstring datatypes (10.1.4), and characterstring datatypes (10.1.5), with the interpretation
specified for each of those datatypes.

string-literal = quote, { string-character }, quote ;
string-character = non-quote-character |
 added-character |
 escape-character ;

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 25

Every character appearing in a character-literal or string-literal shall be a part of the literal, even when that
character would otherwise be whitespace.

7.3.4 Keywords

The term keyword refers to any terminal symbol which also satisfies the production for identifier, i.e. is not
composed of special characters. The keywords appearing below are reserved, in the sense that none of them
shall be interpreted as an identifier. All other keywords appearing in this International Standard shall be
interpreted as predefined identifiers for the datatype or type-generator to which this International Standard
defines them to refer.

reserved-keywords = "array" |
 "choice" |
 "default" |
 "excluding" |
 "from" |
 "in" |
 "inout" |
 "new" |
 "of" |
 "out" |
 "plus" |
 "pointer" |
 "procedure" |
 "raises" |
 "record" |
 "returns" |
 "selecting" |
 "size" |
 "subtype" |
 "table" |
 "termination" |
 "to" |
 "type" |
 "value" ;

NOTE All of the above keywords are reserved because they introduce (or are part of) syntax which cannot validly
follow an identifier for a datatype or type-generator. Most datatype identifiers defined in Clause 8 are syntactically
equivalent to a type-reference (see 8.5), except for their appearance in Clause 8.

7.4 Annotations

An annotation, or extension, is a syntactic object defined by a standard or information processing entity which
uses this International Standard. All annotations shall have the form:

annotation = "[", annotation-label, ":",
 annotation-text, "]" ;
annotation-label = objectidentifiercomponent-list ;
annotation-text = ? not defined by this International Standard ? ;

The annotation-label shall identify the standard or information processing entity which defines the meaning
of the annotation-text. The entity identified by the annotation-label shall also define the allowable
syntactic placement of a given type of annotation and the syntactic object(s), if any, to which the annotation
applies. The objectidentifiercomponent-list shall have the structure and meaning prescribed by clause
10.1.10.

ISO/IEC CD1 11404 (revision)

26 © ISO 2003 – All rights reserved

NOTE Of the several forms of objectidentifiercomponent-value specified in 10.1.10, the nameform is the most
convenient for labeling annotations. Following ISO/IEC 8824:2002, every value of the objectidentifier datatype must
have as its first component one of iso, itu-t, or joint-iso-itu-t, but an implementation or use is permitted to specify
an identifier which represents a sequence of component values beginning with one of the above, as:

value rpc : objectidentifier = { iso(1) standard(0) 11578 }

and that identifier may then be used as the first (or only) component of an annotation-label, as in:

[rpc: discriminant = n]

(This example is fictitious. ISO/IEC 11578:1995 does not define any annotations.)

Non-standard annotations, defined by vendors or user organizations, for example, can acquire such labels through one of
the { iso member-body <nation> ... } or { iso identified-organization <organization> ... } paths, using
the appropriate national or international registration authority.

7.5 Values

The identification of members of a datatype family, subtypes of a datatype, and the resulting datatypes of
datatype generators may require the syntactic designation of specific values of a datatype. For this reason,
this International Standard provides a notation for values of every datatype that is defined herein or can be
defined using the features provided by Clause 10, except for datatypes for which designation of specific
values is not appropriate.

A value-expression designates a value of a datatype. Syntax:

value-expression = independent-value |
 dependent-value |
 formal-parametric-value ;

An independent-value is a syntactic construction which resolves to a fixed value of some general purpose
datatype. A dependent-value is a syntactic construction which refers to the value possessed by another
component of the same datatype. A formal-parametric-value refers to the value of a formal-type-
parameter in a type-declaration, as provided in 9.1.

7.5.1 Independent values

An independent-value designates a specific fixed value of a datatype. Syntax:

independent-value = explicit-value |
 value-reference ;
explicit-value = boolean-literal |
 state-literal |
 enumerated-literal |
 character-literal |
 ordinal-literal |
 time-literal |
 integer-literal |
 rational-literal |
 scaled-literal |
 real-literal |
 complex-literal |
 void-literal |
 extended-literal |

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 27

 pointer-literal |
 procedure-reference |
 string-literal |
 bitstring-literal |
 objectidentifier-value |
 choice-value |
 record-value |
 class-value |
 set-value |
 sequence-value |
 bag-value |
 array-value |
 table-value ;
value-reference = value-identifier ;
procedure-reference = procedure-identifier ;

An explicit-value uses an explicit syntax for values of the datatype, as defined in Clause 8 and Clause 10.
A value-reference designates the value associated with the value-identifier by a value-declaration,
as provided in 9.2. A procedure-reference designates the value of a procedure datatype associated with a
procedure-identifier, as described in 8.3.3.

NOTE 1 Two syntactically different explicit-values may designate the same value, such as rational-literals 3/4
and 6/8, or set of (integer) values (1,3,4) and (4,3,1).

NOTE 2 The same explicit-value syntax may designate values of two different datatypes, as 19940101 can be an
integer value, or an ordinal value. In general, the syntax requires that the intended datatype of a value-expression can
be determined from context when the value-expression is encountered.

NOTE 3 The IDN productions for value-reference and procedure-reference appearing in Annex D are more
general. The above productions are sufficient for the purposes of this International Standard.

7.5.2 Dependent values

When a parameterized datatype appears within a procedure parameter (see 8.3.3) or a record datatype (see
8.4.1), it is possible to specify that the parametric value is always identical to the value of another parameter
to the procedure or another component within the record. Such a value is referred to as a dependent-value.
Syntax:

dependent-value = primary-dependency, { "." component-reference } ;
primary-dependency = field-identifier |
 parameter-name ;
component-reference = field-identifier |
 "*" ;

A type-specifier x is said to involve a dependent-value if x contains the dependent-value and no
component of x contains the dependent-value. Thus, exactly one type-specifier involves a given
dependent-value. A type-specifier which involves a dependent-value is said to be a data-dependent
type. Every data-dependent type shall be the datatype of a component of some generated datatype.

The primary-dependency shall be the identifier of a (different) component of a procedure or record datatype
which (also) contains the data-dependent type. The component so identified will be referred to in the
following as the primary component; the generated datatype of which it is a component will be referred to as
the subject datatype. That is, the subject datatype shall have an immediate component to which the
primary-dependency refers, and a different immediate component which, at some level, contains the data-
dependent type.

ISO/IEC CD1 11404 (revision)

28 © ISO 2003 – All rights reserved

When the subject datatype is a procedure datatype, the primary-dependency shall be a parameter-name
and shall identify a parameter of the subject datatype. If the direction of the parameter (component) which
contains the data-dependent type is in or inout, then the direction of the parameter designated by the
primary-dependency shall also be in or inout. If the parameter which contains the data-dependent type is
the return-parameter or has direction out, then the primary-dependency may designate any parameter in the
parameter-list. If the parameter which contains the data-dependent type is a termination parameter, then
the primary-dependency shall designate another parameter in the same termination-parameter-list.

When the subject datatype is a record datatype, the primary-dependency shall be a field-identifier
and shall identify a field of the subject datatype.

When the dependent-value contains no component-references, it refers to the value of the primary
component. Otherwise, the primary component shall be considered the "0th component-reference", and the
following rules shall apply:

1. If the nth component-reference is the last component-reference of the dependent-value, the
dependent-value shall refer to the value to which the nth component-reference refers.

2. If the nth component-reference is not the last component-reference, then the datatype of the nth
component-reference shall be a record datatype or a pointer datatype.

3. If the nth component-reference is not the last component-reference, and the datatype of the nth
component-reference is a record datatype, then the (n+1)th component-reference shall be a field-
identifier which identifies a field of that record datatype; and the (n+1)th component-reference shall
refer to the value of that field of the value referred to by the nth component-reference.

4. If the nth component-reference is not the last component-reference, and the datatype of the nth
component-reference is a pointer datatype, then the (n+1)th component-reference shall be "*"; and
the (n+1)th component-reference shall refer to the value resulting from Dereference applied to the value
referred to by the nth component-reference.

NOTE 1 The datatype which involves a dependent-value must be a component of some generated datatype, but that
generated datatype may itself be a component of another generated datatype, and so on. The subject datatype may be
several levels up this hierarchy.

NOTE 2 The primary component, and thus the subject datatype, cannot be ambiguous, even when the primary-
dependency identifier appears more than once in such a hierarchy, according to the scope rules specified in 7.3.1.

NOTE 3 In the same wise, an identifier which may be either a value-identifier or a dependent-value can be
resolved by application of the same scope rules. If the identifier X is found to have a "declaration" anywhere within the
outermost type-specifier which contains the reference to X, then that declaration is used. If no such declaration is
found, then a declaration of X in a "global" context, e.g. as a value-identifier, applies.

7.6 GPD program text

A program-text designates a collection of GPD statements. Syntax:

program-text = { program-statement, "," };
program-statement = type-specifier |
 declaration |
 provision-statement ;

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 29

8 Datatypes

This clause defines the collection of general purpose datatypes. A general purpose datatype is either:

 a datatype defined in this clause, or

 a datatype defined by a datatype declaration, as defined in 9.1.

Since this collection is unbounded, there are four formal methods used in the definition of the datatypes:

 explicit specification of primitive datatypes, which have universal well-defined abstract notions, each
independent of any other datatype.

 implicit specification of generated datatypes, which are syntactically and in some ways semantically
dependent on other datatypes used in their specification. Generated datatypes are specified implicitly by
means of explicit specification of datatype generators, which themselves embody independent abstract
notions.

 specification of the means of datatype declaration, which permits the association of additional identifiers
and refinements to primitive and generated datatypes and to datatype generators.

 specification of the means of defining subtypes of the datatypes defined by any of the foregoing methods.

A reference to a general purpose datatype is a type-specifier, with the following syntax:

type-specifier = primitive-type |
 subtype |
 generated-type |
 type-reference |
 formal-parametric-type ;

A type-specifier shall not be a formal-parametric-type, except in some cases in type-declarations,
as provided by clause 9.1.3.

This clause also provides syntax for the identification of values of general purpose datatypes and their
generated datatypes. Notations for values of datatypes are required in the syntactic designations for
subtypes and for some primitive datatypes.

NOTE 1 For convenience, or correctness, some datatypes and characterizing operations are defined in terms of other
general purpose datatypes. The use of a general purpose datatype defined in this clause always refers to the datatype so
defined.

NOTE 2 The names used in this International Standard to identify the datatypes are derived in many cases from
common programming language usage, but nevertheless do not necessarily correspond to the names of equivalent
datatypes in actual languages. The same applies to the names and symbols for the operations associated with the
datatypes, and to the syntax for values of the datatypes.

8.1 Primitive datatypes

A datatype whose value space is defined either axiomatically or by enumeration is said to be a primitive
datatype. All primitive general purpose datatypes shall be defined by this International Standard.

primitive-type = boolean-type |
 state-type |
 enumerated-type |

ISO/IEC CD1 11404 (revision)

30 © ISO 2003 – All rights reserved

 character-type |
 ordinal-type |
 time-type |
 integer-type |
 rational-type |
 scaled-type |
 real-type |
 complex-type |
 void-type ;

Each primitive datatype, or datatype family, is defined by a separate subclause. The title of each such
subclause gives the informal name for the datatype, and the datatype is defined by a single occurrence of the
following template:

Description: prose description of the conceptual datatype.

Syntax: the syntactic productions for the type-specifier for the datatype.

Parametric values: identification of any parametric values which are necessary for the complete
identification of a distinct member of a datatype family.

Values: enumerated or axiomatic definition of the value space.

Value-syntax: the syntactic productions for denotation of a value of the datatype, and the identification
of the value denoted.

Properties: properties of the datatype which indicate its admissibility as a component datatype of certain
datatype generators: numeric or non-numeric, approximate or exact, unordered or ordered and, if
ordered, bounded or unbounded.

Operations: definitions of characterizing operations.

The definition of an operation herein has one of the forms:

operation-name (parameters) : result-datatype = formal-definition

or

operation-name (parameters) : result-datatype is prose-definition

In either case, parameters may be empty, or be a list, separated by commas, of one or more formal
parameters of the operation in the form:

parameter-name : parameter-datatype

or

parameter-name1 , parameter-name2 : parameter-datatype

The operation-name is an identifier unique only within the datatype being defined. The parameter-names
are formal identifiers appearing in the formal-definition or prose-definition. Each is understood to
represent an arbitrary value of the datatype designated by parameter-datatype, and all occurrences of the
formal identifier represent the same value in any application of the operation. The result-datatype
indicates the datatype of the value resulting from an application of the operation. A formal-definition
defines the operation in terms of other operations and constants. A prose-definition defines the operation

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 31

in somewhat formalized natural language. When there are constraints on the parameter values, they are
expressed by a phrase beginning "where" immediately before the = or is.

In some operation definitions, characterizing operations of a previously defined datatype are referenced with
the form: datatype.operation(parameters), where datatype is the type-specifier for the referenced
datatype and operation is the name of a characterizing operation defined for that datatype.

8.1.1 Boolean

Description: boolean is the mathematical datatype associated with two-valued logic.

Syntax:

boolean-type = "boolean" ;

Parametric Values: none.

Values: true, false, such that true ≠ false.

Value-syntax:

boolean-literal = "true" |
 "false" ;

Properties: unordered, exact, non-numeric.

Operations: Equal, Not, And, Or.

Equal(x, y: boolean): boolean is defined by tabulation:

x y Equal(x,y)
false false true
false true false
true false false
true true true

Not(x: boolean): boolean is defined by tabulation:

x Not(x)
false true
true false

Or(x, y: boolean): boolean is defined by tabulation:

x y Or(x,y)
false false false
false true true
true false true
true true true

And(x, y: boolean): boolean = Not(Or(Not(x), Not(y)))

NOTE Either And or Or is sufficient to characterize the boolean datatype, and given one, the other can be defined in
terms of it. They are both defined here because both of them are used in the definitions of operations on other datatypes.

ISO/IEC CD1 11404 (revision)

32 © ISO 2003 – All rights reserved

8.1.2 State

Description: state is a family of datatypes, each of which comprises a finite number of distinguished but
unordered values.

Syntax:

state-type = "state", "(", state-value, ")" ;
state-value = state-value-list |
 value-domain-source ;
state-value-list = state-literal, { ",", state-literal } ;
state-literal = identifier ;
value-domain-source = "import", list-source-reference ;
list-source-reference = identifier |
 '"", URI-text, '"" ;

Parametric Values: Each state-literal identifier shall be distinct from all other state-literal
identifiers of the same state-type.

Values: The value space of a state datatype is the set comprising exactly the named values in the state-
value-list, each of which is designated by a unique state-literal.

Value-syntax:

state-literal = identifier ;

A state-literal denotes that value of the state datatype which has the same identifier.

Properties: unordered, exact, non-numeric.

Operations: Equal.

Equal(x, y: state(state-value-list)): boolean is true if x and y designate the same value in the state-
value-list, and false otherwise.

NOTE Other uses of the IDN syntax make stronger requirements on the uniqueness of state-literal identifiers.

EXAMPLE The declaration:

type switch = new state (on, off);

defines a state datatype comprising two distinguished but unordered values, which supports the characterizing operation:

Invert(x: switch): switch is if x = off then on, else off.

8.1.3 Enumerated

Description: enumerated is a family of datatypes, each of which comprises a finite number of distinguished
values having an intrinsic order.

Syntax:

enumerated-type = "enumerated", "(", enumerated-value, ")" ;
enumerated-value = enumerated-value-list |

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 33

 URI-to-value-domain ;
enumerated-value-list = enumerated-literal, { ",", enumerated-literal } ;
enumerated-literal = identifier ;

Parametric Values: Each enumerated-literal identifier shall be distinct from all other enumerated-literal
identifiers of the same enumerated-type.

Values: The value space of an enumerated datatype is the set comprising exactly the named values in the
enumerated-value-list, each of which is designated by a unique enumerated-literal. The order of
these values is given by the sequence of their occurrence in the enumerated-value-list, designated the
naming sequence.

Value-syntax:

enumerated-literal = identifier ;

An enumerated-literal denotes that value of the enumerated datatype which has the same identifier.

Properties: ordered, exact, non-numeric, bounded.

Operations: Equal, InOrder, Successor

Equal(x, y: enumerated(enum-value-list)): boolean is true if x and y designate the same value in the
enum-value-list, and false otherwise.

InOrder(x, y: enumerated(enum-value-list)): boolean, denoted x ≤ y, is true if x = y or if x precedes y in
the naming sequence, else false.

Successor(x: enumerated(enum-value-list)): enumerated(enum-value-list) is

if for all y: enumerated(enum-value-list), x ≤ y implies x = y, then undefined;

else the value y: enumerated(enum-value-list), such that x < y and for all z ≠ x, x ≤ z implies y ≤ z.

NOTE Other uses of the IDN syntax make stronger requirements on the uniqueness of enumerated-literal
identifiers.

8.1.4 Character

Description: character is a family of datatypes whose value spaces are character-sets.

Syntax:

character-type = "character",
 ["(", repertoire-list, ")"] ;
repertoire-list = repertoire-identifier,
 { "," repertoire-identifier } ;
repertoire-identifier = value-expression ;

Parametric Values: The value-expression for a repertoire-identifier shall designate a value of the
objectidentifier datatype (see 10.1.10), and that value shall refer to a character-set. A repertoire-
identifier shall not be a formal-parametric-value, except in some cases in declarations (see 9.1). All
repertoire-identifiers in a given repertoire-list shall designate subsets of the same reference

ISO/IEC CD1 11404 (revision)

34 © ISO 2003 – All rights reserved

character-set. When repertoire-list is not specified, it shall have a default value. The means for
specification of the default is outside the scope of this International Standard.

Values: The value space of a character datatype comprises exactly the members of the character-sets
identified by the repertoire-list. In cases where the character-sets identified by the individual
repertoire-identifiers have members in common, the value space of the character datatype is the (set)
union of the character-sets (without duplication).

Value-syntax:

character-literal = "’", any-character, "’" ;
any-character = bound-character |
 added-character |
 escape-character ;
bound-character = non-quote-character |
 quote ;
non-quote-character = letter |
 digit |
 underscore |
 special |
 apostrophe |
 space ;
added-character = ? not defined by this International Standard ? ;
escape-character = escape, character-name, escape ;
character-name = identifier, { " ", identifier } ;

Every character-literal denotes a single member of the character-set identified by repertoire-list. A
bound-character denotes that member which is associated with the symbol for the bound-character per
7.1. An added-character denotes that member which is associated with the symbol for the added-
character by the implementation, as provided in 7.1. An escape-character denotes that member whose
"character name" in the (reference) character-set identified by repertoire-list is the same as character-
name.

Properties: unordered, exact, non-numeric.

Operations: Equal.

Equal(x, y: character(repertoire-list)): boolean is true if x and y designate the same member of the
character-set given by repertoire-list, and false otherwise.

NOTE 1 The Character datatypes are distinct from the State datatypes in that the values of the datatype are defined by
other standards rather than by this International Standard or by the application. This distinction is semantically
unimportant, but it is of great significance in any use of these standards.

NOTE 2 The standardization of repertoire-identifier values will be necessary for any use of this International Standard
and will of necessity extend to character sets which are defined by other than international standards. Such
standardization is beyond the scope of this International Standard. A partial list of the international standards defining
such character-sets is included, for informative purposes only, in Annex A.

NOTE 3 While an order relationship is important in many applications of character datatypes, there is no standard
order for any of the International Standard character sets, and many applications require the order relationship to conform
to rules which are particular to the application itself or its language environment. There will also be applications in which
the order is unimportant. Since no standard order of character-sets can be defined by this International Standard,
character datatypes are said to be "unordered", meaning, in this case, that the order relationship is an application-defined
addition to the semantics of the datatype.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 35

NOTE 4 The terms character-set, member, symbol and character-name are those of ISO/IEC 10646-1:2000, but there
should be analogous notions in any character set referenceable by a repertoire-identifier.

NOTE 5 The value space of a Character datatype is the character set, not the character codes, as those terms are
defined by ISO/IEC 10646-1:2000. The encoding of a character set is a representation issue and therefore out of the
scope of this International Standard. Many uses of this International Standard , however, may require the association to
codes implied by the repertoire-identifier.

NOTE 6 An occurrence of three consecutive APOSTROPHE characters (''') is a valid character-literal denoting
the APOSTROPHE character.

EXAMPLE character({ iso standard 8859 part 1 }) denotes a character datatype whose values are the members
of the character-set specified by ISO 8859-1 (Latin alphabet No. 1). It is possible to give this datatype a convenient name,
by means of a type-declaration (see 9.1), e.g.:

type Latin1 = character({ iso standard 8859 1 });

or by means of a value-declaration (see 9.2):

value latin : objectidentifier = { iso(1) standard(0) 8859 part(1) };

Now, the COLON mark (:) is a member of the ISO 8859-1 character set and therefore a value of datatype Latin1, or
equivalently, of datatype character(latin). Thus, ':' and '!colon!', among others, are valid character-literals
denoting that value.

8.1.5 Ordinal

Description: ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers
(datatype integer). ordinal is the infinite enumerated datatype.

Syntax:

ordinal-type = "ordinal" ;

Parametric Values: none.

Values: the mathematical ordinal numbers: "first", "second", "third", etc., (a denumerably infinite list).

Value-syntax:

ordinal-literal = number ;
number = digit-string ;

An ordinal-literal denotes that ordinal value which corresponds to the cardinal number identified by the
digit-string, interpreted as a decimal number. An ordinal-literal shall not be zero.

Properties: ordered, exact, non-numeric, unbounded above, bounded below.

Operations: Equal, InOrder, Successor

Equal(x, y: ordinal): boolean is true if x and y designate the same ordinal number, and false otherwise.

InOrder(x,y: ordinal): boolean, denoted x ≤ y, is true if x = y or if x precedes y in the ordinal numbers, else
false.

ISO/IEC CD1 11404 (revision)

36 © ISO 2003 – All rights reserved

Successor(x: ordinal): ordinal is the value y: ordinal, that x < y and for all z ≠ x, x ≤ z implies y ≤ z.

8.1.6 Date-and-Time

Description: time is a family of datatypes whose values are points in time to various common resolutions:
year, month, day, hour, minute, second, and fractions thereof.

Syntax:

time-type = "time", "(", time-unit,
 [",", radix, ",", factor], ")" ;
time-unit = "year" |
 "month" |
 "day" |
 "hour" |
 "minute" |
 "second" |
 formal-parametric-value ;
radix = value-expression ;
factor = value-expression ;

Parametric Values: time-unit shall be a value of the datatype state(year, month, day, hour, minute,
second), designating the unit to which the point in time is resolved. If radix and factor are omitted, the
resolution is to one of the specified time-unit. If present, radix shall have an integer value greater than 1,
and factor shall have an integer value. When radix and factor are present, the resolution is to one
radix(-factor) of the specified time-unit. time-unit, and radix and factor if present, shall not be
formal-parametric-values except in some occurrences in declarations (see 9.1).

Values: The value-space of a date-and-time datatype is the denumerably infinite set of all possible points in
time with the resolution (time-unit, radix, factor).

Value-syntax:

time-literal = string-literal ;

A time-literal denotes a date-and-time value. The characterstring value represented by the string-
literal shall conform to ISO 8601:2000, Representation of dates and times. The time-literal denotes
the date-and-time value specified by the characterstring as interpreted under ISO 8601:2000.

Properties: ordered, exact, non-numeric, unbounded.

Operations: Equal, InOrder, Difference, Round, Extend.

Equal(x, y: time(time-unit, radix, factor)): boolean is true if x and y designate the same point in time to the
resolution (time-unit, radix, factor), and false otherwise.

InOrder(x, y: time(time-unit, radix, factor)): boolean is true if the point in time designated by x precedes
that designated by y; else false.

Difference(x, y: time(time-unit, radix, factor)): timeinterval(time-unit, radix, factor) is:

if InOrder(x,y), then the number of time-units of the specified resolution elapsing between the time x
and the time y; else, let z be the number of time-units elapsing between the time y and the time x, then
Negate(z).

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 37

Extend.res1tores2(x: time(unit1, radix1, factor1)): time(unit2, radix2, factor2), where the resolution
(res2) specified by (unit2, radix2, factor2) is more precise than the resolution (res1) specified by (unit1,
radix1, factor1), is that value of time(unit2, radix2, factor2) which designates the first instant of time
occurring within the span of time(unit2, radix2, factor2) identified by the instant x.

Round.res1tores2(x: time(unit1, radix1, factor1)): time(unit2, radix2, factor2), where the resolution (res2)
specified by (unit2, radix2, factor2) is less precise than the resolution (res1) specified by (unit1, radix1,
factor1), is the largest value y of time(unit2, radix2, factor2) such that InOrder(Extend.res2tores1(y), x).

NOTE The operations yielding specific time-unit elements from a time(unit, radix, factor) value, e.g. Year, Month,
DayofYear, Dayof-Month, TimeofDay, Hour, Minute, Second, can be derived from Round, Extend, and Difference.

EXAMPLE time(second, 10, 0) designates a date-and-time datatype whose values are points in time with accuracy to
the second.

"19910401T120000" specifies the value of that datatype which is exactly noon on April 1, 1991, universal time.

8.1.7 Integer

Description: integer is the mathematical datatype comprising the exact integral values.

Syntax:

integer-type = "integer" ;

Parametric Values: none.

Values: Mathematically, the infinite ring produced from the additive identity (0) and the multiplicative identity
(1) by requiring 0 ≤ 1 and Add(x,1) ≠ y for any y ≤ x. That is: ..., -2, -1, 0, 1, 2, ... (a denumerably infinite list).

Value-syntax:

integer-literal = signed-number ;
signed-number = ["-"], number ;
number = digit-string ;

An integer-literal denotes an integer value. If the negative-sign ("-") is not present, the value denoted is that of
the digit- string interpreted as a decimal number. If the negative-sign is present, the value denoted is the
negative of that value.

Properties: ordered, exact, numeric, unbounded.

Operations: Equal, InOrder, NonNegative, Negate, Add, Multiply.

Equal(x, y: integer): boolean is true if x and y designate the same integer value, and false otherwise.

Add(x,y: integer): integer is the mathematical additive operation.

Multiply(x, y: integer): integer is the mathematical multiplicative operation.

Negate(x: integer): integer is the value y: integer such that Add(x, y) = 0.

NonNegative(x: integer): boolean is

true if x = 0 or x can be developed by one or more iterations of adding 1,

ISO/IEC CD1 11404 (revision)

38 © ISO 2003 – All rights reserved

i.e. if x = Add(1, Add(1, ... Add(1, Add(1,0)) ...));

else false.

InOrder(x,y: integer): boolean = NonNegative(Add(x, Negate(y))).

The following operations are defined solely in order to facilitate other datatype definitions:

Quotient(x, y: integer): integer, where 0 < y, is the upperbound of the set of all integers z such that
Multiply(y,z) ≤ x.

Remainder(x, y: integer): integer, where 0 ≤ x and 0 < y, = Add(x, Negate(Multiply(y, Quotient(x,y))));

8.1.8 Rational

Description: Rational is the mathematical datatype comprising the "rational numbers".

Syntax:

rational-type = "rational" ;

Parametric Values: none.

Values: Mathematically, the infinite field produced by closing the Integer ring under multiplicative-inverse.

Value-syntax:

rational-literal = signed-number, ["/", number] ;

Signed-number and number shall denote the corresponding integer values. number shall not designate the
value 0. The rational value denoted by the form signed-number is:

Promote(signed-number),

and the rational value denoted by the form signed-number/number is:

Multiply(Promote(signed-number), Reciprocal(Promote(number))).

Properties: ordered, exact, numeric, unbounded.

Operations: Equal, NonNegative, InOrder, Negate, Add, Multiply, Reciprocal, Promote.

Equal(x, y: rational): boolean is true if x and y designate the same rational number, and false otherwise.

Promote(x: integer): rational is the embedding isomorphism between the integers and the integral rational
values.

Add(x,y: rational): rational is the mathematical additive operation.

Multiply(x, y: rational): rational is the mathematical multiplicative operation.

Negate(x: rational): rational is the value y: rational such that Add(x, y) = 0.

Reciprocal(x: rational): rational, where x ≠ 0, is the value y: rational such that Multiply(x, y) = 1.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 39

NonNegative(k: rational): boolean is defined by:

For every rational value k, there is a non-negative integer n, such that Multiply(n,k) is an integral value,
and:

NonNegative(k) = integer.NonNegative(Multiply(n,k)).

InOrder(x,y: rational): boolean = NonNegative(Add(x, Negate(y)))

8.1.9 Scaled

Description: Scaled is a family of datatypes whose value spaces are subsets of the rational value space,
each individual datatype having a fixed denominator, but the scaled datatypes possess the concept of
approximate value.

Syntax:

scaled-type = "scaled", "(", radix, ",", factor, ")" ;
radix = value-expression ;
factor = value-expression ;

Parametric Values: radix shall have an integer value greater than 1, and factor shall have an integer value.
radix and factor shall not be formal-parametric-values except in some occurrences in declarations (see
9.1).

Values: The value space of a scaled datatype is that set of values of the rational datatype which are
expressible as a value of datatype Integer divided by radix raised to the power factor.

Value-syntax:

scaled-literal = integer-literal, ["*", scale-factor] ;
scale-factor = number, "^", signed-number ;

A scaled-literal denotes a value of a scaled datatype. The integer-literal is interpreted as a decimal
integer value, and the scale-factor, if present, is interpreted as number raised to the power signed-
number, where number and signed-number are expressed as decimal integers. Number should be the same
as the radix of the datatype. If the scale-factor is not present, the value is that denoted by integer-
literal. If the scale-factor is present, the value denoted is the rational value Multiply(integer-literal,
scale-factor).

Properties: ordered, exact, numeric, unbounded.

Operations: Equal, InOrder, Negate, Add, Round, Multiply, Divide

Equal(x, y: scaled(r,f)): boolean is true if x and y designate the same rational number, and false otherwise.

InOrder(x,y: scaled (r,f)): boolean = rational.InOrder(x,y)

Negate(x: scaled (r,f)): scaled (r,f) = rational.Negate(x)

Add(x,y: scaled (r,f)): scaled (r,f) = rational.Add(x,y)

Round(x: rational): scaled(r,f) is the value y: scaled(r,f) such that rational.InOrder(y, x) and for all z:
scaled(r,f), rational.InOrder(z,x) implies rational.InOrder(z,y).

ISO/IEC CD1 11404 (revision)

40 © ISO 2003 – All rights reserved

Multiply(x,y: scaled(r,f)): scaled(r,f) = Round(rational.Multiply(x,y))

Divide(x,y: scaled(r,f)): scaled(r,f) = Round(rational.Multiply(x, Reciprocal(y)))

EXAMPLE 1 A datatype representing monetary values exact to two decimal places can be defined by:

type currency = new scaled(10, 2);

where the keyword new is used because currency does not support the Multiply and Divide operations characterizing
scaled(10,2).

EXAMPLE 2 The value 39.50 (or 39,50), i.e.thirty-nine and fifty one-hundredths, is represented by: 3950 * 10 ^ -2,
while the value 10.00 (or 10,00) may be represented by: 10.

NOTE 1 The case factor = 0, i.e. scaled(r, 0) for any r, has the same value-space as Integer, and is isomorphic
to Integer under all operations except Divide, which is not defined on Integer in this International Standard, but could be
defined consistent with the Divide operation for scaled(r, 0). It is recommended that the datatype scaled(r, 0) not be
used explicitly.

NOTE 2 Any reasonable rounding algorithm is equally acceptable. What is required is that any rational value v which
is not a value of the scaled datatype is mapped into one of the two scaled values n•r(-f) and (n+1)•r(-f), such that in the
Rational value space, n•r(-f) < v < (n+1)•r(-f).

NOTE 3 The proper definition of scaled arithmetic is complicated by the fact that scaled datatypes with the same radix
can be combined arbitrarily in an arithmetic expression and the arithmetic is effectively Rational until a final result must be
produced. At this point, rounding to the proper scale for the result operand occurs. Consequently, the given definition of
arithmetic, for operands with a common scale factor, should not be considered a specification for arithmetic on the scaled
datatype.

NOTE 4 The values in any scaled value space are taken from the value space of the Rational datatype, and for that
reason Scaled may appear to be a "subtype" of both Rational and Real (see 8.2). But scaled datatypes do not "inherit"
the Rational or Real Multiply and Reciprocal operations. Therefore scaled datatypes are not proper subtypes of datatype
Real or Rational. The concept of Round, and special Multiply and Divide operations, characterize the scaled datatypes.
Unlike Rational, Real and Complex, however, Scaled is not a mathematical group under this definition of Multiply,
although the results are intuitively acceptable.

NOTE 5 The value space of a scaled datatype contains the multiplicative identity (1) if and only if factor ≥ 0.

NOTE 6 Every scaled datatype is exact, because every value in its value space can be distinguished in the
computational model. (The value space can be mapped 1-to-1 onto the integers.) It is only the operations on scaled
datatypes which are approximate.

NOTE 7 Scaled-literals are interpreted as decimal values regardless of the radix of the scaled datatype to which they
belong. It was not found necessary for this International Standard to provide for representation of values in other radices,
particularly since representation of values in radices greater than 10 introduces additional syntactic complexity.

8.1.10 Real

Description: real is a family of datatypes which are computational approximations to the mathematical
datatype comprising the "real numbers". Specifically, each real datatype designates a collection of
mathematical real values which are known to certain applications to some finite precision and must be
distinguishable to at least that precision in those applications.

Syntax:

real-type = "real", ["(", radix, ",", factor, ")"] ;
radix = value-expression ;

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 41

factor = value-expression ;

Parametric Values: radix shall have an integer value greater than 1, and factor shall have an integer value.
radix and factor shall not be formal-parametric-values except in some occurrences in declarations (see
9.1). When radix and factor are not specified, they shall have default values. The means for specification
of these defaults is outside the scope of this International Standard .

Values: The value space of the mathematical real type comprises all values which are the limits of
convergent sequences of rational numbers. The value space of a computational real datatype shall be a
subset of the mathematical real type, characterized by two parametric values, radix and factor, which,
taken together, describe the precision to which values of the datatype are distinguishable, in the following
sense:

Let ÜÜ �GHQRWH WKH PDWKHPDWLFDO UHDO YDOXH VSDFH DQG IRU v in ÜÜ, let | v | denote the absolute value of v. Let V
denote the value space of datatype real(radix, factor), and let ε = radix(-factor). Then V shall be a subset
of ÜÜ �ZLWK WKH IROORZLQJ SURSHUWLHV�

– 0 is in V;

– for each r in ÜÜ �VXFK WKDW | r | ≥ ε, there exists at least one r' in V such that | r - r' | ≤ | r | • ε;

– for each r in ÜÜ �VXFK WKDW | r | < ε, there exists at least one r' in V such that | r - r' | ≤ ε2;.

Value-syntax:

real-literal = integer-literal, ["*", scale-factor] ;
scale-factor = number, "^", signed-number ;

A real-literal denotes a value of a real datatype. The integer-literal is interpreted as a decimal
integer value, and the scale-factor, if present, is interpreted as number raised to the power signed-
number, where number and signed-number are expressed as decimal integers. If the scale-factor is not
present, the value is that denoted by integer-literal. If the scale-factor is present, the value denoted is
the rational value Multiply(integer-literal, scale-factor).

Properties: ordered, approximate, numeric, unbounded.

Operations: Equal, InOrder, Promote, Negate, Add, Multiply, Reciprocal.

In the following operation definitions, let M designate an approximation function which maps each r in ÜÜ into a
corresponding r' in V with the properties given above and the further requirement that for each v in V, M(v) =
v.

Equal(x, y: real(radix, factor)): boolean is true if x and y designate the same value, and false otherwise.

InOrder(x,y: real(radix, factor)): boolean is true if x ≤ �\, where ≤ designates the order relationship on ÜÜ,
and false otherwise.

Promote(x: rational): real(radix, factor) = M(x).

Add(x,y: real(radix, factor)): real(radix, factor) = M(x + y), where + designates the additive operation on the
mathematical reals.

Multiply(x, y: real(radix, factor)): real(radix, factor) = M(x • y), where • designates the multiplicative
operation on the mathematical reals.

ISO/IEC CD1 11404 (revision)

42 © ISO 2003 – All rights reserved

Negate(x: real(radix, factor)): real(radix, factor) = M(-x), where -x is the real additive inverse of x.

Reciprocal(x: real(radix, factor)): real(radix, factor), where x ≠ 0, = M(x') where x' is the real multiplicative
inverse of x.

NOTE 1 The general purpose datatype real is not the abstract mathematical real datatype, nor is it an abstraction of
floating-point implementations. It is a computational model of the mathematical reals which is similar to the "scientific
number" model used in many sciences. Details of the relationship of a real datatype to floating-point implementations may
be specified by the use of annotations (see 7.4). For languages whose semantics in some way assumes a floating-point
representation, the use of such annotations in the datatype mappings may be necessary. On the other hand, for some
applications, the representation of a real datatype may be something other than floating-point, which the application would
specify by different annotations.

NOTE 2 Detailed requirements for the approximation function, its relationship to the characterizing operations, and the
implementation of the characterizing operations in languages are provided by ISO/IEC 10967-1:1994, Information
technology — Programming languages, their environments and system software interfaces — Language-Independent
arithmetic — Part 1: Integer and real arithmetic. IEC 559:1988 Floating-Point Arithmetic for Microprocessors specifies the
requirements for floating-point implementations thereof.

EXAMPLES

real(10, 7) denotes a real datatype with values which are accurate to 7 significant decimal figures.

real(2, 48) denotes a real datatype whose values have at least 48 bits of precision.

1 * 10 ^ 9 denotes the value 1 000 000 000, i.e. 10 raised to the ninth power.

15 * 10 ^ -4 denotes the value 0,0015, i.e. fifteen ten-thousandths.

3 * 2 ^ -1 denotes the value 1.5, i.e. 3/2.

8.1.11 Complex

Description: complex is a family of datatypes, each of which is a computational approximation to the
mathematical datatype comprising the "complex numbers". Specifically, each complex datatype designates a
collection of mathematical complex values which are known to certain applications to some finite precision
and must be distinguishable to at least that precision in those applications.

Syntax:

complex-type = "complex", ["(", radix, ",", factor, ")"] ;
radix = value-expression ;
factor = value-expression ;

Parametric Values: radix shall have an integer value greater than 1, and factor shall have an integer value.
radix and factor shall not be formal-parametric-values except in some occurrences in declarations (see
9.1). When radix and factor are not specified, they shall have default values. The means for specification
of these defaults is outside the scope of this International Standard .

Values: The value space of the mathematical complex type is the field which is the solution space of all
polynomial equations having real coefficients. The value space of a computational complex datatype shall be
a subset of the mathematical complex type, characterized by two parametric values, radix and factor,
which, taken together, describe the precision to which values of the datatype are distinguishable, in the
following sense:

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 43

Let C denote the mathematical complex value space and for v in C, let | v | denote the absolute value of v.
Let V denote the value space of datatype complex(radix, factor), and let ε � UDGL[

(-factor). Then V shall be
a subset of C with the following properties:

– 0 is in V;

– for each v in C such that | v | ≥ ε, there exists at least one v' in V such that | v - v' | ≤ | v | • ε;

– for each v in C such that | v | < ε, there exists at least one v in V such that | v - v | � ����

Value-syntax:

complex-literal = "(", real-part, ",", imaginary-part, ")" ;
real-part = real-literal ;
imaginary-part = real-literal ;

A complex-literal denotes a value of a complex datatype. The real-part and the imaginary-part are
interpreted as real values, and the complex value denoted is: M(real-part + (imaginary-part • i)), where + is
the additive operation on the mathematical complex numbers and • is the multiplicative operation on the
mathematical complex numbers, and i is the "principal square root" of -1 (one of the two solutions to x2 + 1 =
0).

Properties: approximate, numeric, unordered.

Operations: Equal, Promote, Negate, Add, Multiply, Reciprocal, SquareRoot.

In the following operation definitions, let M designate an approximation function which maps each v in C �LQWR D

corresponding v' in V with the properties given above and the further requirement that for each v in V, M(v) =
v.

Equal(x, y: complex(radix, factor)): boolean is true if x and y designate the same value, and false
otherwise.

Promote(x: real(radix, factor)): complex(radix, factor) = M(x), considering x as a mathematical real value.

Add(x,y: complex(radix, factor)): complex(radix, factor) = M(x + y), where + designates the additive
operation on the mathematical complex numbers.

Multiply(x, y: complex(radix, factor)): complex(radix, factor) = M(x • y), where • designates the
multiplicative operation on the mathematical complex numbers.

Negate(x: complex(radix, factor)): complex(radix, factor) = M(-x), where -x is the complex additive inverse
of x.

Reciprocal(x: complex(radix, factor)): complex(radix, factor), where x ≠ ��, = M(x') where x' is the
complex multiplicative inverse of x.

SquareRoot(x: complex(radix, factor)): complex(radix, factor) = M(y), where y is one of the two
mathematical complex values such that y • y = x. Every complex number can be uniquely represented in the
form a + b • i, where i is the "principal square root" of -1, in which a is designated the real part and b is
designated the imaginary part. The y value used is that in which the real part of y is positive, if any, else that
in which the real part of y is zero and the imaginary part is non-negative.

ISO/IEC CD1 11404 (revision)

44 © ISO 2003 – All rights reserved

NOTE Detailed requirements for the approximation function, its relationship to the characterizing operations, and the
implementation of the characterizing operations in languages are to be provided by Parts of ISO/IEC 10967 Language-
Independent Arithmetic.

8.1.12 Void

Description: void is the datatype representing an object whose presence is syntactically or semantically
required, but carries no information in a given instance.

Syntax:

void-type = "void" ;

Parametric Values: none.

Values: Conceptually, the value space of the void datatype is empty, but a single nominal value is necessary
to perform the "presence required" function.

Value-syntax:

void-literal = "nil" ;

"nil" is the syntactic representation of an occurrence of void as a value.

Properties: none.

Operations: Equal.

Equal(x, y: void) = true;

NOTE 1 The void datatype is used as the implicit type of the result parameter of a procedure datatype (8.3.3) which
returns no value, or as an alternative of a choice datatype (8.3.1) when that alternative has no content.

NOTE 2 The void datatype is represented in some languages as a record datatype (see 8.4.1) which has no fields. In
this International Standard, the void datatype is not a record datatype, because it has none of the properties or operations
of a record datatype.

NOTE 3 Like the motivation for the void datatype itself, Equal is required in order to support the comparison of
aggregate values containing void and it must yield true.

NOTE 4 The "empty set" is not a value of datatype void, but rather a value of the appropriate set datatype (see 8.4.2).

8.2 Subtypes and extended types

A subtype is a datatype derived from an existing datatype, designated the base datatype, by restricting the
value space to a subset of that of the base datatype whilst maintaining all characterizing operations.
Subtypes are created by a kind of datatype generator which is unusual in that its only function is to define the
relationship between the value spaces of the base datatype and the sub-type.

subtype = range-subtype |
 selecting-subtype |
 excluding-subtype |
 size-subtype |
 explicit-subtype |
 extended-type |

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 45

 override-type ;

Each subtype generator is defined by a separate subclause. The title of each such subclause gives the
informal name for the sub-type generator, and the subtype generator is defined by a single occurrence of the
following template:

Description: prose description of the subtype value space.

Syntax: the syntactic production for a subtype resulting from the subtype generator, including
identification of all parametric values which are necessary for the complete identification of a distinct
subtype.

Components: constraints on the base datatype and parametric values.

Values: formal definition of resulting value space.

Properties: all datatype properties are the same in the subtype as in the base datatype, except possibly
the presence and values of the bounds. This entry therefore defines only the effects of the subtype
generator on the bounds.

All characterizing operations are the same in the subtype as in the base datatype, but the domain of a
characterizing operation in the subtype may not be identical to the domain in the base datatype. Those
values from the value space of the subtype which, under the operation on the base datatype, produce result
values which lie outside the value space of the subtype, are deleted from the domain of the operation in the
subtype.

8.2.1 Range

Description: range creates a subtype of any ordered datatype by placing new upper and/or lower bounds on
the value space.

Syntax:

range-subtype = base, "range", "(", select-range, ")" ;
select-range = lowerbound, "..", upperbound ;
lowerbound = value-expression |
 "*" ;
upperbound = value-expression |
 "*" ;
base = type-specifier ;

Components: Base shall designate an ordered datatype. When lowerbound and upperbound are value-
expressions, they shall have values of the base datatype such that InOrder(lowerbound, upperbound).
When lowerbound is "*", it indicates that no lower bound is being specified, and when upperbound is "*", it
indicates that no upper bound is being specified. lowerbound and upperbound shall not be formal-
parametric-values, except in some occurrences in declarations (see 9.1).

Values: all values v from the base datatype such that lowerbound ≤ v, if lowerbound is specified, and v ≤
upperbound, if upper-bound is specified.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if the
select-range specifies the corresponding bounds.

ISO/IEC CD1 11404 (revision)

46 © ISO 2003 – All rights reserved

8.2.2 Selecting

Description: selecting creates a subtype of any exact datatype by enumerating the values in the subtype
value-space.

Syntax:

selecting-subtype = base, "selecting", "(", select-list, ")" ;
select-list = select-item, { ",", select-item } ;
select-item = value-expression |
 select-range ;
select-range = lowerbound, "..", upperbound ;
lowerbound = value-expression |
 "*" ;
upperbound = value-expression |
 "*" ;
base = type-specifier ;

Components: base shall designate an exact datatype. When the select-items are value-expressions,
they shall have values of the base datatype, and each value shall be distinct from all others in the select-
list. A select-item shall not be a select-range unless the base datatype is ordered. When lowerbound
and upperbound are value-expressions, they shall have values of the base datatype such that
InOrder(lowerbound, upperbound). When lowerbound is "*", it indicates that no lower bound is being
specified, and when upperbound is "*", it indicates that no upper bound is being specified. No value-
expression occurring in the select-list shall be a formal-parametric-value, except in some
occurrences in declarations (see 9.1).

Values: The values specified by the select-list designate those values from the value-space of the base
datatype which comprise the value-space of the selecting subtype. A select-item which is a value-
expression specifies the single value designated by that value-expression. A select-item which is a
select-range specifies all values v of the base datatype such that lowerbound ≤ v, if lowerbound is
specified, and v ≤ upperbound, if upperbound is specified.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if no select-
range appears in the select-list or if all select-ranges in the select-list specify the corresponding
bounds.

8.2.3 Excluding

Description: excluding creates a subtype of any exact datatype by enumerating the values which are to be
excluded in constructing the subtype value-space.

Syntax:

excluding-subtype = base, "excluding", "(", select-list, ")" ;
select-list = select-item, { ",", select-item } ;
select-item = value-expression |
 select-range ;
select-range = lowerbound, "..", upperbound ;
lowerbound = value-expression |
 "*" ;
upperbound = value-expression |
 "*" ;
base = type-specifier ;

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 47

Components: base shall designate an exact datatype. A select-item shall not be a select-range unless
the base datatype is ordered. When lowerbound and upperbound are value-expressions, they shall have
values of the base datatype such that InOrder(lowerbound, upperbound). When lowerbound is "*", it
indicates that no lower bound is being specified, and when upperbound is "*", it indicates that no upper
bound is being specified. No value-expression occurring in the select-list shall be a formal-
parametric-value, except in some occurrences in declarations (see 9.1).

Values: The value space of the excluding subtype comprises all values of the base datatype except for
those specified by the select-list. A select-item which is a value-expression specifies the single
value designated by that value-expression. A select-item which is a select-range specifies all values v
of the base datatype such that lowerbound ≤ v, if a lower bound is specified, and v ≤ upperbound, if an
upper bound is specified.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if some
select-range appears in the select-list and does not specify the corresponding bound.

8.2.4 Size

Description: size creates a subtype of any sequence, set, bag, or table datatype by specifying bounds on
the number of elements any value of the base datatype may contain.

Syntax:

size-subtype = base, "size", "(", minimum-size,
 ["..", maximum-size], ")" ;
maximum-size = value-expression |
 "*" ;
minimum-size = value-expression ;
base = type-specifier ;

Components: base shall designate a generated datatype resulting from the sequence, set, bag, or table
generator, or from a new datatype generator whose value space is constructed by such a generator (see
9.1.3). minimum-size shall have an integer value greater than or equal to zero, and maximum-size, if it is a
value-expression, shall have an integer value such that minimum-size ≤ maximum-size. If maximum-size
is omitted, the maximum size is taken to be equal to the minimum-size, and if maximum-size is "*", the
maximum size is taken to be unlimited. minimum-size and maximum-size shall not be formal-parametric-
values, except in some occurrences in declarations (see 9.1).

Values: The value space of the subtype consists of all values of the base datatype which contain at least
minimum-size values and at most maximum-size values of the element datatype.

Subtypes: Any size subtype of the same base datatype, such that base-minimum-size ≤ subtype-
minimum-size, and

subtype-maximum-size ≤ base-maximum-size

Properties: those of the base datatype; the aggregate subtype has fixed size if the maximum size is (explicitly
or implicitly) equal to the minimum size.

ISO/IEC CD1 11404 (revision)

48 © ISO 2003 – All rights reserved

8.2.5 Explicit subtypes

Description: Explicit subtyping identifies a datatype as a subtype of the base datatype and defines the
construction procedure for the subset value space in terms of general purpose datatypes or datatype
generators.

Syntax:

explicit-subtype = base, "subtype", "(", subtype-definition, ")" ;
base = type-specifier ;
subtype-definition = type-specifier ;

Components: base may designate any datatype. The subtype-definition shall designate a datatype
whose value space is (isomorphic to) a subset of the value space of the base datatype.

Values: The subtype value space is identical to the value space of the datatype designated by the subtype-
definition.

Properties: exactly those of the subtype-definition datatype.

NOTE 1 When the base datatype is generated by a datatype generator, the ways in which a subset value space can
be constructed are complex and dependent on the nature of the base datatype itself. Clause 8.3 specifies the subtyping
possibilities associated with each datatype generator.

NOTE 2 It is redundant, but syntactically acceptable, for the subtype-definition to be an occurrence of a subtype-
generator, e.g.

integer subtype (integer selecting(0..5))

8.2.6 Extended

Description: Extended creates a datatype whose value-space contains the value-space of the base datatype
as a proper subset.

Syntax:

extended-type = base, "plus", { "sentinel" },
 "(", extended-value-list, ")" ;
extended-value-list = extended-value, { ",", extended-value } ;
extended-value = extended-literal |
 formal-parametric-value ;
extended-literal = identifier ;
base = type-specifier ;

Components: base may designate any datatype. An extended-value shall be an extended-literal,
except in some occurrences in declarations (see 9.1). Each extended-literal shall be distinct from all
value-literals and value-identifiers, if any, of the base datatype and distinct from all others in the
extended-value-list.

Values: The value space of the extended datatype comprises all values in the value-space of the base
datatype plus those additional values specified in the extended-value-list. If sentinel is included in the
type specification, the additional values are sentinel values in the value space.

Properties: The subtype is bounded (above, below, both) if the base datatype is so bounded or if the
additional values are upper or lower bounds.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 49

The definition of an extended datatype shall include specification of the characterizing operations on the base
datatype as applied to, or yielding, the added values in the extended-value-list. In particular, when the
base datatype is ordered, the behavior of the InOrder operation on the added values shall be specified.

NOTE 1 extended produces a subtype relationship in which the base datatype is the subtype and the extended
datatype has the larger value space.

NOTE 2 Other uses of the IDN syntax make stronger requirements on the uniqueness of extended-literal identifiers.

8.2.7 Override

Description: Specifies that the labeled class member definition that follows replaces the prior class member
definition with the same label.

Syntax:

override-qualifier = "override" ;

Components: override may be used with a class member definition.

8.3 Generated datatypes

A generated datatype is a datatype resulting from an application of a datatype generator. A datatype
generator is a conceptual operation on one or more datatypes which yields a datatype. A datatype generator
operates on datatypes to generate a datatype, rather than on values to generate a value. The datatypes on
which a datatype generator operates are said to be its parametric or component datatypes. The generated
datatype is semantically dependent on the parametric datatypes, but has its own characterizing operations.
An important characteristic of all datatype generators is that the generator can be applied to many different
parametric datatypes. The Pointer and Procedure generators generate datatypes whose values are atomic,
while Choice and the generators of aggregate datatypes generate datatypes whose values admit of
decomposition. A generated-type designates a generated datatype.

generated-type = pointer-type |
 procedure-type |
 choice-type |
 aggregate-type |
 import-type ;

This International Standard defines common datatype generators by which an application of this International
Standard may define generated datatypes. (An application may also define "new" generators, as provided in
clause 9.1.3.) Each datatype generator is defined by a separate subclause. The title of each such subclause
gives the informal name for the datatype generator, and the datatype generator is defined by a single
occurrence of the following template:

Description: prose description of the datatypes resulting from the generator.

Syntax: the syntactic production for a generated datatype resulting from the datatype generator,
including identification of all parametric datatypes which are necessary for the complete identification of a
distinct datatype.

Components: number of and constraints on the parametric datatypes and parametric values used by
the generator.

Values: formal definition of resulting value space.

ISO/IEC CD1 11404 (revision)

50 © ISO 2003 – All rights reserved

Properties: properties of the resulting datatype which indicate its admissibility as a component datatype
of certain datatype generators: numeric or non-numeric, approximate or exact, ordered or unordered,
and if ordered, bounded or unbounded.

Subtypes: generators, subtype-generators and parametric values which produce subset value spaces.

Operations: characterizing operations for the resulting datatype which associate to the datatype
generator. The definitions of operations have the form described in 8.1.

NOTE Unlike subtype generators, datatype generators yield resulting datatypes whose value spaces are entirely
distinct from those of the component datatypes of the datatype generator.

8.3.1 Choice

Description: Choice generates a datatype called a choice datatype, each of whose values is a single value
from any of a set of alternative datatypes. The alternative datatypes of a choice datatype are logically
distinguished by their correspondence to values of another datatype, called the tag datatype.

Syntax:

choice-type = "choice", "(", [field-identifier ":"],
 tag-type, ["=" discriminant], ")"
 "of" "(" alternative-list ")" ;
field-identifier = identifier ;
tag-type = type-specifier ;
discriminant = value-expression ;
alternative-list = alternative, { ",", alternative },
 [default-alternative] ;
alternative = tag-value-list, [field-identifier], ":",
alternative-type ;
default-alternative = "default", ":", alternative-type ;
alternative-type = type-specifier ;
tag-value-list = "(", select-list, ")" ;
select-list = select-item, { ",", select-item } ;
select-item = value-expression |
 select-range ;
select-range = lowerbound, "..", upperbound ;
lowerbound = value-expression |
 "*" ;
upperbound = value-expression |
 "*" ;

Components: Each alternative-type in the alternative-list may be any datatype. The tag-type shall
be an exact datatype. The tag-value-list of each alternative shall specify values in the value space of the
(tag) datatype designated by tag-type. A select-item shall not be a select-range unless the tag datatype is
ordered. When lowerbound and upperbound are value-expressions, they shall have values of the tag
datatype such that InOrder(lowerbound, upperbound). When lowerbound is "*", it indicates that no
lowerbound is being specified, and when upperbound is "*", it indicates that no upperbound is being
specified. No value-expression in the select-list shall be a parametric value, except in some
occurrences in declarations (see 9.1).

A choice datatype defines an association from the value space of the tag datatype to the set of alternative
datatypes in the alternative-list, such that each value of the tag datatype associates with exactly one
alternative datatype. The tag-value-list of an alternative specifies those values of the tag datatype which
are associated with the alternative datatype designated by the alternative-type in the alternative. A

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 51

select-item which is a value-expression specifies the single value of the tag datatype designated by that
value-expression. A select-item which is a select-range specifies all values v of the tag datatype such
that lowerbound ≤ v, if lowerbound is specified, and v ≤ upperbound, if upperbound is specified. The
default-alternative, if present, specifies that all values of the tag datatype which do not appear in any
other alternative are associated with the alternative datatype designated by its alternative-type.

No value of the tag datatype shall appear in the tag-value-list of more than one alternative.

The occurrence of a field-identifier before the tag-type or in an alternative has no meaning in the
resulting choice-type. Its purpose is to facilitate mappings to programming languages.

The discriminant, if present, shall designate a value of the tag datatype. It identifies the tag value, or the
source of the tag value, to be used in a particular occurrence of the choice datatype.

Values: all values having the conceptual form (tag-value, alternative-value), where tag-value is a
value of the tag datatype which occurs (explicitly or implicitly) in some alternative in the alternative-list
and is uniquely mapped to an alternative datatype thereby, and alternative-value is any value of that
alternative datatype.

Value-syntax:

choice-value = "(", tag-value, ":", alternative-value, ")", ;
tag-value = independent-value ;
alternative-value = independent-value ;

A choice-value denotes a value of a choice datatype. The tag-value of a choice-value shall be a value of
the tag datatype of the choice datatype, and the alternative-value shall designate a value of the corresponding
alternative datatype. The value denoted shall be that value having the conceptual form (tag-value,
alternative-value).

Properties: unordered, exact if and only if all alternative datatypes are exact, non-numeric.

Subtypes: any choice datatype in which the tag datatype is the same as, or a subtype of, the tag datatype of
the base datatype, and the alternative datatype corresponding to each value of the tag datatype in the
subtype is the same as, or a subtype of, the alternative datatype corresponding to that value in the base
datatype.

Operations: Equal, Tag, Cast, Discriminant.

Discriminant(x: choice (tag-type) of (alternative-list)): tag-type is the tag-value of the value x.

Tag.type(x: type, s: tag-type): choice (tag-type) of (alternative-list), where type is that alternative
datatype in alternative-list which corresponds to the value s, is that value of the choice datatype which has
tag-value s and alternative-value x.

Cast.type(x: choice (tag-type) of (alternative-list)): type, where type is an alternative datatype in
alternative-list, is:

if the tag value of x selects an alternative whose alternative-type is type, then that value of type which is
the (alternative) value of x, else undefined.

Equal(x, y: choice (tag-type) of (alternative-list)): boolean is:

if Discriminant(x) and Discrminant(y) select the same alternative, then

ISO/IEC CD1 11404 (revision)

52 © ISO 2003 – All rights reserved

 type.Equal(Cast.type(x), Cast.type(y)),

where type is the alternative datatype of the selected alternative and type.Equal is the Equal
operation on the datatype type,

else false.

NOTE 1 The choice datatype generator is referred to in some programming languages as a "(discriminated) union"
datatype, and in others as a datatype with "variants". The generator defined here represents the Pascal/Ada "variant-
record" concept, but it allows the C-language "union", and similar discriminated union concepts, to be supported by a
slight subterfuge. E.g. the C datatype:

union

{

float a1;

int a2;

char* a3;

};

may be represented by:

choice (state(a1, a2, a3)) of

(

(a1): real,

(a2): integer,

(a3): characterstring

)

NOTE 2 The actual value space of the tag datatype from which tag-values may be drawn is actually a subtype of the
value space of the designated tag datatype, namely that subtype consisting exactly of the values which are mapped into
alternative datatypes by the alternative-list. The set of tag values appearing explicitly or implicitly in the alternative-list is
not required to cover the value space of the tag datatype.

NOTE 3 The subtypes of a choice datatype are typically choice datatypes with a smaller list of alternatives, and in the
simplest case, the list is reduced to a single datatype.

NOTE 4 The operation Discriminant is a conceptual operation which reflects the ability to determine which alternative
of a choice-type is selected in a given value. When a choice-value is moved between two contexts, as between a
program and a data repository, representation of the chosen alternative is required, and most implementations explicitly
incorporate the tag-value.

NOTE 5 Another useful model of choice is choice (field-list), where exactly one field is present in any given value, and
the means of discrimination is not specified. In this model, the operation:

IsField.field(x: choice (field-list)): boolean = true if the designated field is present in the value x, otherwise false;

replaces Discriminant, with corresponding changes to the other characterizing operations. It is recognized that this
model is mathematically more elegant (the Or-graph to match the And-graph of the fields in Record), but in practice, either
IsField is not provided (which makes all operations user-defined) or IsField is implemented by tag-value (which makes
IsField equivalent to Discriminant).

EXAMPLES See 10.2.2 and 10.2.4.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 53

8.3.2 Pointer

Description: pointer generates a datatype, called a pointer datatype, each of whose values constitutes a
means of reference to values of another datatype, designated the element datatype. The values of a pointer
datatype are atomic.

Syntax:

pointer-type = "pointer", "to", "(", element-type, ")" ;
element-type = type-specifier ;

Components: Any single datatype, designated the element-type.

Values: The value space is that of an unspecified state datatype, each of whose values, save one, is
associated with a value of the element datatype. The single value null may belong to the value space but it is
never associated with any value of the element datatype.

Value-syntax:

pointer-literal = "null" ;

"null" denotes the null value. There is no denotation for any other value of a pointer datatype.

Properties: unordered, exact, non-numeric.

Subtypes: any pointer datatype for which the element datatype is a subtype of the element datatype of the
base pointer datatype.

Operations: Equal, Dereference.

Equal(x, y: pointer(element)): boolean is true if the values x and y are identical values of the unspecified
state datatype, else false;

Dereference(x: pointer(element)): element, where x ≠ null, is the value of the element datatype associated
with the value x.

NOTE 1 A pointer datatype defines an association from the "unspecified state datatype" into the element datatype.
There may be many values of the pointer datatype which are associated with the same value of the element datatype; and
there may be members of the element datatype which are not associated with any value of the pointer datatype. The
notion that there may be values of the "unspecified state datatype" to which no element value is associated, however, is
an artifact of implementations – conceptually, except for null, those values of the (universal) "unspecified state datatype"
which are not associated with values of the element datatype are not in the value space of the pointer datatype.

NOTE 2 Two pointer values are equal only if they are identical; it does not suffice that they are associated with the
same value of the element datatype. The operation which compares the associated values is

Equal.element(Dereference(x), Dereference(y)),

where Equal.element is the Equal operation on the element datatype.

NOTE 3 The computational model of the pointer datatype often allows the association to vary over time. E.g., if x is a
value of datatype pointer to (integer), then x may be associated with the value 0 at one time and with the value 1 at
another. This implies that such pointer datatypes also support an operation, called assignment, which associates a (new)
value of datatype e to a value of datatype pointer(e), thus changing the value returned by the Dereference operation on
the value of datatype pointer to e. This assignment operation was not found to be necessary to characterize the pointer

ISO/IEC CD1 11404 (revision)

54 © ISO 2003 – All rights reserved

datatype, and listing it as a characterizing operation would imply that support of the pointer datatype requires it, which is
not the intention.

NOTE 4 The term lvalue appears in some language standards, meaning "a value which refers to a storage object or
area". Since the storage object is a means of association, an lvalue is therefore a value of some pointer datatype.
Similarly, the implementation notion machine-address, to the extent that it can be manipulated by a programming
language, is often a value of some pointer datatype.

NOTE 5 The hardware implementation of the "means of reference to" a value of the element-type is usually a memory
cell or cells which contain a value of the element-type. The memory cell has an "address", which is the "value of the
unspecified state datatype". The memory cell physically maintains the association between the address (pointer-value)
and the element-value which is stored in the cell. The Dereference operation is conceptually applied to the "address", but
is implemented by a "fetch" from the memory cell. Thus in the computational model used here, the "address" and the
"memory cell" are not distinguished: a pointer-value is both the cell and its address, because the cell can only be
manipulated through its address. The cell, which is the pointer-value, is distinguished from its contents, which is the
element-value.

NOTE 6 The notion "variable of datatype T" appears in programming languages and is usually implemented as a cell
which contains a value of type T. Language standards often distinguish between the "address of the variable" and the
"value of the variable" and the "name of the variable", and one might conclude that the "variable" is the cell itself. But all
operations on such a "variable" actually operate on either the "address of the variable" — the value of general purpose
datatype "pointer to (T)" — or the "value of the variable" — the value of general purpose datatype T. And thus those are
the only objects which are needed in the datatype model. This notion is further elaborated in ISO/IEC 13886:1995,
Language-independent procedure calling, which relates pointer-values to the "boxes" (or "cells") which are elements of the
state of a running program.

8.3.3 Procedure

Description: procedure generates a datatype, called a procedure datatype, each of whose values is an
operation on values of other datatypes, designated the parameter datatypes. That is, a procedure datatype
comprises the set of all operations on values of a particular collection of datatypes. All values of a procedure
datatype are conceptually atomic.

Syntax:

procedure-type = "procedure", "(", [parameter-list], ")",
 ["returns", "(", return-parameter, ")",],
 ["raises", "(", termination-list, ")"] ;
parameter-list = parameter-declaration,
 { ",", parameter-declaration } ;
parameter-declaration = direction parameter ;
direction = "in" |
 "out" |
 "inout" ;
parameter = [parameter-name, ":"], parameter-type ;
parameter-type = type-specifier ;
parameter-name = identifier ;
return-parameter = [parameter-name, ":"], parameter-type ;
termination-list = termination-reference,
 { ",", termination-reference } ;
termination-reference = termination-identifier ;

Components: A parameter-type may designate any datatype. The parameter-names of parameters in the
parameter-list shall be distinct from each other and from the parameter-name of the return-parameter, if
any. The termination-references in the termination-list, if any, shall be distinct.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 55

Values: Conceptually, a value of a procedure datatype is a function which maps an input space to a result
space. A parameter in the parameter-list is said to be an input parameter if its parameter-declaration
contains the direction "in" or "inout". The input space is the cross-product of the value spaces of the
datatypes designated by the parameter-types of all the input parameters. A parameter is said to be a result
parameter if it is the return-parameter or it appears in the parameter-list and its parameter-
declaration contains the direction "out" or "inout". The normal result space is the cross-product of the
value spaces of the datatypes designated by the parameter-types of all the result parameters, if any, and
otherwise the value space of the void datatype. When there is no termination-list, the result space of the
procedure datatype is the normal result space, and every value p of the procedure datatype is a function of
the mathematical form:

p: I1 x I2 x ... x In → RP x R1 x R2 x ... x Rm

where Ik is the value space of the parameter datatype of the kth input parameter, Rk is the value space of the
parameter datatype of the kth result parameter, and RP is the value space of the return-parameter.

When a termination-list is present, each termination-reference shall be associated, by some
termination-declaration (see 9.3), with an alternative result space which is the cross-product of the value
spaces of the datatypes designated by the parameter-types of the parameters in the termination-
parameter-list. Let Aj be the alternative result space of the jth termination. Then:

Aj = E1j x E2j x ... x Emjj,

where Ekj is the value space of the parameter datatype of the kth parameter in the termination-
parameter-list of the jth termination. The normal result space then becomes the alternative result space
associated with normal termination (A0), modeled as having termination-identifier "*normal".
Consider the termination-references, and "*normal", to represent values of an unspecified state datatype
ST. Then the result space of the procedure datatype is:

ST x (A0 | A1 | A2 | ... | AN),

where A0 is the normal result space and Ak is the alternative result space of the kth termination; and every
value of the procedure datatype is a function of the form:

p: I1 x I2 x ... x In � 67 [�$� _ $� _ $� _ ��� _ $1�.

Any of the input space, the normal result space and the alternative result space corresponding to a given
termination-identifier may be empty. An empty space can be modeled mathematically by substituting
for the empty space the value space of the datatype void (see 8.1.12).

The value space of a procedure datatype conceptually comprises all operations which conform to the above
model, i.e. those which operate on a collection of values whose datatypes correspond to the input parameter
datatypes and yield a collection of values whose datatypes correspond to the parameter datatypes of the
normal result space or the appropriate alternative result space. The term corresponding in this regard means
that to each parameter datatype in the respective product space the "collection of values" shall associate
exactly one value of that datatype. When the input space is empty, the value space of the procedure datatype
comprises all niladic operations yielding values in the result space. When the result space is empty, the
mathematical value space contains only one value, but the value space of the computational procedure
datatype many contain many distinct values which differ in their effects on the "real world", i.e. physical
operations outside of the information space.

Value-syntax:

procedure-declaration = "procedure", procedure-identifier, "(",
 [parameter-list], ")",

ISO/IEC CD1 11404 (revision)

56 © ISO 2003 – All rights reserved

 ["returns", "(", return-parameter, ")"],
 ["raises", "(", termination-list, ")"] ;
procedure-identifier = identifier ;

A procedure-declaration declares the procedure-identifier to refer to a (specific) value of the
procedure datatype whose type-specifier is identical to the procedure-declaration after deletion of the
procedure-identifier. The means of association of the procedure-identifier with a particular value of
the procedure datatype is outside the scope of this International Standard .

Properties: unordered, exact, non-numeric.

Subtypes: For two procedure datatypes P and Q:

 P is said to be formally compatible with Q if their parameter-lists are of the same length, the direction of
each parameter in the parameter-list of P is the same as the corresponding parameter in the
parameter-list of Q, both have a return-parameter or neither does, and the termination-lists of P
and Q, if present, contain the same termination-references.

 If P is formally compatible with Q, and for every result parameter of Q, the parameter datatype of the
corresponding parameter of P is a (not necessarily proper) subtype of the parameter datatype of the
parameter of Q, then P is said to be a result-subtype of Q. If the return parameter datatype and all of the
parameter datatypes in the parameter-list of P and Q are identical (none are proper subtypes), then each
is a result-subtype of the other.

 If P is formally compatible with Q, and for every input parameter of Q , the parameter datatype of the
corresponding parameter of P is a (not necessarily proper) subtype of the parameter datatype of the
parameter of Q, then Q is said to be an input-subtype of P. If all of the input parameter datatypes in the
parameter-lists of P and Q are identical (none are proper subtypes), then each is an input-subtype of the
other.

Every subtype of a procedure datatype shall be both an input-subtype of that procedure datatype and a result-
subtype of that procedure datatype.

Operations: Equal, Invoke.

The definitions of Invoke and Equals below are templates for the definition of specific Invoke and Equals
operators for each individual procedure datatype. Each procedure datatype has its own Invoke operator
whose first parameter is a value of the procedure datatype, and whose remaining input parameters, if any,
have the datatypes in the input space of that procedure datatype, and whose result-list has the datatypes of
the result space of the procedure datatype.

Invoke(x: procedure(parameter-list), v1: I1, ..., vn: In): record (r1: R1, ..., rm: Rm)) is that value in the
result space which is produced by the procedure x operating on the value of the input space which
corresponds to values (v1, ..., vn).

Equal(x, y: procedure(parameter-list)): boolean is:

true if for each collection of values (v1: I1, ..., vn: In), corresponding to a value in the input space of x
and y, either:

neither x nor y is defined on (v1, ..., vn), or

Invoke(x, v1, ..., vn) = Invoke(y, v1, ..., vn);

and false otherwise.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 57

NOTE 1 The definition of Invoke above is simplistic and ignores the concept of alternative terminations, the
implications of procedure and pointer datatypes appearing in the parameter-list, etc. The true definition of Invoke is
beyond the scope of this International Standard and forms a principal part of ISO/IEC 13886:1996, Language-independent
procedure calling.

NOTE 2 Considered as a function, a given value of a procedure datatype may not be defined on the entire input space,
that is, it may not yield a value for every possible input. In describing a specific value of the procedure datatype it is
necessary to specify limitations on the input domain on which the procedure value is defined. In the general case, these
limitations are on combinations of values which go beyond specifying proper subtypes of the individual parameter
datatypes. Such limitations are therefore not considered to affect the admissibility of a given procedure as a value of the
procedure datatype.

NOTE 3 The subtyping of procedure datatypes may be counterintuitive. Assume the declarations:

type P = procedure (in a: integer range (0..100), out b: typeX);

type Q = procedure (in a: integer range (0..100), out b: typeY);

type R = procedure (in a: integer, out b: typeX);

If typeX is a subtype of typeY then P is a subtype of Q, as one might expect. But integer range (0..100) is a subtype of
integer, which makes R a subtype of P, and not the reverse! In general, the collection of procedures which can accept
an arbitrary input from the larger input datatype (integer) is a subset of the collection of procedures which can accept an
input from the more restricted input datatype (integer range (0..100)). If a procedure is required to be of type P, then
it is presumed to be applicable to values in integer range (0..100). If a procedure of type R is actually used, it can
indeed be safely applied to any value in integer range (0..100), because integer range (0..100) is a subtype of the
domain of the procedures in R. But the converse is not true. If a procedure is required to be of type R, then it is
presumed to be applicable to an arbitrary integer value, for example, -1, and therefore a procedure of type P, which is not
necessarily defined at -1, cannot be used.

NOTE 4 In describing individual values of a procedure datatype, it is common in programming languages to specify
parameter-names, in addition to parameter datatypes, for the parameters. These identifiers provide a means of
distinguishing the functionality of the individual parameter values. But while this functionality is important in distinguishing
one value of a procedure datatype from another, it has no meaning at all for the procedure datatype itself. For example,
Subtract(in a:real, in b:real, out diff: real) and Multiply(in a:real, in b:real, out prod: real) are
both values of the procedure datatype procedure(in real, in real, out real), but the functionality of the
parameters a and b in the two procedure values is unrelated.

NOTE 5 In describing procedures in programming languages, it is common to distinguish parameters as input, output,
and input/output, to import information from common interchange areas, and to distinguish returning a single result value
from returning values through the parameters and/or the interchange areas. These distinctions are supported by the
syntax, but conceptually, a procedure operates on an set of input values to produce a set of output values. The syntactic
distinctions relate to the methods of moving values between program elements, which are out-side the scope of this
International Standard. This syntax is used in other international standards which define such mechanisms. It is used
here to facilitate the mapping to programming language constructs.

NOTE 6 As may be apparent from the definition of Invoke above, there is a natural isomorphism between the normal
result space of a procedure datatype and the value space of some record datatype (see 8.4.1). Similarly, there is an
isomorphism between the general form of the result space and the value space of a choice datatype (see 8.3.1) in which
the tag datatype is the unspecified state datatype and each alternative, including "normal", has the form:

termination-name: alternative-result-space (record-type)

8.4 Aggregate Datatypes

An aggregate datatype is a generated datatype each of whose values is, in principle, made up of values of the
component datatypes. An aggregate datatype generator generates a datatype by

 applying an algorithmic procedure to the value spaces of its component datatypes to yield the value space
of the aggregate datatype, and

ISO/IEC CD1 11404 (revision)

58 © ISO 2003 – All rights reserved

 providing a set of characterizing operations specific to the generator.

Thus, many of the properties of aggregate datatypes are those of the generator, independent of the datatypes
of the components. Unlike other generated datatypes, it is characteristic of aggregate datatypes that the
component values of an aggregate value are accessible through characterizing operations.

This clause describes commonly encountered aggregate datatype generators, attaching to them only the
semantics which derive from the construction procedure.

aggregate-type = record-type |
 class-type |
 set-type |
 sequence-type |
 bag-type |
 array-type |
 table-type ;

The definition template for an aggregate datatype is that used for all datatype generators (see 8.3), with an
addition of the Properties paragraph to describe which of the aggregate properties described in clause 6.8 are
possessed by that generator.

NOTE 1 In general, an aggregate-value contains more than one component value. This does not, however, preclude
degenerate cases where the “aggregate” value has only one component, or even none at all.

NOTE 2 Many characterizing operations on aggregate datatypes are "constructors", which construct a value of the
aggregate datatype from a collection of values of the component datatypes, or "selectors", which select a value of a
component datatype from a value of the aggregate datatype. Since composition is inherent in the concept of aggregate,
the existence of construction and selection operations is not in itself characterizing. However, the nature of such
operations, together with other operations on the aggregate as a whole, is characterizing.

NOTE 3 In principle, from each aggregate it is possible to extract a single component, using selection operations of
some form. But some languages may specify that particular (logical) aggregates must be treated as atomic values, and
hence not provide such operations for them. For example, a character string may be regarded as an atomic value or as
an aggregate of Character components. This international standard models characterstring (10.1.5) as an aggregate, in
order to support languages whose fundamental datatype is (single) Character. But Basic, for example, sees the
characterstring as the primitive type, and defines operations on it which yield other characterstring values, wherein 1-
character strings are not even a special case. This difference in viewpoint does not prevent a meaningful mapping
between the characterstring datatype and Basic strings.

NOTE 4 Some characterizations of aggregate datatypes are essentially implementations, whereas others convey
essential semantics of the datatype. For example, an object which is conceptually a tree may be defined by either:

type tree = record

(

label: character_string ({ iso standard 8859 1 }),

branches: set of (tree)

),

or:

type tree = record

(

label: character_string ({ iso standard 8859 1 }),

son: pointer to (tree),

sibling: pointer to (tree)

),

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 59

The first is a proper conceptual definition, while the second is clearly the definition of a particular implementation of a tree.
Which of these datatype definitions is appropriate to a given usage, however, depends on the purpose to which this
International Standard is being employed in that usage.

NOTE 5 There is no "generic" aggregate datatype. There is no "generic" construction algorithm, and the "generic"
form of aggregate has no characterizing operations on the aggregate values. Every aggregate is, in a purely
mathematical sense, at least a bag (see 8.4.3). And thus the ability to “select one” from any aggregate value is a
mathematical requirement given by the axiom of choice. The ability to perform any particular operation on each element of
an aggregate is sometimes cited as characterizing. But in this International Standard, this capability is modeled as a
composition of more primitive functions, viz.:

Applytoall(A: aggregate-type, P: procedure-type) is:
if not IsEmpty(A) begin

e := Select(A);
Invoke (P, e);
Applytoall (Delete(A, e), P);

end;

and the particular Select operations available, as well as the need for IsEmpty and Delete, are characterizing.

8.4.1 Record

Description: record generates a datatype, called a record datatype, whose values are heterogeneous
aggregations of values of component datatypes, each aggregation having one value for each component
datatype, keyed by a fixed field-identifier.

Syntax:

record-type = "record", { provision-statement },
 "(" field-list ")" ;
field-list = field { "," field } ;
field = field-identifier ":" field-type ;
field-identifier = identifier ;
field-type = type-specifier ;

Components: A list of fields, each of which associates a field-identifier with a single field datatype,
designated by the field-type, which may be any datatype. All field-identifiers of fields in the field-
list shall be distinct.

Values: all collections of named values, one per field in the field-list, such that the datatype of each value
is the field datatype of the field to which it corresponds.

Value-syntax:

record-value = field-value-list |
 value-list ;
field-value-list = "(", field-value, { ",", field-value }, ")" ;
field-value = field-identifier, ":", independent-value ;
value-list = "(", independent-value,
 { ",", independent-value }, ")" ;

A record-value denotes a value of a record datatype. When the record-value is a field-value-list,
each field-identifier in the field-list of the record datatype to which the record-value belongs shall
occur exactly once in the field-value-list, each field-identifier in the record-value shall be one of
the field-identifiers in the field-list of the record-type, and the corresponding independent-value
shall designate a value of the corresponding field datatype. When the record-value is a value-list, the

ISO/IEC CD1 11404 (revision)

60 © ISO 2003 – All rights reserved

number of independent-values in the value-list shall be equal to the number of fields in the field-
list of the record datatype to which the value belongs, each independent-value shall be associated with
the field in the corresponding position, and each independent-value shall designate a value of the field
datatype of the associated field.

Properties: non-numeric, unordered, exact if and only if all component datatypes are exact.

Aggregate properties: heterogeneous, fixed size, no ordering, no uniqueness, access is keyed by field-
identifier, one dimensional.

Subtypes: any record datatype with exactly the same field-identifiers as the base datatype, such that the field
datatype of each field of the subtype is the same as, or is a subtype of, the corresponding field datatype of the
base datatype.

Operations: Equal, FieldSelect, Aggregate.

Equal(x, y: record (field-list)): boolean is true if for every field-identifier f of the record datatype,

field-type.Equal(FieldSelect.f(x), FieldSelect.f(y)), else false

(where field-type.Equal is the equality relationship on the field datatype corresponding to f).

There is one FieldSelect and one FieldReplace operation for each field in the record datatype, of the forms:

FieldSelect.field-identifier(x: record (field-list)): field-type is

the value of the field of record x whose field-identifier is field-identifier.

FieldReplace.field-identifier(x: record (field-list), y: field-type): record (field-list) is that value z:
record(field-list) such that FieldSelect.field-identifier(z) = y, and for all other fields f in record(field-
list), FieldSelect.f(x) = FieldSelect.f(z)

i.e. FieldReplace yields the record value in which the value of the designated field of x has been replaced by
y.

NOTE 1 The sequence of fields in a record datatype is not semantically significant in the definition of the record
datatype generator. An implementation of a record datatype may define a representation convention which is an ordering
of physically distinct fields, but that is a pragmatic consideration and not a part of the conceptual notion of the datatype.
Indeed, the optimal representation for certain record values might be a bit string, and then FieldReplace would be an
encoding operation and FieldSelect would be a decoding operation. Note that in a record-value which is a value-list,
however, the physical sequence of fields is significant: it is the convention used to associate the component values in the
value-list with the fields of the record value.

NOTE 2 A record datatype can be modeled as a heterogeneous aggregate of fixed size which is accessed by key,
where the key datatype is a state datatype whose values are the field identifiers. But in a value of a record datatype,
totality of the mapping is required: no field (keyed value) can be missing.

NOTE 3 A record datatype with a subset of the fields of a base record datatype (a "sub-record" or "projection" of the
record datatype) is not a sub-type of the base record datatype: none of the values in the sub-record value space appears
in the base value-space. And there are, in general, a great many different "embeddings" which map the sub-record
datatype into the base datatype, each of which supplies different values for the missing fields. Supplying void values for
the missing fields is only possible if the datatypes of those fields are of the form

choice (tag-type) of (..., v: void)

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 61

NOTE 4 "Subtypes" of a "record" datatype which have additional fields is an object-oriented notion which goes beyond
the scope of this International Standard .

8.4.2 Class

Description: class generates a datatype, called a class datatype, whose values are heterogeneous
aggregations of values of component datatypes, each aggregation having one value for each component
datatype, keyed by a fixed field-identifier. Components of a class may include procedure definitions.

Syntax:

class-type = "class", { provision-statement },
 "(", member-list, ")" ;
member-list = member, { ",", member } ;
member = { "override" }, member-identifier, ":", member-type ;
member-identifier = identifier ;
member-type = type-specifier ;

Components: A list of members, each of which associates a member-identifier with a single member
datatype, designated by the member-type, which may be any datatype. All member-identifiers of members
in the member-list shall be distinct.

Values: all collections of named values, one per member in the member-list, such that the datatype of each
value is the member datatype of the member to which it corresponds.

Value-syntax:

class-value = member-value-list |
 value-list ;
member-value-list = "(", member-value, { ",", member-value }, ")" ;
member-value = member-identifier, ":", independent-value ;
value-list = "(", independent-value,
 { ",", independent-value }, ")" ;

A class-value denotes a value of a class datatype. When the class-value is a member-value-list, each
member-identifier in the member-list of the class datatype to which the class-value belongs shall occur
exactly once in the member-value-list, each member-identifier in the class-value shall be one of the
member-identifiers in the member-list of the class-type, and the corresponding independent-value
shall designate a value of the corresponding member datatype. When the class-value is a value-list, the
number of independent-values in the value-list shall be equal to the number of members in the member-
list of the class datatype to which the value belongs, each independent-value shall be associated with
the member in the corresponding position, and each independent-value shall designate a value of the
member datatype of the associated member.
Properties: non-numeric, unordered.

Aggregate properties: heterogeneous, no ordering, no uniqueness, access is keyed by member-identifier, one
dimensional.

Subtypes: any class datatype with exactly the same member-identifiers as the base datatype, such that the
member datatype of each member of the subtype is the same as, or is a subtype of, the corresponding
member datatype of the base datatype.

Operations: Equal, MemberSelect, Aggregate.

ISO/IEC CD1 11404 (revision)

62 © ISO 2003 – All rights reserved

Equal(x, y: class (member-list)): boolean If there exists an Equal method procedure for the class, then is
Equal(x,y). Otherwise if there are no method procedures then is true if for every member-identifier f of the
class datatype,

member-type.Equal(MemberSelect.f(x), MemberSelect.f(y)), else false

(where member-type.Equal is the equality relationship on the member datatype corresponding to f).
Otherwise is indeterminate.

There is one MemberSelect and one MemberReplace operation for each member in the class datatype that
is not a member procedure, of the forms:

MemberSelect.member-identifier(x: class (member-list)): member-type is

the value of the member of class x whose member-identifier is member-identifier.

MemberReplace.member-identifier(x: class (member-list), y: member-type): class (member-list) is that
value z: class(member-list) such that MemberSelect.member-identifier(z) = y, and for all other members f
in class(member-list), MemberSelect.f(x) = MemberSelect.f(z)

i.e. MemberReplace yields the class value in which the value of the designated member of x has been
replaced by y.

There is one MemberSelect and one MemberReplace operation for each member in the class datatype that
is a member procedure, of the forms:

MemberFunctionInvoke.member-identifier(x: class (member-list)): member-type(parameter-list) is

the value of the member function of class x whose member-identifier is member-identifier.

MemberFunctionOverride.member-identifier(x: class (member-list), y: member-type): class (member-
list) is that function z: class(member-list) such that MemberFunctionInvoke.member-identifier(z) is y, and
for all other members f in class(member-list), MemberFunctionInvoke.f(x) = MemberFunctionInvoke.f(z)

i.e. MemberFunctionOverride yields the class datatype in which the function of the designated member of x
has been replaced by y.

NOTE "Subtypes" of a "class" datatype which have additional members is an object-oriented notion.

8.4.3 Set

Description: set generates a datatype, called a set datatype, whose value-space is the set of all subsets of
the value space of the element datatype, with operations appropriate to the mathematical set.

Syntax:

set-type = "set", { provision-statement }, "of",
 "(", element-type, ")" ;
element-type = type-specifier ;

Components: The element-type shall designate an exact datatype, called the element datatype.

Values: every set of distinct values from the value space of the element datatype, including the set of no
values, called the empty-set. A value of a set datatype can be modeled as a mathematical function whose
domain is the value space of the element datatype and whose range is the value space of the boolean

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 63

datatype (true, false), i.e., if s is a value of datatype set of (E), then s: E �B, and for any value e in the value
space of E, s(e) = true means e "is a member of" the set-value s, and s(e) = false means e "is not a member
of" the set-value s. The value-space of the set datatype then comprises all functions s which are distinct
(different at some value e of the element datatype).

Value-syntax:

set-value = empty-value |
 value-list ;
empty-value = "(", ")" ;
value-list = "(", independent-value,
 { ",", independent-value }, ")" ;

Each independent-value in the value-list shall designate a value of the element datatype. A set-value
denotes a value of a set datatype, namely the set containing exactly the distinct values of the element
datatype which appear in the value-list, or equivalently the function s which yields true at every value in the
value-list and false at all other values in the element value space.

Properties: non-numeric, unordered, exact.

Aggregate properties: homogeneous, variable size, uniqueness, no ordering, access indirect (by value).

Subtypes:

a) any set datatype in which the element datatype of the subtype is the same as, or a subtype of, the element
datatype of the base set datatype; or

b) any datatype derived from a base set datatype conforming to (a) by use of the Size subtype-generator (see
8.2.4).

Operations: IsIn, Subset, Equal, Difference, Union, Intersection, Empty, Setof, Select

IsIn(x: element-type, y: set of (element-type)): boolean = y(x), i.e. true if the value x is a member of the
set y, else false;

Subset(x,y: set of (element-type)): boolean is true if for every value v of the element datatype,

Or(Not(IsIn(v,x)), IsIn(v,y)) = true, else false; i.e. true if and only if every member of x is a member of y;

Equal(x, y: set of (element-type)): boolean = And(Subset(x,y), Subset(y,x));

Difference(x, y: set of (element-type)): set of (element-type) is the set consisting of all values v of the
element datatype such that And(IsIn(v, x), Not(IsIn(v,y)));

Union(x, y: set of (element-type)): set of (element-type) is the set consisting of all values v of the element
datatype such that Or(IsIn(v,x), IsIn(v,y));

Intersection(x, y: set of (element-type)): set of (element-type) is the set consisting of all values v of the
element datatype such that And(IsIn(v,x), IsIn(v,y));

Empty(): set of (element-type) is the function s such that for all values v of the element datatype, s(v) =
false; i.e. the set which consists of no values of the element datatype;

Setof(y: element-type): set of (element-type) is the function s such that s(y) = true and for all values v ≠ �\,
s(v) = false;

ISO/IEC CD1 11404 (revision)

64 © ISO 2003 – All rights reserved

i.e. the set consisting of the single value y;

Select(x: set of (element-type)): element-type, where Not(Equal(x, Empty()), is some one value from the
value space of element datatype which appears in the set x.

NOTE Set is modeled as having only the (undefined) Select operation derived from the axiom of choice. In another
sense, the access method for an element of a set value is “find the element (if any) with value v”, which actually uses the
characterizing “IsIn” operation, and the uniqueness property.

8.4.4 Bag

Description: bag generates a datatype, called a bag datatype, whose values are collections of instances of
values from the element datatype. Multiple instances of the same value may occur in a given collection; and
the ordering of the value instances is not significant.

Syntax:

bag-type = "bag", { provision-statement }, "of",
 "(", element-type, ")" ;
element-type = type-specifier ;

Components: The element-type shall designate an exact datatype, called the element datatype.

Values: all finite collections of instances of values from the element datatype, including the empty collection.
A value of a bag datatype can be modeled as a mathematical function whose domain is the value space of
the element datatype and whose range is the nonnegative integers, i.e., if b is a value of datatype bag of
(E), then b: E �=, and for any value e in the value space of E, b(e) = 0 means e "does not occur in" the bag-
value b, and b(e) = n, where n is a positive integer, means e "occurs n times in" the bag-value b. The value-
space of the bag datatype then comprises all functions b which are distinct.

Value-syntax:

bag-value = empty-value |
 value-list ;
empty-value = "(", ")" ;
value-list = "(", independent-value
 { ",", independent-value }, ")" ;

Each independent-value in the value-list shall designate a value of the element datatype. A bag-value
denotes a value of a bag datatype, namely that function which at each value e of the element datatype yields
the number of occurrences of e in the value-list.

Properties: non-numeric, unordered, exact.

Aggregate properties: homogeneous, variable size, no uniqueness, no ordering, access indirect.

Subtypes:

a) any bag datatype in which the element datatype of the subtype is the same as, or a subtype of, the element
datatype of the base bag datatype; or

b) any datatype derived from a base bag datatype conforming to (a) by use of the Size subtype-generator
(see 8.2.4).

Operations: IsEmpty, Equal, Empty, Serialize, Select, Delete, Insert

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 65

IsEmpty(x: bag of (element-type)): boolean is true if for all e in the element value space, x(e) = 0, else
false;

Equal(x, y: bag of (element-type)): boolean is true if for all e in the element value space, x(e) = y(e), else
false;

Empty(): bag of (element-type) is that function x such that for all e in the element value space, x(e) = 0;

Serialize(x: bag of (element-type)): sequence of (element-type) is:

if IsEmpty(x), then (),

else any sequence value s such that for each e in the element value space, e occurs exactly x(e) times in
s;

Select(x: bag of (element-type)): element-type = Sequence.Head(Serialize(x));

Delete(x: bag of (element-type), y: element-type): bag of (element-type) is that function z in bag of
(element-type) such that:

for all e ≠ �\, z(e) = x(e), and

if x(y) > 0 then z(y) = x(y) - 1 and if x(y) = 0 then z(y) = 0;

i.e. the collection formed by deleting one instance of the value y, if any, from the collection x;

Insert(x: bag of (element-type), y: element-type): bag of (element-type) is that function z in bag of
(element-type) such that:

for all e ≠ �\, z(e) = x(e), and z(y) = x(y) + 1;

i.e. the collection formed by adding one instance of the value y to the collection x;

8.4.5 Sequence

Description: Sequence generates a datatype, called a sequence datatype, whose values are ordered
sequences of values from the element datatype. The ordering is imposed on the values and not intrinsic in
the underlying datatype; the same value may occur more than once in a given sequence.

Syntax:

sequence-type = "sequence", { provision-statement }, "of",
 "(", element-type, ")" ;
element-type = type-specifier ;

Components: The element-type shall designate any datatype, called the element datatype.

Values: all finite sequences of values from the element datatype, including the empty sequence.

Value-syntax:

sequence-value = empty-value |
 value-list ;
empty-value = "(", ")" ;

ISO/IEC CD1 11404 (revision)

66 © ISO 2003 – All rights reserved

value-list = "(", independent-value,
 { ",", independent-value }, ")" ;

Each independent-value in the value-list shall designate a value of the element datatype. A sequence-
value denotes a value of a sequence datatype, namely the sequence containing exactly the values in the
value-list, in the order of their occurrence in the value-list.

Properties: non-numeric, unordered, exact if and only if the element datatype is exact.

Aggregate properties: homogeneous, variable size, no uniqueness, imposed ordering, access indirect (by
position).

Subtypes:

a) any sequence datatype in which the element datatype of the subtype is the same as, or a subtype of, the
element datatype of the base sequence datatype; or

b) any datatype derived from a base sequence datatype conforming to (a) by use of the Size subtype-
generator (see 8.2.4).

Operations: IsEmpty, Head, Tail, Equal, Empty, Append.

IsEmpty(x: sequence of (element-type)): boolean is true if the sequence x contains no values, else false;

Head(x: sequence of (element-type)): element-type, where Not(IsEmpty(x)), is the first value in the
sequence x;

Tail(x: sequence of (element-type)): sequence of (element-type) is the sequence of values formed by
deleting the first value, if any, from the sequence x;

Equal(x, y: sequence of (element-type)): boolean is:

if IsEmpty(x), then IsEmpty(y);

else if Head(x) = Head(y), then Equal(Tail(x), Tail(y));

else, false;

Empty(): sequence of (element-type) is the sequence containing no values;

Append(x: sequence of (element-type), y: element-type): sequence of (element-type) is

the sequence formed by adding the single value y to the end of the sequence x.

NOTE 1 sequence differs from bag in that the ordering of the values is significant and therefore the operations Head,
Tail, and Append, which depend on position, are provided instead of Select, Delete and Insert, which depend on value.

NOTE 2 The extended operation Concatenate(x, y: sequence of (E)): sequence of (E) is:

if IsEmpty(y) then x; else Concatenate(Append(x, Head(y)), Tail(y));

NOTE 3 The notion sequential file, meaning "a sequence of values of a given datatype, usually stored on some
external medium", is an implementation of datatype sequence.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 67

8.4.6 Array

Description: array generates a datatype, called an array datatype, whose values are associations between
the product space of one or more finite datatypes, designated the index datatypes, and the value space of the
element datatype, such that every value in the product space of the index datatypes associates to exactly one
value of the element datatype.

Syntax:

array-type = "array", { provision-statement },
 "(", index-type-list, ")", { provision-statement },
 "of",
 "(", element-type, ")" ;
index-type-list = index-type, { ",", index-type } ;
index-type = type-specifier |
 index-lowerbound, "..", index-upperbound ;
index-lowerbound = value-expression ;
index-upperbound = value-expression ;
element-type = type-specifier ;

Components: The element-type shall designate any datatype, called the element datatype. Each index-
type shall designate an ordered and finite exact datatype, called an index datatype. When the index-type
has the form:

index-lowerbound .. index-upperbound

the implied index datatype is:

integer range(index-lowerbound .. index-upperbound),

and index-lowerbound and index-upperbound shall have integer values, such that index-lowerbound ≤
index-upperbound.

The value-expressions for index-lowerbound and index-upperbound may be dependent-values when the
array datatype appears as a parameter-type, or in a component of a parameter-type, of a procedure datatype,
or in a component of a record datatype. Neither index-lowerbound nor index-upperbound shall be
dependent-values in any other case. Neither index-lowerbound nor index-upperbound shall be formal-
parametric-values, except in certain cases in declarations (see 9.1).

Values: all functions from the cross-product of the value spaces of the index datatypes appearing in the
index-type-list, designated the index product space, into the value space of the element datatype, such
that each value in the index product space associates to exactly one value of the element datatype.

Value-syntax:

array-value = value-list ;
value-list = "(", independent-value,
 { ",", independent-value }, ")" ;

An array-value denotes a value of an array datatype. The number of independent-values in the value-
list shall be equal to the cardinality of the index product space, and each independent-value shall designate
a value of the element datatype. To define the associations, the index product space is first ordered lexically,
with the last-occurring index datatype varying most rapidly, then the second-last, etc., with the first-occurring
index datatype varying least rapidly. The first independent-value in the array-value associates to the first

ISO/IEC CD1 11404 (revision)

68 © ISO 2003 – All rights reserved

value in the product space thus ordered, the second to the second, etc. The array-value denotes that value of
the array datatype which makes exactly those associations.

Properties: non-numeric, unordered, exact if and only if the element datatype is exact.

Aggregate properties: homogeneous, fixed size, no uniqueness, no ordering, access is indexed,
dimensionality is equal to the number of index-types in the index-type-list.

Subtypes: any array datatype having the same index datatypes as the base datatype and an element
datatype which is a subtype of the base element datatype.

Operations: Equal, Select, Replace.

Select(x: array (index1, ..., indexn) of (element-type), y1: index1, ..., yn: indexn): element-type is that
value of the element datatype which x associates with the value (y1, ..., yn) in the index product space;

Equal(x, y: array (index1, ..., indexn) of (element-type)): boolean is true if for every value (v1, ..., vn) in
the index product space, Select(x, v1, ..., vn) = Select(y, v1, ..., vn), else false;

Replace(x: array (index1, ..., indexn) of (element-type), y1: index1, ..., yn: indexn, z: element-type):
array (index1, ..., indexn) of (element-type) is that value w of the array datatype such that w: (y1, ..., yn) →
z,

and for all values p of the index product space except (y1, ..., yn), w: p → x(p);

i.e. Replace yields the function which associates z with the value (y1, ..., yn) and is otherwise identical to x.

NOTE 1 The general array datatype is "multidimensional", where the number of dimensions and the index datatypes
themselves are part of the conceptual datatype. The index space is an unordered product space, although it is
necessarily ordered in each "dimension", that is, within each index datatype. This model was chosen in lieu of the "array
of array" model, in which an array has a single ordered index datatype, in the belief that it facilitates the mappings to
programming languages. Note that:

type arrayA = array (1..m, 1..n) of (integer);

defines arrayA to be a 2-dimensional datatype, whereas

type arrayB = array (1..m) of (array [1..n] of (integer));

defines arrayB to be a 1-dimensional (with element datatype array (1..n) of (integer), rather than integer). This
allows languages in which A[i][j] is distinguished from A[i, j] to maintain the distinction in mappings to the general
purpose datatypes. Similarly, languages which disallow the A[i][j] construct can properly state the limitation in the
mapping or treat it as the same as A[i, j], as appropriate.

NOTE 2 The array of a single dimension is simply the case in which the number of index datatypes is 1 and the index
product space is the value space of that datatype. The order of the index datatype then determines the association to the
independent-values in a corresponding array-value.

NOTE 3 Support for index datatypes other than integer is necessary to model certain Pascal and Ada datatypes (and
possibly others) with equivalent semantics.

NOTE 4 It is not required that the specific index values be preserved in any mapping of an array datatype, but rather
that each index datatype be mapped 1-to-1 onto a corresponding index datatype and the corresponding indexing functions
be preserved.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 69

NOTE 5 Since the values of an array datatype are functions, the array datatype is conceptually a special case of the
procedure datatype (see 8.3.3). In most programming languages, however, arrays are conceptually aggregates, not
procedures, and have such constraints as to ensure that the function can be represented by a sequence of values of the
element datatype, where the size of the sequence is fixed and equal to the cardinality of the index product space.

NOTE 6 In order to define an interchangeable representation of the Array as a sequence of element values, it is first
necessary to define the function which maps the index product space to the ordinal datatype. There are many such
functions. The one used in interpreting the array-value construct is as follows:

Let A be a value of datatype array(array (index1, ..., indexn) of (element-type). For each index datatype
indexi, let lowerboundi and upperboundi be the lower and upper bounds on its value space. Define the operation
Mapi to map the index datatype indexi into a range of integer by:

Mapi(x: indexi): integer is:

Mapi(lowerboundi) = 0; and

Mapi(Successori(x)) = Mapi(x) + 1, for all x ≠ upperboundi.

And define the constant: sizei = Mapi(upperboundi) - Mapi(lowerboundi) + 1. Then

Ord(x1: index1, ..., xn: indexn): ordinal is the ordinal value corresponding to the integer value:

where the non-existent sizen+1 is taken to be 1. And the Ord(x1, ..., xn)th position in the sequence representation
is occupied by A(x1, ..., xn).

EXAMPLE The Fortran declaration:

CHARACTER*1 SCREEN (80, 24)

declares the variable "screen" to have the general purpose datatype:

array (1..80, 1..24) of character (unspecified)

And the Fortran subscript operation:

S = SCREEN (COLUMN, ROW)

is equivalent to the characterizing operation:

Select (screen, column, row)

while

SCREEN(COLUMN, ROW) = S

is equivalent to the characterizing operation:

Replace(screen, column, row, S)

The Fortran standard (ISO/IEC 1539:1991, Information technology — Programming languages — Fortran), however,
requires a mapping function which gives a different sequence representation from that given in Note 6.

8.4.7 Table

Description: table generates a datatype, called a table datatype, whose values are collections of values in
the product space of one or more field datatypes, such that each value in the product space represents an

ISO/IEC CD1 11404 (revision)

70 © ISO 2003 – All rights reserved

association among the values of its fields. Although the field datatypes may be infinite, any given value of a
table datatype contains a finite number of associations.

Syntax:

table-type = "table", { provision-statement },
 "(", field-list, ")" ;
field-list = field, { ",", field } ;
field = field-identifier, ":", field-type ;
field-identifier = identifier ;
field-type = type-specifier ;

Components: A list of fields, each of which associates a field-identifier with a single field datatype,
designated by the field-type, which may be any datatype. All field-identifiers of fields in the field-
list shall be distinct.

Values: The value space of table (field-list) is isomorphic to the value space of bag of (record(field-
list)), that is, all finite collections of associations represented by values from the cross-product of the value
spaces of all the field datatypes in the field-list.

Value-syntax:

table-value = empty-value |
 "(", table-entry, { ",", table-entry, }, ")" ;
table-entry = field-value-list |
 value-list ;
field-value-list = "(", field-value, { ",", field-value }, ")" ;
field-value = field-identifier, ":", independent-value ;
value-list = "(", independent-value,
 { ",", independent-value }, ")" ;

A table-value denotes a value of a table datatype, namely the collection comprising exactly the associations
designated by the table-entrys appearing in the table-value. A table-entry denotes a value in the
product space of the field datatypes in the field-list of the table-type. When the table-entry is a
field-value-list, each field-identifier in the field-list of the table datatype to which the table-
value belongs shall occur exactly once in the field-value-list, each field-identifier in the table-
entry shall be one of the field-identifiers in the field-list of the table-type, and the corresponding
independent-value shall designate a value of the corresponding field datatype. When the table-entry is a
value-list, the number of independent-values in the value-list shall be equal to the number of fields in
the field-list of the table datatype to which the value belongs, each independent-value shall be
associated with the field in the corresponding position, and each independent-value shall designate a value
of the field datatype of the associated field.

Properties: non-numeric, unordered, exact if and only if all field datatypes are exact.

Aggregate properties: heterogeneous, variable size, no uniqueness, no ordering, dimensionality is two.

Subtypes:

a) any table datatype which has exactly the same field-identifiers in the field-list, and the field datatype of each
field of the subtype is the same as, or is a subtype of, the corresponding field datatype of the base datatype;
or

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 71

b) any table datatype derived from a base table datatype conforming to (a) by use of the Size subtype-
generator (see 8.2.4).

Operations: MaptoBag, MaptoTable, Serialize, IsEmpty, Equal, Empty, Delete, Insert, Select, Fetch.

MaptoBag(x: table(field-list)): bag of (record(field-list)) is the isomorphism which maps the table to a bag
of records.

MaptoTable(x: bag of (record(field-list))): table(field-list) is the inverse of the MaptoBag isomorphism.

Serialize(x: table(field-list)): sequence of (record(field-list)) = Bag.Serialize(MaptoBag(x));

IsEmpty(x: table(field-list)): boolean = Bag.IsEmpty(MaptoBag(x));

Equal(x, y: table(field-list)): boolean = Bag.Equal(MaptoBag(x), MaptoBag(y));

Empty(): table(field-list) = ();

Delete(x: table(field-list), y: record(field-list)): table(field-list) = MaptoTable(Bag.Delete(MaptoBag(x),
y));

Insert(x: table(field-list), y: record(field-list)): table(field-list) = MaptoTable(Bag.Insert(MaptoBag(x), y));

Select(x: table (field-list), criterion: procedure(in row: record(field-list)): boolean): table(field-list) =
MaptoTable(z), where z is the bag value whose elements are exactly those record values r in MaptoBag(x)
for which criterion(r) = true.

Fetch(x: table(field-list)): record(field-list), where Not(IsEmpty(x)), = Sequence.Head(Serialize(x));

NOTE 1 Table would be a defined-generator (as in 10.2), but the type (generator) declaration syntax (see 9.1) does
not permit the parametric element list to be a variable length list of field-specifiers.

NOTE 2 This definition of Table is aligned with the notion of Table specified by ISO 9075:1990, Structured Query
Language (SQL). In SQL, the "select procedure" may take as input rows from more than one table, but this is a
generalization of the characterizing operation Select, rather than an extension to the Table datatype concept.

NOTE 3 In general, access to a Table is indirect, via Fetch or MaptoBag. Access to a Table is sometimes said to be
"keyed" because the common utilization of this data structure represents "relationships" in which some field or fields are
designated "keys" on which the values of all other fields are said to be "dependent", thus creating a mapping between the
product space of the key value spaces and the value spaces of the other fields. (In database terminology, such a
relationship is said to be of the "third normal form".) The specification of this mapping, when present, is a complex part of
the SQL language standard and goes beyond the scope of this International Standard.

8.5 Defined datatypes

A defined datatype is a datatype defined by a type-declaration (see 9.1). It is denoted syntactically by a type-
reference, with the following syntax:

type-reference = type-identifier,
 ["(", actual-type-parameter-list, ")"] ;
type-identifier = identifier ;
actual-type-parameter-list = actual-type-parameter,
 { ",", actual-type-parameter } ;
actual-type-parameter = value-expression |
 type-specifier ;

ISO/IEC CD1 11404 (revision)

72 © ISO 2003 – All rights reserved

The type-identifier shall be the type-identifier of some type-declaration and shall refer to the
datatype or datatype generator there-by defined. The actual-type-parameters, if any, shall correspond in
number and in type to the formal-type-parameters of the type-declaration. That is, each actual-type-
parameter corresponds to the formal-type-parameter in the corresponding position in the formal-type-
parameter-list. If the formal-parameter-type is a type-specifier, then the actual-type-parameter
shall be a value-expression designating a value of the datatype specified by the formal-parameter-type.
If the formal-parameter-type is "type", then the actual-type-parameter shall be a type-specifier and
shall have the properties required of that parametric datatype in the generator-declaration.

The type-declaration identifies the type-identifier in the type-reference with a single datatype, a
family of datatypes, or a datatype generator. If the type-identifier designates a single datatype, then the
type-reference refers to that datatype. If the type-identifier designates a datatype family, then the
type-reference refers to that member of the family whose value space is identified by the type-definition
after substitution of each actual-type-parameter value for all occurrences of the corresponding formal-
parametric-value. If the type-identifier designates a datatype generator, then the type-reference
designates the datatype resulting from application of the datatype generator to the actual parametric
datatypes, that is, the datatype whose value space is identified by the type-definition after substitution of
each actual-type-parameter datatype for all occurrences of the corresponding formal-parametric-type.
In all cases, the defined datatype has the values, properties and characterizing operations defined, explicitly
or implicitly, by the type-declaration.

When a type-reference occurs in a type-declaration, the requirements for its actual-type-parameters
are as specified by clause 9.1. In any other occurrence of a type-reference, no actual-type-parameter
shall be a formal-parametric-value or a formal-parametric-type.

8.6 Provisions

Provisions may be attached to a datatype or aggregate keyword.

provision-statement = "provision", "(", actual-param-list, ")" ;

The following features may be included in a parameter list. The obligation parameter shall be included. The
obligation parameter should be the first element of the list to improve reading clarity.

NOTE Typically, obligation, target, and scope are required as parameters.

8.6.1 General parameters for provisions

This subclause describes the general parameters for provisions.

EXAMPLE 1 The following provision specifies that for all aggregates (and subcomponents, recursively) their data
elements are optional:

normative all_data_elements_optional =
provision(obligation=permit, target=type, scope=recursiveidentifier, subset=defined),

normative R1 =
record all_data_elements_optional
(

// ...
),

EXAMPLE 2 The following provisions combine Example 1 above with the additional provision that the datatype may be
extended with additional data elements:

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 73

normative extended_data_elements_permitted =
provision(obligation=permit, target=type, scope=recursiveidentifier, subset=undefined),

normative R2 =
record all_data_elements_optional extended_data_elements_permitted
(

// ...
),

EXAMPLE 3 The following provision specifies that the datatype for data element B has a smallest of array size 17:

// SPM: smallest permitted maximum
normative SPM(limit) =

provision(obligation=require, target=type, scope=size, value=range(limit..*)),

normative R =
record
(

a: type_a,
b: array (0..maxsize) SPM(17) of integer,

)

8.6.1.1 Obligation

Description: Describes the kind of obligation for the provision.

Syntax:

obligation-kind = "obligation", "=", obligation-kind-value ;
obligation-kind-value = "require" |
 "recommend" |
 "permit" |
 "permitnot" |
 "recommendnot" |
 "requirenot" |
 "unspecified" |
 "default" ;

The values have the following meaning:

 require: the provision is a mandatory requirement, i.e., "shall" (the implementation is required to satisfy
...)

 recommend: the provision is a recommendation, i.e., "should" (the implementation is recommended to
satisfy ,,,)

 permit: the provision is an optional requirement, i.e., "may" (the implementation is permitted to satisfy ...)

 permitnot: the provision is an optional requirement in the negative, i.e., "may not" (the implementation is
permitted not to satisfy ...)

 recommendnot: the provision is a recommendation, i.e., "should not" (the implementation is recommended
not to satisfy ...)

 requirenot: the provision is a mandatory requirement, i.e., "shall not" (the implementation is required not
to satisfy ...)

ISO/IEC CD1 11404 (revision)

74 © ISO 2003 – All rights reserved

 unspecified: there is no further specification of the provision

 default: the default value

8.6.1.2 Target

Description: Describes the target of the provision, i.e., what is intended to satisfy the provision.

Syntax:

target-kind = "target", "=", target-kind-value ;
target-kind-value = "value" |
 "valuespace" |
 "properties" |
 "charops" |
 "type" |
 "runtimetype" |
 "access" |
 "runtimeaccess" ;

The values have the following meaning:

 value: the provision is associated the instantiation of a datatype

 valuespace: the provision is associated with the value space of datatype

 properties: the provision is associated with the properties of datatype

 charops: the provision is associated with the characterizing operations of datatype

 type: the provision is associated with a datatype

 runtimetype: the provision is associated with the run-time datatype

 access: the provision is associated the access methods of a datatype

 runtimeaccess: the provision is associated the run-time access methods of a datatype

NOTE Except for value, runtimetype, and runtimeaccess, all others concern provisions of datatypes.

8.6.1.3 Scope

Description: Describes the scope of the provision, i.e., what is affected by the provision.

Syntax:

scope-kind = "scope", "=", scope-kind-value ;
scope-kind-value = "identifier" |
 "allidentifier" ;
 "recursiveidentifier" |
 "size" |
 "allsize" |
 "recursivesize" ;

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 75

The values have the following meaning:

 identifier: the provision is associated with a single identifier

 allidentifier: the provision is associated with all identifiers in an aggregate type

 recursiveidentier: the provision is associated the all identifiers in all aggregate types, recursively

 size: the provision is associated with a single sizing parameter

 allsize: the provision is associated with all sizing parameters in an aggregate type

 recursivesize: the provision is associated the sizing parameters in all aggregate types, recursively

8.6.1.4 Subset

Description: Describes the subset scope of the provision, i.e., a pattern that describes the subset.

Syntax:

subset-kind = "subset", "=", subset-kind-value ;
subset-kind-value = "defined" |
 "undefined" |
 "*" |
 selecting-expr |
 value-expr ;

The values have the following meaning:

 defined: chooses those elements that are defined, e.g., for identifiers, if the identifier is defined; for
values, if the value is defined

 undefined: chooses those elements that are undefined

 *: chooses all elements

 selecting-expr: a selecting expression that limits the selection

 value-expr: a value expression that describes a pattern for the selection

8.6.1.5 Value

Description: Describes the subset scope of the provision, i.e., a pattern that describes the subset.

Syntax:

value-spec = "value", "=", value-spec-value ;
value-spec-value = "nil" |
 range-expr |
 selecting-expr |
 value-expr ;

ISO/IEC CD1 11404 (revision)

76 © ISO 2003 – All rights reserved

The values have the following meaning:

 nil: the value nil

 range-expr: a range of values

 selecting-expr: a selecting expression that limits the range

 value-expr: a value expression that specifies the value

8.6.2 Aggregate-specific features

This subclause describes features that are specific to aggregate values, datatypes, and normative datatypes.

8.6.2.1 Aggregate-component ordering

Description: Specifies that the components of record or class type are ordered, unordered, or unspecified.

Syntax:

aggregate-order = "aggregateorder", "=", aggregate-order-value ;
aggregate-order-value = "ordered" |
 "notordered" |
 "unspecified" |
 "default" ;

The values have the following meaning:

 ordered: the aggregate's components are ordered

 notordered: the aggregate's component's ordering is indeterminate

 unspecified: it is not specified whether the aggregate's components are ordered or unordered

 default: the ordering is the default value

8.6.3 Aggregate-component-identifier uniqueness

Description: Specifies that the components of record or class type whose identifiers are unique or not.

Syntax:

aggregate-uniqueness = "aggregateuniqueness", "=", aggregate-uniqueness-value ;
aggregate-uniqueness-value =
 "unique" |
 "notunique" |
 "unspecified" |
 "default" ;

The values have the following meaning:

 unique: the aggregate's components' identifiers are unique

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 77

 notunique: the aggregate's components' identifiers can be non-unique

 unspecified: it is not specified whether the aggregate's components' identifiers are unique or not

 default: the uniqueness is the default value

8.6.4 Usage-specific features

This subclause describes features that are specific to the use of values, datatypes, and normative datatypes.

EXAMPLE The following provision specifies that a diagnostic message occurs every time R is instantiated.

normative obsolete =
provision(obligation=require, target=type,

scope=identifier, trigger=oninstantiation, action=diagnostic)

normative R =
record obsolete
(

// ...
)

8.6.4.1 Usage triggers

Description: Specifies that the components of record or class type are ordered, unordered, or unspecified.

Syntax:

usage-trigger = "onuse", "=", usage-trigger-value ;
usage-trigger-value = "ondeclaration" |
 "oninstantiation" |
 "onaccess" ;

The values have the following meaning:

 ondeclaration: the action is triggered on a declaration that uses this provision

 oninstantiation: the action is triggered on instantiation of a value

 onaccess: the action is triggered on the use of a value

8.6.4.2 Usage actions

Description: Specifies the action to take if a provision is triggered.

Syntax:

action-trigger = "action", "=", action-trigger-value ;
action-trigger-value = "diagnostic" |
 "none" ;

The values have the following meaning:

 diagnostic: an implementation-defined diagnostic message occurs

 none: no action is taken

ISO/IEC CD1 11404 (revision)

78 © ISO 2003 – All rights reserved

9 Declarations

This International Standard specifies an indefinite number of generated datatypes, implicitly, as recursive
applications of the datatype generators to the primitive datatypes. This clause defines declaration
mechanisms by which new datatypes and generators can be derived from the datatypes and generators of
Clause 8, named and constrained. It also specifies a declaration mechanism for naming values and a
mechanism for declaring alternative terminations of procedure datatypes (see 8.3.3).

declaration = type-declaration |
 value-declaration |
 procedure-declaration |
 termination-declaration ;

NOTE This clause provides the mechanisms by which the facilities of this International Standard can be extended to
meet the needs of a particular application. These mechanisms are intended to facilitate mappings by allowing for
definition of datatypes and subtypes appropriate to a particular language, and to facilitate definition of application services
by allowing the definition of more abstract datatypes.

9.1 Type declarations

A type-declaration defines a new type-identifier to refer to a datatype or a datatype generator. A datatype
declaration may be used to accomplish any of the following:

 to rename an existing datatype or name an existing datatype which has a complex syntax, or

 as the syntactic component of the definition of a new datatype, or

 as the syntactic component of the definition of a new datatype generator.

Syntax:

type-declaration = "type", type-identifier,
 ["(" formal-type-parameter-list, ")"],
 "=", ["new"], type-definition ;
type-identifier = identifier ;
formal-type-parameter-list = formal-type-parameter,
 { ",", formal-type-parameter } ;
formal-type-parameter = formal-parameter-name, ":", formal-parameter-type ;
formal-parameter-name = identifier ;
formal-parameter-type = type-specifier |
 "type" ;
type-definition = type-specifier ;
formal-parametric-value = formal-parameter-name ;
formal-parametric-type = formal-parameter-name ;

Every formal-parameter-name appearing in the formal-type-parameter-list shall appear at least once
in the type-definition. Each formal-parameter-name whose formal-parameter-type is a type-
specifier shall appear as a formal-parametric-value and each formal-parameter-name whose
formal-parameter-type is type shall appear as a formal-parametric-type. Except for such occurrences,
no value-expression appearing in the type-definition shall be a formal-parametric-value and no
type-specifier appearing in the type-definition shall be a formal-parametric-type.

The type-identifier declared in a type-declaration may be referenced in a subsequent use of a type-
reference (see 8.5). The formal-type-parameter-list declares the number and required nature of the

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 79

actual-type-parameters which must appear in a type-reference which references this type-identifier.
A type-reference which references this type-identifier may appear in an alternative-type of a
choice-type or in the element-type of a pointer-type in the type-definition of this or any preceding
type-declaration. In any other case, the type-declaration for the type-identifier shall appear before
the first reference to it in a type-reference.

No type-identifier shall be declared more than once in a given context.

What the type-identifier is actually declared to refer to depends on whether the keyword new is present
and whether the formal-parameter-type type is present.

9.1.1 Renaming declarations

A type-declaration which does not contain the keyword new declares the type-identifier to be a
synonym for the type-definition. A type-reference referencing the type-identifier refers to the
general purpose datatype identified by the type-definition, after substitution of the actual datatype
parameters for the corresponding formal datatype parameters.

9.1.2 New datatype declarations

A type-declaration that contains the keyword new and does not contain the formal-parameter-type type
is said to be a datatype declaration. It defines the value-space of a new general purpose datatype, which is
distinct from any other general purpose datatype. If the formal-type-parameter-list is not present, then
the type-identifier is declared to identify a single general purpose datatype. If the formal-type-
parameter-list is present, then the type-identifier is declared to identify a family of datatypes
parameterized by the formal-type-parameters.

The type-definition defines the value space of the new datatype (family) — there is a one-to-one
correspondence between values of the new datatype and values of the datatype described by the type-
definition. The characterizing operations, and any other property of the new datatype which cannot be
deduced from the value space, shall be provided along with the type-declaration to complete the definition
of the new datatype (family). The characterizing operations may be taken from those of the datatype (family)
described by the type-definition directly, or defined by some algorithmic means using those operations.

NOTE The purpose of the new declaration is to allow both syntactic and semantic distinction between datatypes with
identical value spaces. It is not required that the characterizing operations on the new datatype be different from those of
the type-definition. A semantic distinction based on application concerns too complex to appear in the basic
characterizing operations is possible. For example, acceleration and velocity may have identical computational value
spaces and operations (datatype real) but quite different physical ones.

9.1.3 New generator declarations

A type-declaration which contains the keyword new and at least one formal-type-parameter whose
formal-parameter-type is type is said to be a generator declaration. A generator declaration declares the
type-identifier to be a new datatype generator parameterized by the formal-type-parameters, and the
associated value space construction algorithm to be that specified by the type-definition. The
characterizing operations, and other properties of the datatypes resulting from the generator which cannot be
deduced from the value space, shall be provided along with the generator declaration to complete the
definition of the new datatype generator.

The formal-type-parameters whose formal-parameter-type is type are said to be parametric datatypes.
A generator declaration shall be accompanied by a statement of the constraints on the parametric datatypes
and on the values of the other formal-type-parameters, if any.

ISO/IEC CD1 11404 (revision)

80 © ISO 2003 – All rights reserved

9.2 Value declarations

A value-declaration declares an identifier to refer to a specific value of a specific datatype. Syntax:

value-declaration = "value" value-identifier, ":", type-specifier,
 "=" independent-value ;
value-identifier = identifier ;

The value-declaration declares the identifier value-identifier to denote that value of the datatype
designated by the type-specifier which is denoted by the given independent-value (see 7.5.1). The
independent-value shall (be interpreted to) designate a value of the designated general purpose datatype,
as specified by Clause 8 or Clause 10.

No independent-value appearing in a value-declaration shall be a formal-parametric-value and no
type-specifier appearing in a value-declaration shall be a formal-parametric-type.

9.3 Termination declarations

A termination-declaration declares a termination-identifier to refer to an alternate termination
common to multiple procedures or procedure datatypes (see 8.3.3) and declares the collection of procedure
parameters returned by that termination.

termination-declaration = "termination", termination-identifier,
 ["(", termination-parameter-list, ")"] ;
termination-identifier = identifier ;
termination-parameter-list = parameter, { ",", parameter } ;
parameter = [parameter-name, ":"], parameter-type ;
parameter-type = type-specifier ;
parameter-name = identifier ;

The parameter-names of the parameters in a termination-parameter-list shall be distinct. No
termination-identifier shall be declared more than once, nor shall it be the same as any type-
identifier.

The termination-declaration is a purely syntactic object. All semantics are derived from the use of the
termination-identifier as a termination-reference in a procedure or procedure datatype (see 8.3.3).

9.4 Normative datatype declarations

A normative datatype declaration defines a new type-identifier to refer to a family of datatypes.

Syntax:

normative-datatype-declaration =
 "normative", type-identifier,
 ["(" formal-type-parameter-list, ")"],
 "=", type-definition ;

9.5 Lexical operations

A defined datatype is a datatype defined by a type-declaration (see 9.1). It is denoted syntactically by a type-
reference, with the following syntax:

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 81

9.5.1 Import

Description: Import retrieves the contents of a type definition.

Syntax:

import-type = "import", URI-or-type-identifier,
 { "including" "(" select-list ")" |
 "excluding" "(" select-list")" } ;
URI-or-type-identifier = URI |
 identifier ;
tag-type = type-specifier ;
discriminant = value-expression ;
select-list = select-item, { ",", select-item } ;
select-item = identifier ;

Components: Each datatype in the source, as specified by the URI or type identifier is included as if it were
presented as source text of the datatype specification. If the including keyword is used, then only those
elements in the source. If the excluding keyword is used, then all other elements are included in the source.

NOTE 1 The import datatype generator is referred to in some programming languages as #include operator:

record

(

import "http://headers.org/my_public_api_definition/record.txt",

)

NOTE 2 The import datatype generator might be used to perform basic inheritance and subclassing:

class

(

import superclass,

override method1: procedure // ...,

)

9.5.2 Eval

Description: Eval transforms string parameter value to declaration text.

Syntax:

eval-operator = "eval", "(" value-expression ")" ;

EXAMPLE A parameter is used to insert declaration text:

type X(extra) = record

(

name: characterstring,

address: characterstring,

city: characterstring,

eval(extra)

}

Y: X("country: characterstring, postalcode: characterstring")

ISO/IEC CD1 11404 (revision)

82 © ISO 2003 – All rights reserved

In this example, the datatype of Y includes the three elements in the definition of X (name, address, city) and two
additional elements specified as parameters (country, postalcode).

10 Defined datatypes and generators

This clause specifies the declarations for commonly occurring datatypes and generators which can be derived
from the datatypes and generators defined in Clause 8 using the declaration mechanisms defined in Clause 9.
They are included in this International Standard in order to standardize their designations and definitions for
interchange purposes.

10.1 Defined datatypes

This clause specifies the declarations for a collection of commonly occurring datatypes which are treated as
primitive datatypes by some common programming languages, but can be derived from the datatypes and
generators defined in Clause 8.

The template for definition of such a datatype is:

Description: prose description of the datatype.

Declaration: a type-declaration for the datatype.

Parametric values: when the defined datatype is a family of datatypes, identification of and constraints
on the parametric values of the family.

Values: formal definition of the value space.

Value-syntax: when there is a special notation for values of this datatype, the requisite syntactic
productions, and identification of the values denoted thereby.

Properties: properties of the datatype which indicate its admissibility as a component datatype of
certain datatype generators: numeric or non-numeric, approximate or exact, ordered or unordered, and
if ordered, bounded or unbounded.

Operations: characterizing operations for the datatype.

The notation for values of a defined datatype may be of two kinds:

1. If the datatype is declared to have a specific value syntax, then that value syntax is a valid notation for
values of the datatype, and has the interpretation given in this clause.

2. If the datatype is not declared to have a specific value syntax, then the syntax for explicit-values of the
datatype identified by the type-definition is a valid notation for values of the defined datatype.

10.1.1 Natural number

Description: naturalnumber is the datatype of the cardinal or natural numbers.

Declaration:

type naturalnumber = integer range (0..*)

Parametric Values: none.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 83

Values: the non-negative subset of the value-space of datatype Integer.

Properties: ordered, exact, numeric, unbounded above, bounded below.

Operations: all those of datatype Integer, except Negate (which is undefined everywhere).

10.1.2 Modulo

Description: modulo is a family of datatypes derived from Integer by replacing the operations with arithmetic
operations using the modulus characteristic.

Declaration:

type modulo (modulus: integer) = new integer range(0..modulus) excluding(modulus)

Parametric Values: modulus is an integer value, such that 1 ≤ modulus, designated the modulus of the
Modulo datatype.

Values: all Integer values v such that 0 ≤ v and v ≤ modulus.

Properties: ordered, exact, numeric.

Operations: Equal, InOrder from Integer; Add, Multiply, Negate.

Add(x,y: modulo (modulus)): modulo(modulus) =

Integer.Remainder(integer.Add(x,y), modulus)

Negate(x: modulo (modulus)): modulo (modulus) is the (unique) value y in the value space of
modulo(modulus) such that Add(x, y) = 0.

Multiply(x,y: modulo (modulus)): modulo(modulus) =

Integer.Remainder(integer.Multiply(x,y), modulus)

10.1.3 Bit

Description: bit is the datatype representing the finite field of two symbols designated 0, the additive
identity, and 1, the multiplicative identity.

Declaration:

type bit = modulo(2)

Parametric Values: none.

Values: 0, 1

Properties: ordered, exact, numeric, bounded.

Operations: (Equal, InOrder, Add, Multiply) from Modulo.

ISO/IEC CD1 11404 (revision)

84 © ISO 2003 – All rights reserved

10.1.4 Bit string

Description: bitstring is the datatype of variable-length strings of binary digits.

Declaration:

type bitstring = new sequence of (bit)

Parametric Values: none.

Values: Each value of datatype bitstring is a finite sequence of values of datatype bit. The value-space
comprises all such values.

Value-syntax:

bitstring-literal = quote, { bit-literal }, quote ;
bit-literal = "0" |
 "1" ;

The bitstring-literal denotes that value in which the first value in the sequence is that denoted by the
leftmost bit-literal, the second value in the sequence is that denoted by the next bit-literal, etc. If
there are no bit-literals in the bitstring-literal, then the value denoted is the sequence of length
zero.

Properties: unordered, exact, non-numeric.

Operations: (Head, Tail, Append, Equal, Empty, IsEmpty) from Sequence (8.4.4).

NOTE 1 bitstring is assumed to be a sequence, rather than an array, in that the values may be of different lengths.

NOTE 2 The description and properties of bitstring are identical to those of sequence of (bit). bitstring is said
to be new in order to facilitate mappings. Entities may need to attach special properties to the bitstring datatype.

10.1.5 Character string

Description: characterstring is a family of datatypes which represent strings of symbols from standard
character-sets.

Declaration:

type characterstring (repertoire: objectidentifier) = new sequence of (character
(repertoire))

Parametric Values: repertoire is a "repertoire-identifier" (see 8.1.4).

Values: Each value of a characterstring datatype is a finite sequence of members of the character-set
identified by repertoire. The value-space comprises the collection of all such values.

Value syntax:

string-literal = quote, { string-character }, quote ;
string-character = non-quote-character |
 added-character |
 escape-character ;

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 85

non-quote-character = letter |
 digit |
 underscore |
 special |
 apostrophe |
 space ;
added-character = ? not defined by this International Standard ? ;
escape-character = escape, character-name, escape ;
character-name = identifier, { " " identifier } ;

Each string-character in the string-literal denotes a single member of the character-set identified by
repertoire, as provided in 8.1.4. The string-literal denotes that value of the characterstring datatype in
which the first value in the sequence is that denoted by the leftmost string-character, the second value in the
sequence is that denoted by the next string-character, etc. If there are no string-characters in the
string-literal, then the value denoted is the sequence of length zero.

Properties: unordered, exact, non-numeric, denumerable.

Operations: (Head, Tail, Append, Equal, Empty, IsEmpty) from Sequence (8.4.4).

NOTE 1 There is no general international standard for collating sequences, although certain international character-set
standards require specific collating sequences. Applications which need the order relationship on characterstring, and
which share a character-set for which there is no standard collating sequence, need to create a defined datatype or a
repertoire-identifier which refers to the character-set and the agreed-upon collating sequence.

NOTE 2 Characterstring is defined to be a sequence, rather than an array, to permit values to be of different lengths.

NOTE 3 The description and properties of the characterstring(r) datatype are identical to those of sequence of
(character(r)). Characterstring datatypes are said to be "new" in order to facilitate mappings. Entities may need to
attach special properties to character string datatypes.

NOTE 4 Many languages distinguish as separate datatypes objects represented by character strings with specific
syntactic requirements. For example, LISP has dynamic evaluation of "s-expressions"; Prolog has a similar construct;
COBOL represents currency as a "numeric edited string"; and several languages have an "identifier" datatype whose
values are treated as user-defined objects to which properties will be attached. In a multi-language environment, such
objects can probably be manipulated only as datatype characterstring, except in the language in which the special
properties were intended to be interpreted. Thus, such datatypes should be declared as general purpose datatypes
"derived from characterstring", e.g.:

type identifier = new characterstring(repertoire) size(1..maxidsize)

or:

type editcharacter = character({iso standard 646}) selecting (’0’..’9’, ’.’, ’,’, ’+’, ’-’, ’$’,

’#’, ’*’),

type numericedited = new sequence of (editcharacter),

In each case, the keyword new should be used to indicate the presence of unusual characterizing operations, formation
rules and interpretations (see 9.1.2).

10.1.6 Time interval

Description: timeinterval is a family of datatypes representing elapsed time in seconds or fractions of a
second (as opposed to Date-and-time, which represents a point in time, see 8.1.6). It is a generated datatype
derived from a scaled datatype by limiting the operations.

ISO/IEC CD1 11404 (revision)

86 © ISO 2003 – All rights reserved

Declaration:

type timeinterval(unit: timeunit, radix: integer, factor: integer) = new scaled
(radix, factor),
type timeunit = state(year, month, day, hour, minute, second),

Parametric Values: radix is a positive integer value, and factor is an integer value.

Values: all values which are integral multiples of one radix(-factor) unit of the specified timeunit.

Properties: ordered, exact, numeric, unbounded.

Operations: (Equal, Add, Negate) from Scaled; ScalarMultiply.

Let scaled.Multiply() be the Multiply operation defined on scaled datatypes. Then:

ScalarMultiply(x: scaled(r,f), y: timeinterval(u,r,f)): timeinterval(u,r,f) = scaled.Multiply(x,y)

EXAMPLE timeinterval(second, 10, 3) is the datatype of elapsed time in milliseconds.

10.1.7 Octet

Description: octet is the datatype of 8-bit codes, as used for character-sets and private encodings.

Declaration:

type octet = new integer range (0..255)

Parametric Values: none.

Values: Each value of datatype octet is a code, represented by a non-negative integer value in the range [0,
255].

Properties: ordered, bounded, exact, non-numeric, finite.

Operations: (Equal, InOrder) from Integer.

NOTE 1 octet is a common datatype in communications protocols.

NOTE 2 It is common to define "characterizing operations" that convert an octet value to a bitstring value or an
array of bit value, but there is no agreement on which bit of the octet is first in the bit string, or equivalently, how the
array indices map to the bits.

10.1.8 Octet string

Description: octetstring is the datatype of variable-length encodings using 8-bit codes.

Declaration:

type octetstring = sequence of (octet)

Parametric Values: none.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 87

Values: Each value of the octetstring datatype is a finite sequence of codes represented by octet values.
The value-space comprises the collection of all such values, including the empty sequence.

Properties: unordered, exact, non-numeric, denumerable.

Operations: (Head, Tail, Append, Equal, Empty, IsEmpty) from Sequence (8.4.4).

NOTE Among other uses, an octetstring value is the representation of a characterstring value, and is used
when the characterstring is to be manipulated as codes. In particular, octetstring should be preferred when the
values may contain codes which are not associated with characters in the repertoire.

10.1.9 Private

Description: A private datatype represents an application-defined value-space and operation set which are
intentionally concealed from certain processing entities.

Declaration:

type private(length: NaturalNumber) = new array (1..length) of (bit)

Parametric Values: Length shall have a positive integer value.

Values: application-defined.

Properties: unordered, exact, non-numeric.

Operations: none.

NOTE 1 There is no denotation for a value of a private datatype.

NOTE 2 The purpose of the private datatype is to provide a means by which:

a) an object of a non-standard datatype, having a complex internal structure, can be passed between two parties which
understand the type through a standard-conforming service without the service having to interpret the internal structure, or

b) values of a datatype which is meaningless to all parties but one, such as "handles", can be provided to an end-user for
later use by the knowledgeable service, for example, as part of a package interface.

In either case, the length and ordering of the bits must be properly maintained by all intermediaries. In the former case,
the private datatype may be encoded by the provider (or his marshalling agent) and decoded by the recipient (or his
marshalling agent). In the latter case the private datatype will be encoded and decoded only by the knowledgeable
agent, and all others, including end-users, will handle it as a bit-array.

10.1.10 Object identifier

Description: objectidentifier is the datatype of "object identifiers", i.e. values which uniquely identify
objects in a (Open Systems Interconnection) communications protocol, using the formal structure defined by
Abstract Syntax Notation One (ISO/IEC 8824:1990).

Declaration:

type objectidentifier = new sequence of (objectidentifiercomponent) size(1..*),
type objectidentifiercomponent = new integer range(0..*),

Parametric Values: none.

ISO/IEC CD1 11404 (revision)

88 © ISO 2003 – All rights reserved

Values: The value space of datatype objectidentifiercomponent is isomorphic to the cardinal numbers
(10.1.1), but the meaning of each value is determined by its position in an objectidentifier value.

The value-space of datatype objectidentifier comprises all non-empty finite sequences of
objectidentifiercomponent values. The meaning of each objectidentifiercomponent value within the
objectidentifier value is determined by the sequence of values preceding it, as provided by ISO/IEC
8824:2002. The sequence constituting a single value of datatype objectidentifier uniquely identifies an object.

Value syntax:

objectidentifier-value = ASN-object-identifier |
 collection-identifier ;
ASN-object-identifier = "{", objectidentifiercomponent-list, "}" ;
objectidentifiercomponent-list = objectidentifiercomponent-value,
 { objectidentifiercomponent-value } ;
objectidentifiercomponent-value = nameform |
 numberform |
 nameandnumberform ;
nameform = identifier ;
numberform = number ;
nameandnumberform = identifier "(" numberform ")" ;
collection-identifier = registry-name registry-index ;
registry-name = "ISO_10646" |
 "ISO_2375" |
 "ISO_7350" |
 "ISO_10036" ;
registry-index = number ;

An objectidentifier-value denotes a value of datatype objectidentifier. An
objectidentifiercomponent-value denotes a value of datatype objectidentifiercomponent. A value-
identifier appearing in the numberform shall refer to a non-negative integer value. In all cases, the value
denoted by an ASN-object-identifier is that prescribed by ISO/IEC 8824:1990 Abstract Syntax Notation One.

A collection-identifier denotes a value of datatype objectidentifier which refers to a registered
character-set.

The keyword ISO_10646 refers to the collections defined in Annex A of ISO/IEC 10646-1:1993 and the
collection designated is that collection whose "collection-number" is the value of registry-index. The form
of the object identifier value is:

{ iso(1) standard(0) 10646 part1(1) registry-index }

A collection-identifier beginning with the keyword ISO_2375 designates the collection registered under the
provisions of ISO 2375:1985 whose registration-number is the value of registry-index. The form of the
object identifier value is:

{ iso(1) standard(0) 2375 registry-index }

A collection-identifier beginning with the keyword ISO_7350 designates the collection registered under the
provisions of ISO 7350:1991 whose registration-number is the value of registry-index. The form of the
object identifier value is:

{ iso(1) standard(0) 7350 registry-index }

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 89

A collection-identifier beginning with the keyword ISO_10036 designates the collection registered under the
provisions of ISO 10036:1991 whose registration-number is the value of registry-index. The form of the
object identifier value is:

{ iso(1) standard(0) 10036 registry-index }

Properties: unordered, exact, non-numeric.

Operations on objectidentifiercomponent: Equal from Integer;

Operations on objectidentifier: Append from Sequence; Equal, Length, Detach, Last.

Length(x: objectidentifier): integer is the number of objectidentifiercomponent values in the sequence x;

Detach(x: objectidentifier): objectidentifier, where Length(x) > 1, is the objectidentifier formed by
removing the last objectidentifiercomponent value from the sequence x;

Last(x: objectidentifier): objectidentifiercomponent is the objectidentifiercomponent value which is the
last element of the sequence x;

Equal(x,y: objectidentifier): boolean =

if Not(Length(x) = Length(y)) then false,

else if Not(objectidentifiercomponent.Equal(Last(x), Last(y))) then false,

else if Length(x) = 1 then true,

else Equal(Detach(x), Detach(y));

NOTE 1 IsEmpty, Head, and Tail from Sequence are not meaningful on datatype objectidentifier. Therefore, Length
and Equal are defined here, although they could be derived by using the Sequence operations.

NOTE 2 ObjectIdentifier is treated as a primitive type by many applications, but the mechanism of definition of its value
space, and the use of that mechanism by some applications, such as Directory Services for OSI, requires the values to be
lists of an accessible element datatype (objectidentifiercomponent).

10.2 Defined generators

This clause specifies the declarations for a collection of commonly occurring datatype generators which can
be derived from the datatypes and generators appearing in Clause 8.

The template for definition of such a datatype generator is:

Description: prose description of the datatype generator.

Declaration: a type-declaration for the datatype generator.

Components:number of, and constraints on, the parametric datatypes and parametric values used by the
generation procedure.

Values: formal definition of the resulting value space.

ISO/IEC CD1 11404 (revision)

90 © ISO 2003 – All rights reserved

Properties: properties of the resulting datatype which indicate its admissibility as a component datatype of
certain datatype generators: numeric or non-numeric, approximate or exact, ordered or unordered, and if
ordered, bounded or unbounded.

When the generator generates an aggregate datatype, the aggregate properties described in clause 6.8
are also specified.

Operations: characterizing operations for the resulting datatype which associate to the datatype generator.
The definitions of operations have the form described in 8.1.

10.2.1 Stack

Description: Stack is a generator derived from Sequence by replacing the characterizing operation Append
with the characterizing operation Push. That is, the insertion operation (Push) puts the values on the
beginning of the sequence rather than the end of the sequence (Append).

Declaration:

type stack (element: type) = new sequence of (element)

Components: element may be any datatype.

Values: all finite sequences of values from the element datatype.

Properties: non-numeric, unordered, exact if and only if the element datatype is exact.

Aggregate properties: homogeneous, variable-size, no uniqueness, imposed ordering, access indirect (by
position).

Operations: (IsEmpty, Equal, Empty) from Sequence; Top, Pop, Push.

Top(x: stack (element)): element = sequence.Head(x).

Pop(x: stack (element)): stack (element) = sequence.Tail(x).

Push(x: stack (element), y: element): stack (element) is the sequence formed by adding the single value y
to the beginning of the sequence x.

10.2.2 Tree

Description: Tree is a generator which generates recursive list structures.

Declaration:

type tree (leaf: type) = new sequence of (choice(state(atom, list)) of (
(atom): leaf,
(list): tree(leaf)))

Components: leaf shall be any datatype.

Values: all finite recursive sequences in which every value is either a value of the leaf datatype, or a (sub-
)tree itself. Ultimately, every "terminal" value is of the leaf datatype.

Properties: unordered, non-numeric, exact if and only if the leaf type is exact, denumerable.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 91

Aggregate properties: homogeneous, variable-size, no uniqueness, imposed ordering, access indirect (by
position).

Operations: (IsEmpty, Equal, Empty, Head, Tail) from Sequence; Join.

To facilitate definition of the operations, the datatype tree_member is introduced, with the declaration:

type tree_member(leaf: type) = choice(state(atom, list)) of ((atom): leaf, (list):
tree(leaf))

tree_member(leaf) is then the element datatype of the sequence datatype underlying the tree datatype.

Join(x: tree(leaf), y: tree_member(leaf)): tree(leaf) is the sequence whose Head (first member) is the value
y, and whose Tail is all members of the sequence x.

NOTE Tree is an aggregate datatype which is formally an aggregate (sequence) of tree_members. Conceptually,
tree is an aggregate datatype whose values are aggregates of leaf values. In either case, it is proper to consider Tree a
homogeneous aggregate.

10.2.3 Cyclic enumerated

Description: Cyclic (enumerated) is a generator which redefines the successor operation on an enumerated
datatype, so that the successor of the last value is the first value.

Declaration:

type cyclic of (base: type) = new base

Components: base shall designate an enumerated datatype.

Values: all values v of the base datatype.

Properties: ordered, exact, non-numeric.

Operations: (Equal, InOrder) from the base datatype; Successor.

Let base.Successor denote the Successor operation defined on the base datatype; then:

Successor(x: cyclic of (base)): cyclic of (base) is

if for all y in the value space of base, Or(Not(InOrder(x,y)), Equal(x,y)), then that value z in the value space
of base such that for all y in the value space of base, Or(Not(InOrder(y,z)), Equal(y,z)); else
base.Successor(x).

10.2.4 Optional

Description: Optional is a generator which effectively adds the "nil" value to the value space of a base
datatype.

Declaration:

type optional(base: type) = new choice (boolean) of ((true): base, (false): void)

Components: base shall designate any datatype.

ISO/IEC CD1 11404 (revision)

92 © ISO 2003 – All rights reserved

Values: all values v of the base datatype plus the "nil value" of void. This type is isomorphic to the set of
pairs:

{ (true, v) | v in base } union { (false, nil) }

which is the modeled value space of the choice-type.

Properties: all properties of the base datatype, except for the value "nil".

Operations: IsPresent (= Discriminant from Choice); all operations on the base datatype, modified as
indicated below.

IsPresent(x: optional(base)): boolean = Discriminant(x);

All unary operations of the form: Unary-op(x: base): result-type are defined on optional(base) by:

Unary-op(x: optional(base)): result-type is if IsPresent(x) then Unary-op(Cast.base(x)), else undefined.

All binary operations of the form: Binary-op(x, y: base): result-type are defined on optional(base) by:

Binary-op(x, y: optional(base)): result-type is:

if And(IsPresent(x), IsPresent(y)), then Binary-op(Cast.base(x), Cast.base(y)),

else undefined.

Other operations are defined similarly.

NOTE An optional datatype is the proper type of an object, such as a parameter to a procedure or a field of a record,
which in some instances may have no value.

EXAMPLE 1 A record-type containing optional (sometimes not present or "undefined") values can be declared:

record

(

required_name: characterstring,

optional_value: optional(integer)

),

EXAMPLE 2 A procedure parameter which may only sometimes be provided can be declared:

procedure search

(

in t: T,

 in tableT: sequence of (T),

 in index: optional(procedure(in i: integer, in j: integer): integer)

): boolean

The parameter index, which is an indexing function for tableT, need not always be provided. That is, it may have value
"nil".

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 93

11 Mappings

This clause defines the general form of and requirements for mappings between the datatypes of a
programming or specification language and the general purpose datatypes.

The internal datatypes of a language are considered to include the information type and structure notions
which can be expressed in that language, particularly those which describe the nature of objects manipulated
by the language primitives. Like the general purpose datatypes, the datatype notions of a language can be
divided into primitive datatypes and datatype generators. The primitive datatypes of a language are those
object types which are considered in the language semantics to be primitive, that is, not to be generated from
other internal datatypes. The datatype generators of a language are those language constructs which can be
used to produce new datatypes, objects with new datatypes, more elaborate information structures or static
inter-object relationships.

This International Standard defines a neutral language for the formal identification of precise semantic
datatype notions – the general purpose datatypes. The notion of a mapping between the internal datatypes of
a language and the general purpose datatypes is the conceptual identification of semantically equivalent
notions in the two languages. There are then two kinds of mappings between the internal datatypes of a
language and the general purpose datatypes:

 a mapping from the internal datatypes of the language into the general purpose datatypes, referred to as
an outward mapping, and

 a mapping from the general purpose datatypes to the internal datatypes of the language, referred to as an
inward mapping.

This International Standard does not specify the precise form of a mapping, because many details of the form
of a mapping are language-dependent. This clause specifies requirements for the information content of
inward and outward mappings and conditions for the acceptability of such mappings.

NOTE 1 Mapping, in this sense, does not apply to program modules or service specifications directly, because they
manipulate specific object- types, which have specific datatypes expressed in a specific language or languages. The
datatypes of a program module or service specification can therefore be described in the general purpose datatypes
language directly, or inferred from the inward and outward mappings of the language in which the module or specification
is written.

NOTE 2 The companion notion of conversion of values from an internal representation to a neutral representation
associated with general purpose datatypes is not a part of this International Standard, but may be a part of standards
which refer to this International Standard.

11.1 Outward Mappings

An outward mapping for a primitive internal datatype shall identify the syntactic and semantic constructs and
relationships in the language which together uniquely represent that internal datatype and associate the
internal datatype with a corresponding general purpose datatype expressed in the formal language defined by
Clause 7 through Clause 10.

An outward mapping for an internal datatype generator shall identify the syntactic and semantic constructs
and relationships in the language which together uniquely represent that internal datatype generator and
associate the internal datatype generator with a corresponding general purpose datatype generator
expressed in the formal language defined in this International Standard.

The collection of outward mappings for the datatypes and datatype generators of a language shall be said to
constitute the outward mapping of the language and shall have the following properties:

ISO/IEC CD1 11404 (revision)

94 © ISO 2003 – All rights reserved

 to each primitive or generated internal datatype, the mapping shall associate a single corresponding
general purpose datatype; and

 for each internal datatype, the mapping shall specify the relationship between each allowed value of the
internal datatype and the equivalent value of the corresponding general purpose datatype; and

 for each value of each general purpose datatype appearing in the mapping, the mapping shall specify
whether any value of any internal datatype is mapped onto it, and if so, which values of the internal
datatypes are mapped onto it.

NOTE 1 There is no requirement for a primitive internal datatype to be mapped to a primitive general purpose
datatype. This International Standard provides a variety of conceptual mechanisms for creating GPD-generated
datatypes from primitive or previously-created datatypes, which are, inter alia, intended to facilitate mappings.

NOTE 2 An internal datatype constructed by application of an internal datatype generator to a collection of internal
parametric datatypes will be implicitly mapped to the general purpose datatype generated by application of the mapped
datatype generator to the mapped parametric datatypes. In this way, property (i) above may be satisfied for internal
generated datatypes.

NOTE 3 The conceptual mapping to general purpose datatypes may not be either 1-to-1 or onto. A mapping must
document the anomalies in the identification of internal datatypes with general purpose datatypes, specifically those
values which are distinct in the language, but not distinct in the general purpose datatype, and those values of the general
purpose datatype which are not accessible in the language.

NOTE 4 Among other uses, an outward mapping may be used to identify an internal datatype with a particular general
purpose datatype in order to require operation or representation definitions specified for general purpose datatypes by
another standard to be properly applied to the internal datatype.

NOTE 5 An outward mapping may be used to ensure that interfaces between two program units using a common
programming language are properly provided by a third-party service which is ignorant of the language involved.

11.2 Inward Mappings

An inward mapping for a primitive general purpose datatype, or a single generated general purpose datatype,
shall associate the general purpose datatype with a single internal datatype, defined by the syntactic and
semantic constructs and relationships in the language which together uniquely represent that internal
datatype. Such a mapping shall specify limitations on the parametric values of any general purpose datatype
family which exclude members of that family from the mapping. Different members of a single general
purpose datatype family may be mapped onto dissimilar internal datatypes.

An inward mapping for a general purpose datatype generator shall associate the general purpose datatype
generator with an internal datatype generator, defined by the syntactic and semantic constructs and
relationships in the language which together uniquely represent that internal datatype generator. Such a
mapping shall specify limitations on the parametric datatypes of any general purpose datatype generator
which exclude corresponding classes of generated datatypes from the mapping. The same general purpose
datatype generator with different parametric datatypes may be mapped onto dissimilar internal datatype
generators.

An inward mapping for a general purpose datatype shall associate the general purpose datatype with an
internal datatype on which it is possible to implement all of the characterizing operations specified for that
general purpose datatype.

The collection of inward mappings for the general purpose datatypes and datatype generators onto the
internal datatypes and datatype generators of a language shall be said to constitute the inward mapping of the
language and shall have the following properties:

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 95

 for each general purpose datatype (primitive or generated), the mapping shall specify whether the general
purpose datatype is supported by the language (as specified in 11.4), and if so, identify a single
corresponding internal datatype; and

 for each general purpose datatype which is supported, the mapping shall specify the relationship between
each allowed value of the general purpose datatype and the equivalent value of the corresponding
internal datatype; and

 for each value of an internal datatype, the mapping shall specify whether that value is the image (under
the mapping) of any value of any general purpose datatype, and if so, which values of which general
purpose datatypes are mapped onto it.

NOTE 1 A general purpose generated datatype which is not specifically mapped by a primitive datatype mapping, and
whose parametric datatypes are admissible under the constraints on the datatype generator mapping, will be implicitly
mapped onto an internal datatype constructed by application of the mapped internal datatype generator to the mapped
internal parametric datatypes.

NOTE 2 When a general purpose datatype, primitive or generated, is mapped onto a language datatype, whether
explicitly or implicitly by mapping the generators, the associated internal datatype should support the semantics of the
general purpose datatype. The proof of this support is the ability to perform the characterizing operations on the internal
datatype. It is not necessary for the language to support the characterizing operations directly (by operator or built-in
function or anything the like), but it is necessary for the characterizing operations to be conceptually supported by the
internal datatype. Either it should be possible to write procedures in the language which perform the characterizing
operations on objects of the associated internal datatype, or the language standard should require this support in the
further mappings of its internal datatypes, whether into representations or into programming languages.

NOTE 3 The conceptual mapping onto internal datatypes may not be either 1-to-1 or onto. A mapping must document
the anomalies in the association of internal datatypes with general purpose datatypes, specifically those values which are
distinct in the general purpose datatype, but not distinct in the language, and those values of the internal datatype which
are not accessible through interfaces using general purpose datatypes.

NOTE 4 An inward mapping to a programming language may be used to ensure that an interface between two
program units specified in terms of general purpose datatypes can be properly used by programs written in that language,
with language-specific, but not application-specific, software tools providing conversions of information units.

11.3 Reverse Inward Mapping

An inward mapping from a general purpose datatype into the internal datatypes of a language defines a
particular set of values of internal datatypes to be the image of the general purpose datatype in the language.
The reverse inward mapping for a general purpose datatype maps those values of the internal datatypes
which constitute its image to the corresponding values of that general purpose datatype using the
correspondence which is established by the inward mapping. For the reverse inward mapping to be
unambiguous, the inward mapping of each general purpose datatype must be 1-to-1. This is formalized as
follows:

 if a is a value of the general purpose datatype and the inward mapping maps a to a value a’ of some
internal datatype, then the inward mapping shall not map any value b of the same general purpose
datatype into a’, unless b = a; and

 if a is a value of a general purpose datatype and the inward mapping maps a to a value a’ of some
internal datatype, then the reverse inward mapping maps a’ to a; and

 if c is a value of a general purpose datatype which is excepted from the domain of the inward mapping,
i.e. maps to no value of the corresponding internal datatype, then there is no value c’ of any internal
datatype such that the reverse inward mapping maps c’ to c.

ISO/IEC CD1 11404 (revision)

96 © ISO 2003 – All rights reserved

The reverse inward mapping for a language is the collection of the reverse inward mappings for the general
purpose Datatypes.

NOTE 1 When an interface between two program units is specified in terms of general purpose datatypes, it is possible
for the interface to be utilized by program units written in different languages and supported by a service which is ignorant
of the languages involved. The inward mapping for each language is used by the programmer for that program unit to
select appropriate internal datatypes and values to represent the information which is used in the interface. Information is
then sent by one program unit, using the reverse inward mapping for its language to map the internal values to the
intended values of the general purpose datatypes, and received by the other program unit, using the inward mapping to
map the general purpose datatype values passed into suitable internal values. The actual transmission of the information
may involve three software tools: one to perform the conversion between the sender form and the interchange form,
automating the reverse inward mapping, one to transmit the interchange form based on general purpose datatypes, and
one to perform the conversion between the interchange form and the receiving internal form, automating the inward
mapping. None of these intermediate tools depends on the particular interface being used. Thus, it is possible to
implement an arbitrary interface using general purpose datatypes, in any programming language which supports those
datatypes without interface-specific tools.

NOTE 2 The reverse inward mapping for a language does not have useful formal properties. The same internal value
can be mapped to several different values, as long as the different values belong to different general purpose datatypes.
It is the per-datatype reverse inward mapping which is useful.

11.4 Support of Datatypes

An information processing entity is said to support a general purpose datatype if its mapping of that datatype
into some internal datatype (see 11.2) preserves the properties of that datatype (see 6.3) as defined in this
subclause.

NOTE For aggregate datatypes, preservation of the "aggregate properties" defined in 6.8 is not required.

11.4.1 Support of equality

For a mapping to preserve the equality property, any two instances a, b of values of the internal datatype shall
be considered equal if and only if the corresponding values a’, b’ of the general purpose datatype are equal.

11.4.2 Support of order

For a mapping to preserve the order property, the order relationship defined on the internal datatype shall be
consistent with the order relationship defined on the general purpose datatype. That is, for any two instances
a, b of values of the internal datatype, a ≤ b shall be true if and only if, for the corresponding values a', b' of
the general purpose datatype, a' ≤ b'.

11.4.3 Support of bounds

For a mapping to preserve the bounds, the internal datatype shall be bounded above if and only if the general
purpose datatype is bounded above, and the internal datatype shall be bounded below if and only if the
general purpose datatype is bounded below.

NOTE It follows that the values of the bounds must correspond.

11.4.4 Support of cardinality

For a mapping to preserve the cardinality of a finite datatype, the internal datatype shall have exactly the
same number of values as the general purpose datatype. For a mapping to preserve the cardinality of an
exact, denumerably infinite datatype, there shall be exactly one internal value for every value of the general
purpose datatype and there shall be no a priori limitation on the values which can be represented. For a

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 97

mapping to preserve the cardinality of an approximate datatype, it suffices that it preserve the approximate
property, as provided in 6.3.5.

NOTE 1 There may be accidental limitations on the values of exact, denumerably infinite datatypes which can be
represented, such as the total amount of storage available to a particular user, or the physical size of the machine. Such a
limitation is not an intentional limitation on the datatype as implemented by a particular information processing entity, and
is thus not considered to affect support.

NOTE 2 An entity which a priori limits integer values to those which can be represented in 32 bits or characterstrings to
a length of 256 characters, however, is not considered to support the mathematically infinite Integer and CharacterString
datatypes. Rather such an entity supports describable subtypes of those datatypes (see 8.2).

11.4.5 Support for the exact or approximate property

To preserve the exact property, the mapping between values of the general purpose datatype and values of
the internal datatype shall be 1-to-1.

For an inward mapping to preserve the approximate property, every value which is distinguishable in the
general purpose datatype must be distinguishable in the internal datatype.

NOTE The internal datatype may have more values than the general purpose datatype, i.e. a finer degree of
approximation.

For an outward mapping to preserve the approximate property, every value which is distinguishable in the
internal datatype must be distinguishable in the general purpose datatype.

11.4.6 Support for the numeric property

There are no requirements for support of the numeric property. Support for the numeric property is a
requirement on representations of the values of the datatype, which is outside the scope of this International
Standard.

ISO/IEC CD1 11404 (revision)

98 © ISO 2003 – All rights reserved

12 Annex A (informative): Character-set standards

The following is a partial list of International Standards which define character-sets. Character sets defined by
such standards are suitable for reference by a “repertoire-identifier” in the Character and CharacterString
datatypes.

These standards define character-sets, in the sense of repertoires of characters. Most of them also define
“character codes” — integer values used to represent the character values for certain computational
purposes. Whether “character(repertoire)” is in-terpreted as requiring the characters to be represented by the
codes defined by the repertoire is outside of the scope of this International Standard .

None of these standards defines a collating sequence or order relationship on the character-sets. The
definition of such an order relationship requires additional standards or application agreements. Order
relationships commonly supported by programming languages are based on the integer ordering of the code
values used in a particular implementation of the language. Such order-ings have no semantics with respect
to the character-set itself and are outside the scope of this International Standard.

ISO/IEC 646:1991 Information technology — ISO 7-bit coded character set for information interchange

ISO 2047:1975 Information processing — Graphical representations for the control characters of the 7-bit
coded character set

ISO 9036:1987 Information processing — Arabic 7-bit coded character set for information interchange

ISO/IEC 2022:1994 Information technology — Character code structure and extension techniques

ISO/IEC 6937:1994 Information technology — Coded graphic character set for text communication — Latin
alphabet

ISO/IEC 4873:1991 Information technology — ISO 8-bit code for information interchange —

Structure and rules for implementation

ISO 8859-1:1987 Information processing — 8-bit single byte coded graphic character sets —

Part 1: Latin alphabet No. 1

ISO 8859-2:1987 Information processing — 8-bit single byte coded graphic character sets —

Part 2: Latin alphabet No. 2

ISO 8859-3:1988 Information processing — 8-bit single byte coded graphic character sets —

Part 3: Latin alphabet No. 3

ISO 8859-4:1988 Information processing — 8-bit single byte coded graphic character sets —

Part 4: Latin alphabet No. 4

ISO/IEC 8859-5:1988 Information processing — 8-bit single byte coded graphic character sets —

Part 5: Latin/Cyrillic alphabet

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 99

ISO 8859-6:1987 Information processing — 8-bit single byte coded graphic character sets —

Part 6: Latin/Arabic alphabet

ISO 8859-7:1987 Information processing — 8-bit single byte coded graphic character sets —

Part 7: Latin/Greek alphabet

ISO 8859-8:1988 Information processing — 8-bit single byte coded graphic character sets —

Part 8: Latin/Hebrew alphabet

ISO/IEC 8859-9:1989 Information processing — 8-bit single byte coded graphic character sets —

Part 9: Latin alphabet No. 5

ISO/IEC 8859-10:1992 Information technology — 8-bit single byte coded graphic character sets —

Part 10: Latin alphabet No. 6

ISO/IEC 10367:1991 Information technology — Standardized coded graphic character sets for use in 8-bit
codes

ISO/IEC 10646-1:1993 Information technology — Universal Multiple-Octet Coded Character Set (UCS) —

Part 1: Architecture and Basic Multilingual Plane

ISO/IEC 6429:1992 Information technology — Control functions for coded character sets

ISO 6630: 1986 Documentation — Bibliographic control characters

ISO/IEC 10538:1991 Information technology — Control functions for text communication

ISO 5426:1983 Extension of the Latin alphabet coded character set for bibliographic information
interchange

ISO 5427:1984 Extension of the Cyrillic alphabet coded character set for bibliographic information
interchange

ISO 5428:1984 Greek alphabet coded character set for bibliographic information interchange

ISO 6438:1983 Documentation — African coded character set for bibliographic information interchange

ISO 6861: — Information and documentation — Cyrillic alphabet coded character sets for historic
Slavonic languages and European non-Slavonic languages written in a Cyrillic script, for bibliographic
information interchange

ISO 6862: —1 Information and documentation — Mathematical coded character set for bibliographic
information interchange

ISO 8957: —1 Information and documentation — Hebrew alphabet coded character sets for bibliographic
information interchange

ISO 10585: —1 Information and documentation — Armenian alphabet coded character set for bibliographic
information interchange

ISO/IEC CD1 11404 (revision)

100 © ISO 2003 – All rights reserved

ISO 10586: —1 Information and documentation — Georgian alphabet coded character set for bibliographic
information interchange

ISO 10754: —1 Information and documentation — Extension of the Cyrillic alphabet coded character set for
non-Slavic languages for bibliographic information interchange

ISO/IEC 9541-1:1991 Information technology — Font information interchange — Part 1: Architecture

ISO/IEC 9541-2:1991 Information technology — Font information interchange — Part 2: Interchange Format

ISO/IEC 9541-3:1994 Information technology — Font information interchange — Part 3: Glyph Shape
Representation

ISO/IEC 9541-4: —1 Information technology — Font information interchange — Part 4: Application-specific
requirements

ISO 6093:1985 Information processing — Representation of numeric values in character strings for
information interchange

(defines character sets and syntax for numeric strings)

ISO/IEC 8824:1990 Information technology — Open Systems Interconnection — Abstract Syntax Notation
One (ASN.1)

(defines interchange character sets both directly and by reference to sets registered under ISO 2375)

 The following are International Standards for character-set registration. Character sets registered under the
provisions of these standards are suitable for reference by a "repertoire-identifier" in the Character and
CharacterString datatypes.

ISO 2375:1985 Data Processing — Procedure for the registration of escape sequences

ISO/IEC 7350:1991 Information technology — Registration of repertoires of graphic characters from ISO
10367

ISO/IEC 10036:1993 Information technology — Font information interchange — Procedure for registration of
glyph and glyph collection identifiers

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 101

13 Annex B: (informative) Recommendation placement of annotations

An annotation (see 7.4) is a descriptive information unit attached to a type-specifier, or a component datatype,
or a procedure (value), to characterize some aspect of the representations, variables, or operations
associated with values of the datatype, or the component or procedure, in some particular context. This
International Standard does not specify the syntax or semantics of any specific annotations. Common
conventions for the placement of annotations, however, makes it easier for the reader to deter-mine the object
to which an annotation is intended to apply and the context in which it is intended to apply. This annex
contains guidelines for placement of annotations in the syntax and corresponding distinctions in the scope of
application of the annotations, as required by clause 7.4.

Use of the recommended placement conventions improves the compatibility of usages and implementations
of the general purpose datatypes, to the extent that they involve such annotations. Use of additional or
substitute conventions by other standards and implementations is consistent with this International Standard.

13.1 B.1 Type-attributes

A type-attribute is an annotation attached to a type-specifier, and in particular to the type-specifier of a type-
definition, which characterizes some aspect of the values or variables of the datatype specified, or the
operations on those values or variables, in some particular context. Type-attributes may include, among
others:

 limitations on, or identification of parameters describing, the value-space of the datatype as implemented,
or as used in a particular context,

 constraints on, or specifications for, representation of the values of the datatype,

 constraints on, or specifications for, the operations which may be performed on values of the datatype,

 identification of procedures or parameters to be used for conversion of values of the datatype for a
particular interchange or external medium.

Type-attributes should immediately follow the type-specifier for the datatype to which they are intended to
apply. In particular, an annotation which applies to the element-type of an aggregate-type should appear
inside the parentheses, while an annotation which applies to the aggregate-type should appear outside the
parentheses.

13.2 B.2 Component-attributes

A component-attribute is an annotation attached to a component of a generated-type which characterizes
some aspect of the operations on, or representations of, values in that component of the particular generated
datatype (i.e. values used in that role, as distinct from general limitations on values of the datatype of the
component) in some particular context. Component-attributes may include, among others:

 any of the attribute notions given in B.1, but restricted to the component,

 specification of the ordering, representation or alignment of the component in an aggregate structure,

 limitations on access to the component.

Component-attributes should immediately precede the component type-specifier for the component to which
they are intended to apply. That is, in a record-type, they should precede the field-type; in a choice-type,

ISO/IEC CD1 11404 (revision)

102 © ISO 2003 – All rights reserved

they should precede the alternative-type; and in a homogeneous aggregate-type, they should precede the
element-type.

13.3 B.3 Procedure-attributes

A procedure-attribute is an annotation attached to a procedure-declaration which characterizes some aspect
of the invocation or use of the named procedure, in some particular context. Procedure-attributes may
include, among others:

 specification of the location of its instantiations,

 specification of the procedure interface.

Procedure-attributes should precede the keyword “procedure” or follow the entire type-specifier. In addition,
procedure-at-tributes should be distinguishable from type- or component- attributes by their text.

13.4 B.4 Argument-attributes

An argument-attribute is an annotation attached to an argument to a procedure-declaration or procedure-type
which characterizes some aspect of the operations on, or representations of, values passed through that
argument of the particular procedure or procedure datatype (as distinct from general limitations on the
datatype which is the argument-type) in some particular context. Argument-attributes may include, among
others:

 any of the attribute notions given in B.1, but restricted to the use of the datatype in this argument,

 specification of the means of passing the argument.

Argument-attributes should immediately precede the argument or return-argument which they are intended to
describe (in a procedure-type, a procedure-declaration, or a termination-declaration).

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 103

14 Annex C: (informative) Implementation notions of datatypes

This annex defines a collection of datatype notions excluded from this International Standard, because they
were deemed to be notions of implementation or representation of datatypes, rather than conceptual notions.

The values of the datatypes defined by this International Standard are abstract objects conforming to a set of
given rules. Each computer system has its own internal datatypes, whose value spaces are (typically fixed-
length) sequences of n distinguished symbols (most commonly, the two symbols "0" and "1"), and whose
characterizing operations are the instructions built into the computer system. A representation of a general
purpose datatype is a mapping from the value space of the general purpose datatype to a computer system
value space.

In addition to values of datatypes, a computer system has the notion of variable – an object to which a value
of some datatype or datatypes is dynamically associated. (In a certain sense, a variable is an implementation
of a value of a pointer datatype (8.3.2).) The characterizing operations defined by this International Standard
are abstract computational notions of functions applicable to the values of datatypes, used to identify the
semantics of the datatypes. In a computer system, the operations on representations of those values and
variables containing those representations are actually executed.

The characteristics of representations, variables, and the execution of operations are beyond the scope of this
International Standard . Nonetheless, because these characteristics are inextricably mixed with the datatype
notions in many programming languages, and because these characteristics are important to many
applications of this International Standard, this International Standard provides for their inclusion in type-
specifiers and in datatype- and procedure-declarations via annotations (see 7.4). An annotation is a
descriptive information unit attached to a datatype, or a component of a datatype, or a procedure (value), to
characterize some aspect of the representations, variables, or operations associated with values of the
datatype, or the component or procedure, in some particular context.

This annex identifies notions for which such annotations may be appropriate and even necessary for certain
language mappings. This International Standard does not specify the syntax or semantics of any specific
annotations to describe implementation notions. The development of standards for such annotations may be
appropriate, but is outside the scope of this International Standard .

14.1 C.1 StorageSize

StorageSize is a type-attribute specifying the number (and type) of storage units required or allotted to
represent values of the datatype. It may also specify whether the number of storage units is constant over all
values of (this instance of) the datatype, or varies according to the requirements of the particular value to be
represented.

StorageSize may apply to any datatype, except procedure datatypes.

NOTE If there is a limitation on the maximum size of representable values, it implies that there is a limitation on the
value space of this datatype, which may be better documented by appropriate subtype specifications (see 8.2).

14.2 C.2 Mode

Mode is a type-attribute which specifies the radix of representation of a numeric datatype, the representation
of the digits, the representation of the decimal-point, if any, and the sign representation and placement
conventions. Such notions as “two’s complement binary”, “packed decimal with trailing sign” and the numeric

ISO/IEC CD1 11404 (revision)

104 © ISO 2003 – All rights reserved

representation formats of ISO 6093:1985, Information processing — Representation of numeric values in
character strings for information interchange, are examples of “modes”.

Mode applies only to numeric datatypes, principally Integer and Scaled.

14.3 C.3 Floating-Point

Floating-point is a type-attribute which specifies that a numeric datatype has a floating-point representation
and the characteristics of that representation.

Following ISO/IEC 10967-1:1994, Information technology — Programming languages, their environments and
system software interfaces — Language-independent arithmetic — Part 1: Integer and real arithmetic, a
floating-point representation of the value v has the form:

v = S • M • RE

where

R is the radix of the representation;

E is the exponent;, and

S is the sign, i.e. either S = 1 or S = -1;

M is the mantissa, either zero or a value of the datatype scaled(radix, precision) range(radix ^ -
precision, 1) excluding(1).

This representation can be characterized by five parameters:

radix and precision, from above;

emin and emax, with the requirement: emin ≤ E ≤ emax; and

denorm, with the requirement that denorm = false implies d = R-1 and denorm = true implies d = R-

precision.

Floating-point applies only to numeric datatypes, principally Real and Complex.

14.4 C.4 Fixed-Point

Fixed-point is a type-attribute which specifies that a numeric datatype has a fixed-point representation and the
characteristics of that representation.

A fixed-point representation has the form:

v = S x M x R-P

where

R is the radix of the representation;

S is the sign, i.e. either S = 1 or S = -1;

M is the mantissa, a value of the datatype Integer;

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 105

P is the precision.

This representation can be characterized by the radix and precision parameters.

Fixed-point applies only to numeric datatypes, principally Scaled.

14.5 C.5 Tag

Tag is a type-attribute which specifies whether and how the tag-value of a value of a value of a choice
datatype is represented.

Tag applies only to choice datatypes or their generators.

14.6 C.6 Discriminant

Discriminant specifies the source of the discriminant value of a Choice datatype.

Discriminant applies only to choice datatypes or their generators.

14.7 C.7 StorageSequence

StorageSequence attributes describe the order of presentation of the component values of a value of an
aggregate datatype, such as Set or Record, whose ordering is not implied by the type properties. Their values
and meaning depend on the aggregate datatype involved.

StorageSequence attributes apply only to aggregate datatypes or to their generators.

14.8 C.8 Packed

Packed and “unpacked” or “aligned” are type-attributes which characterize the juxtaposition of all components
of a value of an aggregate datatype. They distinguish between the optimization of space and the optimization
of access-time.

Packed attributes apply only to aggregate datatypes or to their generators.

14.9 C.9 Alignment

Alignment is a component-attribute that characterizes the forced alignment of the representations of values of
a given component datatype on storage-unit boundaries. It implies that "padding" to achieve the necessary
alignment may be inserted in the representation of the aggregate datatype which contains the annotated
component.

14.10 C.10 Form

Form is a type-attribute which specifies that one datatype has the same representation as another. In
particular, form permits an implementation to specify that a primitive general purpose datatype has a visible
information structure, or that a particular generated datatype has a primitive implementation.

Form may apply to any datatype.

ISO/IEC CD1 11404 (revision)

106 © ISO 2003 – All rights reserved

15 Annex D: (informative) Syntax for the Common Interface Definition Notation

Editor's Note: This annex will be updated in the next draft of the document.

The syntax used in this International Standard is a subset of the syntax prescribed for the Interface Definition
Notation (IDN) in ISO/IEC 13886:1995, Information technology — Programming languages — Language-
independent procedure calling. This annex contains the complete IDN syntax, for reference only. A
conforming IDN text is an interface-type, whereas a conforming general purpose datatype specification is a
type-specifier. In addition, a mapping, as provided in Clause 11, may contain declarations.

Character-set productions: Normative text page(s)

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" . 13

letter = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" |

"n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" . 13

special = "(" | ")" | "." | "," | ":" | ";" | "=" | "/" | "*" | "-" | "{" | "}" | "[" | "]" . 13

apostrophe = "’" . 13

escape = "!" . 13

quote = ’"’ . 13

space = " " . 13

underscore = "_" . 13

added-character = not defined by this International Standard . 13, 20, 49

bound-character = non-quote-character | quote . 13, 20

non-quote-character = letter | digit | underscore | special | apostrophe | space .13, 20, 49

NOTE — Character-set productions are always subject to minor changes from implementation to
implementation, in order to handle the va-garies of available character-sets.

Productions of the IDN used in this International Standard: Normative text page(s)

actual-type-parameter = value-expression | type-specifier . 44

actual-type-parameter-list = actual-type-parameter { "," actual-type-parameter } . 44

aggregate-type = record-type | set-type | sequence-type | bag-type | array-type | table-type . 36

alternative = tag-value-list [field-identifier] ":" alternative-type . 31

alternative-list = alternative { "," alternative } [default-alternative] . 31

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 107

alternative-type = type-specifier . 31

alternative-value = independent-value .32

annotation = "[" annotation-label ":" annotation-text "]" .14

annotation-label = objectidentifiercomponent-list . 15

annotation-text = not defined by this International Standard . 15

any-character = bound-character | added-character | escape-character . 14, 20

array-type = "array" "(" index-type-list ")" "of" "(" element-type ")" . 41

array-value = value-list . 42

ASN-object-identifier = “{“ objectidentifiercomponent-list “}” . 51

bag-type = "bag" "of" "(" element-type ")" . 39

bag-value = empty-value | value-list . 40

base = type-specifier . 28, 29, 30

bit-literal = "0" | "1" . 48

bitstring-literal = quote { bit-literal } quote . 48

boolean-literal = "true" | "false" . 18

boolean-type = "boolean" . 18

character-literal = "’" any-character "’" . 14, 20

character-name = identifier { " " identifier } . 14, 20, 49

character-type = "character" ["(" repertoire-list ")"] . 20

choice-type = "choice" "(" [field-identifier ":"] tag-type ["=" discriminant] ")"

"of" "(" alternative-list ")" . 31

choice-value = "(" tag-value ":" alternative-value ")" . 32

collection-identifier = registry-name registry-index . 51

complex-literal = "(" real-part "," imaginary-part ")" . 26

complex-type = "complex" ["(" radix "," factor ")"] . 26

component-reference = field-identifier | "*" . 16

declaration = type-declaration | value-declaration | procedure-declaration | termination-declaration . 45

ISO/IEC CD1 11404 (revision)

108 © ISO 2003 – All rights reserved

default-alternative = "default" ":" alternative-type . 31

dependent-value = primary-dependency { "." component-reference } . 16

digit-string = digit { digit } . 14

direction = "in" | "out" | "inout" . 34

discriminant = value-expression . 31

element-type = type-specifier . 33, 38, 39, 40, 41

empty-value = "(" ")" . 39, 40

enumerated-literal = identifier . 19

enumerated-type = "enumerated" "(" enumerated-value-list ")" . 19

enumerated-value-list = enumerated-literal { "," enumerated-literal } .19

escape-character = escape character-name escape . 14, 20, 49

excluding-subtype = base "excluding" "(" select-list ")" .29

explicit-subtype = base "subtype" "(" subtype-definition ")" . 29

explicit-value = boolean-literal | state-literal | enumerated-literal | character-literal

| ordinal-literal | time-literal | integer-literal | rational-literal

| scaled-literal | real-literal | complex-literal | void-literal

| extended-literal | pointer-literal | procedure-reference | string-literal

| bitstring-literal | objectidentifier-value | choice-value | record-value

| set-value | sequence-value | bag-value | array-value | table-value . 15

extended-literal = identifier . 30

extended-type = base "plus" "(" extended-value-list ")" . 30

extended-value = extended-literal | formal-parametric-value .30

extended-value-list = extended-value { "," extended-value } . 30

factor = value-expression . 21, 23, 25, 26

field = field-identifier ":" field-type . 37, 43

field-identifier = identifier . 31, 37, 43

field-list = field { "," field } . 37, 43

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 109

field-type = type-specifier . 37, 43

field-value = field-identifier ":" independent-value . 37, 43

field-value-list = "(" field-value { "," field-value } ")" . 37, 43

formal-parameter-name = identifier . 45

formal-parameter-type = type-specifier | "type" . 45

formal-parametric-type = formal-parameter-name . 45

formal-parametric-value = formal-parameter-name . 45

formal-type-parameter = formal-parameter-name ":" formal-parameter-type . 45

formal-type-parameter-list = formal-type-parameter { "," formal-type-parameter } . 45

generated-type = pointer-type | procedure-type | choice-type | aggregate-type . 30

identifier = letter { pseudo-letter } . 13

imaginary-part = real-literal . 26

independent-value = explicit-value | value-reference . 15

index-lowerbound = value-expression . 41

index-type = type-specifier | index-lowerbound ".." index-upperbound . 41

index-type-list = index-type { "," index-type } . 41

index-upperbound = value-expression . 41

integer-literal = signed-number . 22

integer-type = "integer" . 22

lowerbound = value-expression | "*" . 28, 29, 31

maximum-size = value-expression | "*" . 29

minimum-size = value-expression . 29

nameandnumberform = identifier “(“ numberform “)” . 51

nameform = identifier . 51

number = digit-string . 21, 22

numberform = number . 51

objectidentifiercomponent-list =

ISO/IEC CD1 11404 (revision)

110 © ISO 2003 – All rights reserved

objectidentifiercomponent-value { objectidentifiercomponent-value } . 51

objectidentifiercomponent-value = nameform | numberform | nameandnumberform . 51

objectidentifier-value = ASN-object-identifier | collection-identifier . 51

ordinal-literal = number . 21

ordinal-type = "ordinal" . 21

parameter = [parameter-name ":"] parameter-type . 34, 47

parameter-declaration = direction parameter . 34

parameter-list = parameter-declaration { "," parameter-declaration } . 34

parameter-name = identifier . 34, 47

parameter-type = type-specifier . 34, 47

pointer-literal = "null" . 33

pointer-type = "pointer" "to" "(" element-type ")" . 33

primary-dependency = field-identifier | parameter-name . 16

primitive-type = boolean-type | state-type | enumerated-type | character-type

| ordinal-type | time-type | integer-type | rational-type

| scaled-type | real-type | complex-type | void-type . 17

procedure-declaration = "procedure" procedure-identifier "(" [parameter-list] ")"

["returns" "(" return-parameter ")"] ["raises" "(" termination-list ")"] . 35

procedure-identifier = identifier . 35

procedure-reference = procedure-identifier . 15

procedure-type = "procedure" "(" [parameter-list] ")" ["returns" "(" return-parameter ")"]

["raises" "(" termination-list ")"] . 34

pseudo-letter = letter | digit | underscore . 13

radix = value-expression . 21, 23, 25, 26

range-subtype = base "range" "(" select-range ")" .28

rational-literal = signed-number ["/" number] . 23

rational-type = "rational" .23

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 111

real-literal = integer-literal ["*" scale-factor] . 25

real-part = real-literal . 26

real-type = "real" ["(" radix "," factor ")"] . 24

record-type = "record" "(" field-list ")" . 37

record-value = field-value-list | value-list . 37

registry-index = number . 51

registry-name = "ISO_10646" | "ISO_2375" | "ISO_7350" | "ISO_10036" . 51

repertoire-identifier = value-expression . 20

repertoire-list = repertoire-identifier { "," repertoire-identifier } . 20

return-parameter = [parameter-name ":"] parameter-type . 34

scaled-literal = integer-literal ["*" scale-factor] . 23

scaled-type = "scaled" "(" radix "," factor ")" . 23

scale-factor = number "^" signed-number .23, 25

select-item = value-expression | select-range . 28, 29, 31

select-list = select-item { "," select-item } . 28, 29, 31

select-range = lowerbound ".." upperbound . 28, 29, 31

sequence-type = "sequence" "of" "(" element-type ")" . 40

sequence-value = empty-value | value-list . 40

set-type = "set" "of" "(" element-type ")" . 38

set-value = empty-value | value-list . 39

signed-number = ["-"] number . 22

size-subtype = base "size" "(" minimum-size [".." maximum-size] ")" . 29

state-literal = identifier . 19

state-type = "state" "(" state-value-list ")" . 19

state-value-list = state-literal { "," state-literal } . 19

string-character = non-quote-character | added-character | escape-character .14, 49

string-literal = quote { string-character } quote . 14, 49

ISO/IEC CD1 11404 (revision)

112 © ISO 2003 – All rights reserved

subtype = range-subtype | selecting-subtype | excluding-subtype

 | size-subtype | explicit-subtype | extended-type . 27

subtype-definition = type-specifier . 29

table-entry = field-value-list | value-list . 43

table-type = "table" "(" field-list ")" . 43

table-value = empty-value | "(" table-entry { "," table-entry } ")" . 43

tag-type = type-specifier .31

tag-value = independent-value . 32

tag-value-list = "(" select-list ")" . 31

termination-declaration = "termination" termination-identifier ["(" termination-parameter-list ")"] . 47

termination-identifier = identifier . 47

termination-list = termination-reference { "," termination-reference } . 34

termination-parameter-list = parameter { "," parameter } . 47

termination-reference = termination-identifier . 34

time-literal = string-literal . 21

time-type = "time" "(" time-unit ["," radix "," factor] ")" . 21

time-unit = "year" | "month" | "day" | "hour" | "minute" | "second" | formal-parametric-value . 21

type-declaration = "type" type-identifier ["(" formal-type-parameter-list ")"]

"=" ["new"] type-definition . 45

type-definition = type-specifier . 45

type-identifier = identifier . 44, 45

type-reference = type-identifier ["(" actual-type-parameter-list ")"] . 44

type-specifier = primitive-type | subtype | generated-type

| type-reference | formal-parametric-type . 17

upperbound = value-expression | "*" . 28, 29, 31

value-declaration = "value" value-identifier ":" type-specifier "=" independent-value . 46

value-expression = independent-value | dependent-value | formal-parametric-value . 15

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 113

value-identifier = identifier . 46

value-list = "(" independent-value { "," independent-value } ")" . 37, 39, 40, 42, 43

value-reference = value-identifier . 15

void-literal = "nil" . 27

void-type = "void" . 27

Productions of the common IDN which appear in a more restricted form above:

procedure-reference = [interface-synonym "::"] procedure-identifier .

termination-reference = [interface-synonym "::"] termination-identifier .

type-reference = [interface-synonym "::"] type-identifier ["(" actual-type-parameter-list ")"] .

value-reference = [interface-synonym "::"] value-identifier .

Additional productions of the IDN not used in this International Standard:

interface-type = "interface" interface-reference "begin" interface-body "end" .

interface-reference = interface-synonym | [interface-synonym ":"] interface-identifier .

interface-identifier = object-identifier-value .

interface-synonym = identifier .

interface-body = { import } { declaration ";" } .

import = "imports" ["(" import-symbol-list ")"] "from" interface-reference .

import-symbol-list = import-symbol { "," import-symbol } .

import-symbol = procedure-identifier | termination-identifier | type-identifier | value-identifier .

ISO/IEC CD1 11404 (revision)

114 © ISO 2003 – All rights reserved

16 Annex E: (informative) Example mapping to Pascal

This annex contains a draft “inward” mapping from the general purpose datatypes into the programming
language Pascal, as defined by ISO/IEC 7185:1990, Information technology — Programming languages —
Pascal. Where appropriate, differences in the map-ping to the Extended Pascal language (ISO/IEC
10206:1991, Information technology — Programming languages — Extended Pascal) are noted.

The purpose of this annex is to exemplify the nature and content of an inward mapping, and possibly a
mapping standard. This mapping should not be considered a definitive mapping from general purpose
datatypes to the Pascal language.

16.1 E.1 General Purpose Primitive Datatypes

16.1.1 E.1.1 Boolean

Boolean maps to the Pascal type Boolean. Values true and false map to the corresponding values of Pascal
Boolean. All characterizing operations are preserved, using the Boolean operators of Pascal.

16.1.2 E.1.2 State

A state datatype of the form state(state-value-list) maps to the Pascal enumeration type (state-value-list).
Each state-value is mapped to the Pascal value with the corresponding identifier. All characterizing
operations are preserved.

16.1.3 E.1.3 Enumerated

An enumerated datatype of the form enumerated(enumerated-value-list) maps to the Pascal enumeration
type (enumerated- value-list). Each enumerated-value is mapped to the Pascal value with the corresponding
identifier. All characterizing operations are preserved.

16.1.4 E.1.4 Character

A single character datatype of the form character or character(repertoire-list) maps to the Pascal type char.
Pascal requires each implementation to define the character-set associated with the type char. The default
character-set designated by the general purpose datatype syntax character is presumed to be that character-
set, and repertoire-list, if present, must identify that character-set, or a subset of it. Each character-value in
that character-set is mapped to the Pascal value having the same character-code. All characterizing
operations are preserved.

No other character datatype is mapped into a Pascal datatype, although an implementation may specify a
mapping of the character-codes into the Pascal type integer.

16.1.5 E.1.5 Ordinal

The general purpose datatype ordinal range(1..maxint) maps to the Pascal subrange type 1..maxint. Pascal
requires each implementation to define the value of maxint. The ordinal datatype with the corresponding
maximum value (and any subtype thereof) is mapped as given above, with each ordinal value being mapped
to the corresponding integer value under the mathematical isomorphism. All characterizing operations are
preserved.

No ordinal value greater than maxint can be mapped, and no datatype containing such a value can be
mapped into Pascal.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 115

16.1.6 E.1.6 Date-and-time

The general purpose datatype time(unit, radix, factor) range(time1..time2) is mapped to Pascal in the same
way that time interval datatypes are mapped (see E.4.6), with the convention that the Pascal value represents
the interval between time1 and the designated point in time, but only if the Pascal value representing the
interval time2 – time1 is less than the implementation-defined value maxint. No other date-and-time types
can be mapped to Pascal.

16.1.7 E.1.7 Integer

The general purpose datatype integer range(minint..maxint) maps to the Pascal type integer, where minint is
defined to be Negate(maxint). Pascal requires each implementation to define the value of maxint. The
integer datatype with the corresponding minimum and maximum values (and any subtype thereof) is mapped
to the Pascal type integer, with each integer value being mapped into the identical Pascal integer value. All
characterizing operations are preserved.

No integer value greater than maxint can be mapped, no integer value less than minint can be mapped, and
no datatype containing such a value can be mapped into Pascal.

16.1.8 E.1.8 Rational

Rational maps to the Pascal type declared by

type rational = array [1..2] of integer;

with the characterizing operations defined as follows:

procedure Reduce(var x: rational); (* reduces a rational value to lowest-terms *)

var t, r, d: integer;

begin

d := abs(x[1]);

r := abs(x[2]);

while (d mod r) > 0 do begin

t := d mod r;

d := r; r := t;

end;

x[1] := x[1] div r;

x[2] := x[2] div r;

end;

procedure Add(x, y: rational; var t: rational);

begin

if x[2] = y[2] then begin

t[1] := x[1] + y[1];

t[2] := x[2];

end else begin

t[1] := x[1] * y[2] + y[1] * x[2];

t[2] := x[2] * y[2];

end;

Reduce(t);

end;

procedure Multiply(x, y: rational; var t: rational);

begin

t[1] := x[1] * y[1];

t[2] := x[2] * y[2];

Reduce(t);

ISO/IEC CD1 11404 (revision)

116 © ISO 2003 – All rights reserved

end;

procedure Negate(x: rational; var t: rational);

begin

t[1] := - x[1];

t[2] := x[2];

end;

procedure Reciprocal(x: rational; var t: rational);

begin

t[1] := x[2];

t[2] := x[1];

if t[2] < 0 then begin

t[1] := -t[1];

t[2] := -t[2];

end;

end;

function NonNegative(x: rational): Boolean;

begin NonNegative := (x[1] >= 0) end;

function Equal(x, y: rational): Boolean;

begin Equal := ((x[1] * y[2]) = (x[2] * y[1])) end;

Only rational values whose numerator and denominator are both within the range [–maxint, maxint] are
mapped into the Pascal datatype. (This cannot be stated as a range constraint on the value space of the
Rational datatype.)

NOTE The above procedures are not optimal and a good implementation would require techniques for sign
management and overflow avoidance. These procedures are intended only as a demonstration that the characterizing
operations can be implemented “conveniently” on the type as mapped.

16.1.9 E.1.9 Scaled

The general purpose datatype scaled(r, f) range(minrf..maxrf) maps to the Pascal type integer, where minrf
has the value –maxint • r(-f) and maxrf has the value maxint • r(-f). A scaled datatype with the corresponding
minimum and maximum values (and any sub-type thereof) is mapped to the Pascaltype integer, with each
scaled value N • r(-f) being mapped into the Pascal integer value N. In order for the characterizing operations
to be preserved, scaled multiply and divide operations have to be defined, as follows:

type scaled = integer;

(* const rtothef = r pow f; *)

function scaledMultiply(x, y: scaled): scaled;

var

t: scaled;

round: Boolean;

negate: Boolean;

begin

t := x * y;

negate := (t < 0);

if negate then t := -t;

round := (t mod rtothef > rtothef / 2);

t := t div rtothef;

if round then t := t + 1;

if negate then t := -t;

scaledMultiply := t;

end;

function scaledDivide(x, y: scaled): scaled;

var

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 117

t: scaled;

negate: Boolean;

begin

negate := (x < 0);

if negate then x := -x;

if y < 0 then begin

negate := not negate;

y := -y;

end;

t := (x * rtothef) / y;

if (x * rtothef mod y) > rtothef / 2 then t := t + 1;

if negate then t := -t;

scaledDivide := t;

end;

Only those values of the datatype scaled(r, f) which are within the above range are mapped and no scaled
datatype containing values outside this range can be mapped into Pascal.

NOTE A more general version of the scaled datatype can be defined using the Pascal type:

type scaled = record

numerator: integer;

radix: 0..maxint;

factor: integer

end;

with “characterizing operations” which generalize the arithmetic on scaled datatypes. This model can be
further tailored to a fixed radix (like 10) to get improved performance. The integer model is more useful for
simple exchanges of information, while the generalized model is pref-erable for extensive manipulation of
scaled values.

16.1.10 E.1.10 Real

The LI datatypes real range(rmin..rmax) and real(radix, precision) range(rmin..rmax) map to the Pascal type
real, only if the given or default radix, precision, rmin and rmax parameters define a subset of the real values
which is distinguishable in the subset of the mathematical real values defined by the Pascal implementation
under the following mapping: Each GPD Real value is mapped into the Pascal real value which is
mathematically nearest it and if two values are equidistant then either may be chosen. All characterizing
operations are conceptually preserved, although the implementation-defined arithmetic may affect the
correctness of results.

No real value requiring more range or more precision can be mapped, and no datatype containing such a
value can be mapped into Pascal.

16.1.11 E.1.11 Complex

The general purpose datatypes complex and complex(radix, precision) are mapped into Pascal using the
Pascal type:

type complex = record realpart, imagpart: real end;

This type, however, only maps values c in C such that | Re(c) | < rmax and | Im(c) | < rmax, where rmax is
implementation- defined, and then only if rmax and the given or default radix and precision parameters define
a subset of the complex values whose Cartesian representations (x + iy) are distinguishable in the Cartesian
product of the real values defined by the Pascal implementation. (This cannot be stated as a constraint on

ISO/IEC CD1 11404 (revision)

118 © ISO 2003 – All rights reserved

the value space of the LI complex datatype.) No complex datatype requiring more range or precision can be
mapped.

Each LI Complex value c is mapped to the Pascal value whose realpart field has the Pascal real value
mathematically nearest Re(c) and whose imagpart field has the Pascal real value mathematically nearest
Im(c). (Re and Im are the mathematical projections onto the real and imaginary axes, respectively.)

The definition of “characterizing operations” appropriate to the Cartesian representation of a complex-number
can be defined by the following Pascal procedures, although the implementation-defined arithmetic may affect
the correctness of results.

function Equal(x, y: complex): Boolean;

begin Equal := (x.realpart = y.realpart) and (x.imagpart = y.imagpart) end;

procedure Promote(x: real; var t: complex);

begin t.realpart := x; t.imagpart := 0.0; end;

procedure Add(x, y: complex; var t: complex);

begin

t.realpart := x.realpart + y.realpart;

t.imagpart := x.imagpart + y.imagpart;

end;

procedure Multiply(x, y: complex; var t: complex);

begin

t.realpart := x.realpart * y.realpart - x.imagpart * y.imagpart;

t.imagpart := x.realpart * y.imagpart + x.imagpart * y.realpart;

end;

procedure Negate(x: complex; var t: complex);

begin

t.realpart := - x.realpart

t.imagpart := - x.imagpart;

end;

procedure Reciprocal(x: complex; var t: complex);

var r: real;

begin

r := x.realpart * x.realpart + x.imagpart * x.imagpart;

t.realpart := x.realpart / r;

t.imagpart := - x.imagpart / r;

end;

procedure Squareroot(x: complex; var t: complex);

var

r: real;

theta: real;

begin

r := sqrt(x.realpart * x.realpart + x.imagpart * x.imagpart);

if x.realpart = 0.0 then begin

if x.imagpart >= 0.0 then theta := 0.5 * pi;

else theta := - 0.5 * pi;

end else begin

theta := arctan(x.imagpart / x.realpart);

if x.realpart < 0.0 then theta := theta + pi;

end;

t.realpart := sqrt(r) * cos(0.5 * theta);

t.imagpart := sqrt(r) * sin(0.5 * theta);

end;

NOTE In Extended Pascal , the general purpose datatypes complex and complex(radix, precision) can be mapped to
the type complex, only if rmax and the given or default radix and precision parameters define a subset of the complex

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 119

values which is distinguishable in the subset of the mathematical complex values defined by the Pascal implementation.
All characterizing operations are conceptually preserved, although the implementation-defined arithmetic may affect the
correctness of results.

16.1.12 E.1.12 Void

The general purpose datatype void is mapped into Pascal only when it appears as an alternative of a choice
datatype. In this case, it is mapped into an empty-variant “()” of a variant-record (see E.2.1).

16.2 E.2 General Purpose Generated Datatypes

16.2.1 E.2.1 Choice

A choice datatype of the form:

choice (tag-type) of

(

select-list1 : alternative-1,

. . .

select-listN : alternative-N

)

is mapped into the Pascal variant-record type:

record case tag-variable : mapped-tag-type of

case-constant-list1 : mapped-type1;

. . .

case-constant-listN : mapped-typeN

end;

only when the following conditions are met:

1) The tag-type maps to a Pascal ordinal type, as specified in this Annex. The mapped-tag-type is then the
ordinal type which is the image of the mapping.

2) The alternative-type of each alternative-i can be mapped into a Pascal type, as specified in this Annex. If
the alternative- type maps to a Pascal record-type, then the corresponding mapped-type is: (all-fields-of-the-
Pascal-record-type). If the alternative-type is void, then the corresponding mapped-type is: (). If the
alternative-type does not map to a Pascal record- type then the corresponding mapped-type is: (mapped-field-
identifier : mapped-alternative), where mapped-alternative is the image of the alternative-type under the
mapping, and mapped-field-identifier is the field-identifier of alternative-i, if it is present and forms a valid
Pascal field identifier, otherwise any identifier which does not conflict with any other field identifier in the
Pascal record-type.

No other choice datatype can be mapped into Pascal.

The tag-variable is an invented identifier, used solely to implement the characterizing operations (see below),
and is not other-wise required. Each select-item in the select-list which is a single value is mapped to the
case-constant denoting the corresponding value of the mapped-tag-type. Each select-item in the select-list
which is a select-range is mapped into a case-constant-list containing the denotations of all corresponding
values of the mapped-tag-type. A select-list which is default is mapped into the case-constant-list containing
the denotations of all corresponding values of the mapped-tag-type.

NOTE In Extended Pascal, each select-item in the select-list which is a select-range is mapped into the analogous
abbreviated-list form, and a select-list which is default is mapped into the case-constant-list otherwise.

ISO/IEC CD1 11404 (revision)

120 © ISO 2003 – All rights reserved

All values of the choice datatype are mapped to the corresponding values of the mapped-types specified
above.

The characterizing operations Tag and Cast are implemented (at least conceptually) in Pascal by referencing
a particular field of the corresponding mapped-type, or assigning to it, respectively. The characterizing
operation Discriminant is the value of the tag-variable. Equal can be implemented in Pascal by a case-
statement using the tag-variable and the mapped select-lists given above to select field-by-field comparison
for each alternative.

16.2.2 E.2.2 Pointer

A pointer datatype of the form pointer to (element-type) is mapped into the Pascal type ^mapped-type, only
when the element- type maps to a Pascal type, as specified in this Annex. The mapped-type is then the
Pascal type which is the image of the mapping.

Only those values of the pointer datatype which refer to objects on the Pascal “heap” are mapped into the
corresponding Pascal pointer-value. Other pointer-values may be supported by dereferencing them and
copying the element-value onto the Pascal heap, thereby generating an “equivalent” Pascal pointer-value, in
the sense that Dereference will work correctly, but the unspec-ified “assignment” operation (see Note 3 to
clause 8.3.2) will not.

The Dereference operation is the Pascal identified-variable, i.e. pointer-value^.

16.2.3 E.2.3 Procedure

A procedure datatype of the form:

procedure (parameter-list)

is mapped into a Pascal “procedure parameter specification”, only when it appears as the datatype of a
procedure parameter, and only if all of its parameter-types can be mapped to Pascal types, as specified in this
Annex.

A procedure datatype of the form:

procedure (parameter-list) returns (return-parameter)

can be mapped into a Pascal “procedure parameter specification” or “function parameter specification”, only
when it appears as the datatype of a procedure parameter, and only if all of its parameter-types, including that
of the return-parameter, can be mapped to Pascal types, as specified in this Annex. If the return-parameter
maps to a simple type or a pointer type in Pascal, then the procedure datatype is mapped to a Pascal
“function parameter specification”; otherwise, it is mapped to a “procedure parameter specification”.

Every GPD parameter-declaration of the form in identifier : parameter-type is mapped into a Pascal value-
parameter-specification of the form identifier : mapped-type where mapped-type is the image of the
parameter-type under the mapping into Pascal. Every GPD parameter-declaration of the forms inout identifier
: parameter-type or out identifier : parameter-type is mapped into a Pascal variable-parameter-specification of
the form var identifier : mapped-type where mapped-type is the image of the parameter-type under the
mapping into Pascal. If the procedure datatype is mapped to a functional parameter specification, the
parameter-type of the return-parameter is mapped into the result-type of the Pascal function parameter-
specification. If the procedure datatype has a return-parameter and is mapped to a procedure parameter
specification, the return-parameter is mapped as if it were an additional out parameter.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 121

Conceptually, every value of an GPD procedure datatype which satisfies the above constraints could be
defined as a Pascal procedure or function and could then appear as an actual parameter satisfying the
corresponding formal parameter specification.

The Invoke operation is supported by the Pascal function-designator (call) within an expression or the Pascal
procedure (call) statement, as appropriate to the form. Equal, in the sense defined for the GPD datatype, is
supported in Pascal by comparing all results of the invocations, to the extent that this is possible.

Terminations other than normal are not supported by Pascal, and no procedure datatype involving them can
be mapped into Pas-cal.

16.2.4 E.2.4 Record

A GPD record datatype of the form: record (field-list) is mapped into a Pascal record-type of the form: record
field-list end, only if all of its field-types can be mapped to Pascal types, as specified in this Annex. No other
record datatype can be mapped into Pascal.

Every GPD field of the form identifier : field-type is mapped into a Pascal field of the form identifier : mapped-
type where mapped-type is the image of the field-type under the mapping into Pascal.

Every value of an GPD record datatype which satisfies the above constraints is mapped to a value of the
corresponding Pascal record-type by mapping the value of each field to its corresponding value, as specified
in this Annex.

The FieldSelect operation is supported by the Pascal field-selection expression. The Aggregate operation is
supported in Pascal by assignment of the given values to the appropriate fields of the record-variable. Equal
is not directly supported by Pascal. It can be supported for each individual record-type by constructing a
function which compares the corresponding field values.

16.2.5 E.2.5 Set

A set datatype of the form set of (element-type) is mapped into the Pascal type set of mapped-type, only if the
element-type maps to a Pascal ordinal-type, as specified in this Annex, and the cardinality of the ordinal-type
does not exceed the implementation-defined maximum set cardinality required by Pascal. The mapped-type
is then the Pascal ordinal-type which is the image of the mapping.

Every value of an GPD set datatype which satisfies the above constraints is mapped to a value of the
corresponding Pascal set-type by mapping the value of each member of the set-value to its corresponding
value, as specified in this Annex.

All characterizing operations are supported by Pascal set operations.

No other set datatype can be mapped into Pascal directly. It is possible to map some other set datatypes as
a variant of Sequence (see E.2.7), by defining the characterizing operations specifically for that structure.

16.2.6 E.2.6 Bag

No bag datatype can be mapped into Pascal directly. Some bag datatypes can be mapped as a variant of
Sequence (see E.2.7), by defining the characterizing operations on that structure.

ISO/IEC CD1 11404 (revision)

122 © ISO 2003 – All rights reserved

16.2.7 E.2.7 Sequence

A GPD sequence datatype of the form sequence of (element-type) is mapped to the Pascal type: file of
mapped-type, only if the element-type can be mapped to a Pascal type other than a file type, as specified in
this Annex. No other sequence datatype can be mapped into Pascal directly.

Every value of a sequence datatype which satisfies the above constraints is mapped to a value of the
corresponding Pascal file type by mapping the value of each element of the sequence-value to its
corresponding value, as specified in this Annex.

With the declaration:

type sequenceoftype = file of mapped-type;

the characterizing operations are supported by the required procedures for file types, as follows:

function IsEmpty(var s: sequenceoftype): Boolean;

begin IsEmpty := eof(s) end;

procedure Head(var s: sequenceoftype; var t: mapped-type);

begin reset(s); read(s, t); reset(s); end;

procedure Tail(var s: sequenceoftype; var t: sequenceoftype);

begin

reset(s); rewrite(t);

if not eof(s) then begin

get(s);

while not eof(s) do begin

t^ := s^; get(s); put(t);

end;

end;

reset(s); reset(t);

end;

function Equal(var s, t: sequenceoftype): Boolean;

var continue: Boolean;

begin

reset(s); reset(t); continue := true;

while continue do begin

continue := not (eof(s) or eof(t));

if continue then begin

get(s); get(t);

continue := mapped-typeEqual(s^, t^);

if not continue then Equal := false;

end else

Equal := eof(s) and eof(t);

end;

reset(s); reset(t);

end;

procedure Empty(var s: sequenceoftype);

begin rewrite(s) end;

procedure Append(var s: sequenceoftype; t: mapped-type);

begin write(s, t) end;

Because a Pascal file-type, however, cannot be the component-type of another file-type, LI datatypes of the
form: sequence of (sequence (...)) or sequence of (record(...)), where the record datatype contains a
sequence datatype, cannot be mapped into Pascal. Moreover, when the component-type of a file-type is, or

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 123

contains, a pointer-type, there may be implementation-dependent limitations which defeat the purpose of the
mapping.

NOTE Values of a sequence datatype of the form sequence of (element-type), where the element-type maps to
some Pascal type mapped- type, as specified in this Annex, can also be mapped into Pascal using the type:

type sequenceofT = ^sequenceofTmember;

sequenceofTmember = record

next: sequenceofT;

elementvalue: mapped-type

end;

Each member (value of element-type) of a value of the sequence datatype is mapped to a heap variable of
the Pascal type sequenceofTmember, by mapping its value to the corresponding value of mapped-type, as
specified in this Annex, and placing that value in the field elementvalue. The value of the sequence datatype
is then represented by a value of the type sequenceofT, which is the pointer to the heap variable representing
the first member, or nil if the sequence is empty. The next field of the first member is set to point to the heap
variable representing the second member, etc. The next field of the last member is set to nil. All
characterizing operations can be defined on this representation.

16.2.8 E.2.8 Array

An array datatype of the form array (index-list) of (element-type) is mapped into the Pascal type array
[mapped-index-list] of mapped-element-type, only if the following conditions hold:

1) The element-type maps to some Pascal type mapped-element-type, as specified in this Annex.

2) Each index-type in the index-list can be mapped into some Pascal ordinal-type mapped-index-type, as
specified in this Annex. The mapped-index-list is then the list of the mapped-index-types, in corresponding
order.

No other array datatype can be mapped into Pascal.

Every value of an GPD array datatype which satisfies the above constraints is mapped to a value of the
corresponding Pascal array- type by mapping the value of each element of the array-value to its
corresponding value, as specified in this Annex.

The Select operation is supported by Pascal indexing. The Replace operation is supported by assignment to
the appropriate cell of an array variable. Equal is not directly supported by Pascal. It can be supported for
each individual array-type by constructing a function which compares the corresponding array element values.

16.2.9 E.2.9 Table

No table datatype can be mapped into a Pascal datatype directly.

Values of a table datatype of the form table (field-list), where each field-type in the field-list maps to some
Pascal type mapped- field-type, as specified in this Annex, can be mapped into Pascal using the type:

type tableentry = record

field1: mapped-field-type-1;

. . .

fieldN: mapped-field-type-N

end;

ISO/IEC CD1 11404 (revision)

124 © ISO 2003 – All rights reserved

Each tableentry value is a Pascal record-value having the corresponding field values assigned to the fields
field1, ..., fieldN. The value of the table datatype is then represented as a value of the Pascal type file of
tableentry, in the same way as a sequence datatype (see E.2.7). The characterizing operations for the table
datatype can be defined on that structure.

16.3 E.3 GPD Subtypes

16.3.1 E.3.1 Range

GPD range-subtypes map into Pascal subrange types, but only if the base type maps into a Pascal ordinal-
type, as specified in this Annex.

16.3.2 E.3.2 Selecting

GPD selecting-subtypes do not have equivalents in Pascal. A selecting-subtype of a state type or an
enumerated type is mapped as if it were the base type.

16.3.3 E.3.3 Excluding

GPD excluding-subtypes do not have equivalents in Pascal. An excluding-subtype of a state type or an
enumerated type is mapped as if it were the base type.

16.3.4 E.3.4 Size

GPD size-subtypes do not map into native Pascal concepts. Size-subtypes could be supported by the
sequence datatype implementation in E.2.7, and certain size-subtypes are mapped to specific Pascal types in
E.4.

16.3.5 E.3.5 Explicit subtypes

GPD explicit-subtypes do not have equivalents in Pascal. An explicit-subtype is mapped as if it were the base
type.

16.3.6 E.3.6 Extended

GPD extended-types cannot be mapped into Pascal, in general. In the case of enumerated datatypes,
definition of an entirely new type with value isomorphisms based on ordinal position may be possible.

16.4 E.4 GPD-Defined Datatypes

16.4.1 E.4.1 Natural number

The GPD datatype naturalnumber range(0..maxint) maps to the Pascal subrange type 0..maxint, according to
the mapping for its type-definition. No naturalnumber value greater than maxint can be mapped, and no
datatype containing such a value can be mapped into Pascal.

16.4.2 E.4.2 Modulo

The LI datatype modulo(modulus) maps to the Pascal subrange type 0..modulus–1, according to the mapping
for its type-definition, but only if modulus-1 is less than or equal to the implementation-defined value maxint.
The characterizing operations can be derived from those of Pascal type integer (i.e. those of the subrange
type) analogously to the derivation in clause 10.1.2.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 125

No other modulo datatype can be mapped into Pascal.

16.4.3 E.4.3 Bit

The bit datatype maps to the Pascal type declared by

type bit = 0..1;

0 and 1 map to the corresponding integer values. All characterizing operations are preserved, although the
Add operation must be defined as:

function Add(x,y: bit): bit;

begin

if (x = y) then Add := 0 else Add := 1;

end;

16.4.4 E.4.4 Bit string

A bitstring datatype all of whose values are of a fixed constant length, i.e. bitstring size(k), is mapped into the
Pascal type packed array [1..k] of Boolean.

NOTE While bitstring can just as well be mapped into packed array of bit, packed array of Boolean is often much
more efficiently implemented.

With the definitions:

typebitstringsizek = packed array [1..k] of Boolean;

bitstringsizek1 = packed array [1.. (k-1)] of Boolean;

the characterizing operations Equal, Head and Tail are defined as follows:

function Equal(x,y: bitstringsizek): Boolean;

var i: integer;

begin

Equal := true;

for i := 1 to k do Equal := Equal and (x[i] = y[i]);

end;

function Head(x : bitstringsizek): bit;

begin

if x[1] then Head := 1

else Head := 0

end;

procedure Tail(x : bitstringsizek, var y: bitstringsizek1);

var i: integer;

begin

for i := 1 to k-1 do y[i] := x[i+1];

end;

Append, Empty, IsEmpty are not meaningful operations on a bit-string of fixed size.

The bitstring datatype can be mapped according to its type-definition, that is, sequence of (bit) (see E.2.7),
although more effi-cient structures for bitstring can be developed.

ISO/IEC CD1 11404 (revision)

126 © ISO 2003 – All rights reserved

16.4.5 E.4.5 Character string

A characterstring datatype whose underlying character datatype can be mapped to Pascal (see E.1.4) and all
of whose values are of a fixed constant length, i.e. characterstring size(k), is mapped into the Pascal type
packed array [1..k] of char.

With the definitions:

typecharstringsizek = packed array [1..k] of char;

charstringsizek1 = packed array [1.. (k-1)] of char;

the characterizing operations Head and Tail are defined as follows:

function Head(x : charstringsizek): char;

begin Head := x[1] end;

procedure Tail(x : charstringsizek; var y: charstringsizek1);

var i: integer;

begin

for i := 1 to k-1 do y[i] := x[i+1];

end;

Equal is Pascal “=”. Append, Empty, IsEmpty are not meaningful operations on a character-string of fixed
size.

A characterstring datatype whose underlying character datatype can be mapped to Pascal (see E.1.4) can be
mapped according to its type-definition, that is, sequence of (character) (see E.2.7), although more efficient
structures for characterstring types can be developed.

16.4.6 E.4.6 Time interval

Time interval datatypes are mapped according to their type-definitions, that is, as specified for scaled
datatypes (see E.1.9). The scalarMultiply operation is mapped to

function scalarMultiply(x: scaled, y: timeinterval): timeinterval;

and the body is exactly the same as for the scaledMultiply operation defined in E.1.9, with the substitution of
timeinterval for the type of the temporary result t.

16.4.7 E.4.7 Octet

The octet datatype is mapped into the Pascal type:

type octet = 0..255;

All characterizing operations are preserved.

16.4.8 E.4.8 Octetstring

An octetstring datatype all of whose values are of a fixed constant length, i.e. octetstring size(k), is mapped
into the Pascal type packed array [1..k] of octet, where octet is defined as in E.4.7.

With the definitions:

typeoctetstringsizek = packed array [1..k] of octet;

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 127

octetstringsizek1 = packed array [1.. (k-1)] of octet;

the characterizing operations Equal, Head and Tail are defined as follows:

function Equal(x,y: octetstringsizek): Boolean;

var i: integer;

begin

Equal := true;

for i := 1 to k do Equal := Equal and (x[i] = y[i]);

end;

function Head(x : octetstringsizek): octet;

begin Head := x[1] end;

procedure Tail(x : octetstringsizek, var y: octetstringsizek1);

var i: integer;

begin

for i := 1 to k-1 do y[i] := x[i+1];

end;

Append, Empty, IsEmpty are not meaningful operations on an octetstring of fixed size.

The octetstring datatype can be mapped according to its type-definition, that is, sequence of (octet) (see
E.2.7), although more efficient structures for octetstring can be developed.

16.4.9 E.4.9 Private

Private is defined in Pascal essentially as it is in 10.1.9:

type private = packed array [1..size] of bit;

or:

type private = packed array [1..size] of Boolean;

In many cases, only the latter will produce the desired (contiguous bitstring) implementation, although neither
is in fact required to do so.

16.4.10 E.4.10 Object identifier

The object identifier datatype can be mapped into Pascal according to its type-definition, that is,

sequence of (objectidentifiercomponent) (see E.2.7), where objectidentifiercomponent is mapped to the
Pascal type:

type objectidentifiercomponent = 0..maxint;

In many cases, however, the component values of an objectidentifier value are not useful to the application,
and it may be more useful to map the objectidentifier type into an octetstring type (see E.4.8).

ISO/IEC CD1 11404 (revision)

128 © ISO 2003 – All rights reserved

16.5 E.5 Defined Generators

16.5.1 E.5.1 Stack

No stack datatype can be mapped into Pascal directly. Individual stack datatypes can be mapped into a
linked structure similar to the one suggested for sequence (see the Note to E.2.7), by defining the
characterizing operations on that structure.

16.5.2 E.5.2 Tree

No tree datatype can be mapped into Pascal directly. Individual tree datatypes can be mapped by a linked
structure similar to the one suggested for sequence (see the Note to E.2.7), but there are many possible
implementation choices, depending on the in-tended searching strategies, i.e. the true “characterizing
operations” of the type.

16.5.3 E.5.3 Cyclic enumerated

GPD datatypes of the form cyclic of (T) are mapped into Pascal as provided for the type T in E.1.3, because T
is required to be an enumerated datatype. The characterizing operation Successor does not map to Pascal
succ(); it must be defined as specified in 10.2.3.

16.5.4 E.5.4 Optional

An GPD datatype of the form optional(T) can only be mapped to Pascal if the type T can be mapped to
Pascal, as specified in this Annex. The datatype optional(T) is mapped to Pascal as:

record case present: Boolean of

true: (valuegiven: mappedT);

false: ()

end;

where mappedT is the mapping of LI datatype T into Pascal.

The characterizing operation IsPresent is defined by:

function IsPresent(t: optionalT): Boolean;

begin IsPresent := t.present end;

Unary characterizing operations on type T of the form Op(t: optional(T)):T are supported by a Pascal
procedure of the form:

procedure op(t: optionalT, var result: mappedT);

begin

if IsPresent(t) then result := mappedTOp(t.valuegiven);

end;

And binary operations are similarly supported.

NOTE Alternatively, optional(T) can be mapped to ^mappedT, where mappedT is the mapping of LI datatype T into
Pascal, and the object of type mappedT, when present, is allocated on the heap.

The characterizing operation IsPresent is defined by:

function IsPresent(t: optionalT): Boolean;

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 129

begin IsPresent := t <> nil end;

Unary characterizing operations on type T of the form Op(t: optional(T)):T are supported by a Pascal
procedure of the form:

procedure op(t: optionalT, var result: mappedT);

begin

if IsPresent(t) then result := mappedTOp(t^);

end;

And binary operations are similarly supported.

16.6 E.6 Type-Declarations

In Pascal two type-specifiers refer to the same datatype only if they are both identifiers and spelled identically.
Type-specifiers which are not identifiers always refer to distinct datatypes. Because of this, additional
datatype definitions may be needed in a mapping Pascal to correctly support the identity of GPD datatypes
which do not have names.

16.6.1 E.6.1 Renaming declarations

This concept is supported in Pascal only for named datatypes. That is, if a Pascal type y is denoted by an
identifier, then a Pascal type definition of the form:

type x = y;

is a renaming declaration, equivalent to the GPD type-declaration:

type x = y;

But if the Pascal type y is a syntactic designation other than an identifier, the Pascal type declaration of the
form:

type x = y;

is effectively a “new” datatype declaration in all cases.

16.6.2 E.6.2 Datatype declarations

An GPD datatype declaration which declares a single datatype (no parameters) can be mapped to Pascal as
a Pascal type-declaration in which the GPD type-definition is mapped into Pascal, as specified in this Annex.
If the type-definition does not have a mapping, then the datatype so declared cannot be mapped into Pascal.

An GPD datatype declaration which declares a family of datatypes, using one or more parameters, cannot, in
general, be mapped into Pascal. In many cases, however, each member of the family which is to be used in
a given context can be mapped into a distinct Pascal type, by inventing a unique name and mapping the type-
definition after making lexical substitutions for the parameter values.

16.6.3 E.6.3 Generator declarations

An GPD generator declaration cannot, in general, be mapped into Pascal. In many cases, however, each
resulting datatype which is to be used in a given context can be mapped into a distinct Pascal type, by
inventing a unique name and mapping the type-definition after making lexical substitutions for the parameter
values.

ISO/IEC CD1 11404 (revision)

130 © ISO 2003 – All rights reserved

NOTE In Extended Pascal, many generators can be mapped to schemata.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 131

17 Annex F: (informative) Example mapping to MUMPS

This annex contains a draft “inward” mapping from the general purpose datatypes into the programming
language MUMPS, as defined by ISO/IEC 11756:1992, Information technology — Programming languages —
MUMPS.

The purpose of this annex is to exemplify a mapping to a language whose concept of datatype is significantly
different from that of strongly typed programming languages. This mapping should not be considered a
definitive mapping from GPD datatypes to the MUMPS language.

This annex specifies a mapping from values of GPD datatypes into MUMPS values. In all cases, the MUMPS
data being mapped to is a string and the mapping expresses the form of the resulting string values.

For inward-mappings, the values produced are in a canonic form, as defined in ISO 11756:1992, unless
otherwise stated. An inward-mapping that produces values exceeding the Portability limits defined in section
2 of ISO 11756:1992 is non-portable. When the result of mapping a value as herein specified would exceed
the implementation limits, the result is unspecified.

For the reverse-inward-mappings any necessary coercion from the internal format takes place. Unless
otherwise stated the re-verse-inward-mapping is the inverse of the inward-mapping, using the necessary
coercions. If the reverse-inward-mapping would result in values which are not within the range of the GPD
datatype, the result is unspecified. For example, a state-value might be produced from a string which is not
one of the permissible state values.

When mapping to or from a numeric format is required, the accuracy of the conversion is the responsibility of
the implementation.

A further assumption of this binding is that it is an operational one, i.e. that the conversions are handled at
run-time with the implementation mapping the interface specification in an automated fashion.

NOTE An alternative approach would be to extend or “annotate” (see 7.4) the interface specification language — the
Common Interface Definition Notation (IDN) — to include mapping specifications, and then generate a mapping module
which would handle the specific interface essentially external to the process.

In this specification, the MUMPS operation sequences that implement the characterizing operations on the
GPD datatypes are not explicitly specified. Except as noted, all characterizing operations are supported on
the resulting MUMPS values. Many of these operations are provided as part of the MUMPS language; others
can be implemented as additional extrinsic functions, if required.

Use of the in-built MUMPS operations, such as addition, on data which is mapped to or from certain GPD
datatypes may cause these values to be interpreted in ways other than specified in GPD characterizing
operations. Therefore the use of these within a MUMPS program for manipulation, as opposed to transfer
operations, requires the programmer to perform the appropriate con-versions. The GPD datatypes involved
are Date and Time, Rational, Scaled, Complex and all Generated and Defined Types.

17.1 F.1 GPD Primitive Datatypes

17.1.1 F.1.1 Boolean

This maps to truth-value, true maps to 1 and false to 0.

ISO/IEC CD1 11404 (revision)

132 © ISO 2003 – All rights reserved

17.1.2 F.1.2 State

Each state-value is mapped to its string value.

17.1.3 F.1.3 Enumerated

Each enumeration value maps to its index in the GPD enumerated-type definition, i.e. the first value maps to
1, the second to 2 etc.

17.1.4 F.1.4 Character

A character datatype maps to a MUMPS Character Set Profile definition, which has an associated encoding
for the characters.

17.1.5 F.1.5 Ordinal

Each ordinal value maps to the corresponding positive integer value.

17.1.6 F.1.6 Date and Time

Date and time type values are mapped to the character string representation defined in ISO 8601:1988.

NOTE An alternative is to map date and time values to a character string in $H[OROLOG] format, which has the form

D,S

where D is the numbers of days since December 31, 1840, and S is the number of seconds since midnight.

Since there are no intrinsic operations available on this format, this alternative may not be of greater value.

17.1.7 F.1.7 Integer

Each value maps to its canonic form.

17.1.8 F.1.8 Rational

Each value maps to the character representation of the corresponding rational-literal.

NOTE An alternative if the denominator is greater than 0 is to map the value to numerator-value/denominator-value,
i.e. the number created by performing the division of the two parts. This would allow normal arithmetic operations, but at a
loss of precision. (See the note in E.1.9.)

17.1.9 F.1.9 Scaled

Each value maps to the character representation of the corresponding scaled-literal.

NOTE A scaled value could also be converted to a numeric value, as for Rational.

17.1.10 F.1.10 Real

Real values are mapped to the nearest numeric values.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 133

17.1.11 F.1.11 Complex

Values are mapped to strings of the form

real-value%imaginary-value

where

real-value is the numeric value of the real-part of the corresponding complex-literal, and

imaginary-value is the numeric value of the imaginary-part of the corresponding complex-literal.

17.1.12 F.1.12 Void

There is no mapping for this datatype, since it only appears as a formal part of an interface specification and
has no values, i.e. does not represent data actually transferred across an interface.

17.2 F.2 GPD Generated Types

17.2.1 F.2.1 Choice

A value of a GPD Choice datatype is mapped according to the specification for the type actually instantiated.
In MUMPS only a variable can actually have the behavior of a Choice datatype. The discriminant of the
Choice is provided in V(0), where V is the variable name of the associated MUMPS variable.

17.2.2 F.2.2 Pointer

A Pointer maps to a MUMPS variable. Access to the element value – the data pointed to – is provided by use
of indirection or some implementation-specific mechanism. That is, indirection (@) is the MUMPS support for
the characterizing operation Dereference.

17.2.3 F.2.3 Procedure

A Procedure value maps to a label and formallist of a formalline, which defines a subroutine call. Termination
parameters are mapped to additional formallist names. Inout and out parameters are mapped (at run-time) to
parameters called by reference.

NOTE The exact mechanism of the call may be subject to restrictions, such as those specified in ISO/IEC
13886:1995, Information technology — Programming languages — Language-independent procedure calling.

17.2.4 F.2.4 Record

A Record value maps to a MUMPS array in which the subscripts are the field-identifiers, and the data is the
mapping of the value of the corresponding field of the record value.

NOTE 1 If the GPD value were represented in one of the record-value forms, the data would be the mapping of the
independent-value. In the value-list form, the subscript is the field-identifier corresponding to this position in the record
type specification.

NOTE 2 A record value could also be modeled with subscripts being the field position numbers, but the Notes to
clause 8.4.1 indicate that the field identifier is significant while the position is not.

ISO/IEC CD1 11404 (revision)

134 © ISO 2003 – All rights reserved

17.2.5 F.2.5 Set

A Set maps to a MUMPS array with the subscripts being an integer, starting at 1, denoting the position of the
independent-value in the value-list.

17.2.6 F.2.6 Bag

A Bag maps in exactly the same way as Set.

17.2.7 F.2.7 Sequence

A Sequence maps in exactly the same way as Set.

17.2.8 F.2.8 Array

An Array maps to a MUMPS array with the first level subscript being the first independent-value in the value-
list, the second level subscript being the second independent-value etc.

17.2.9 F.2.9 Table

A Table maps to a MUMPS array with the first level subscript being an integer, starting at 1, denoting the
position of the table-entry within the table-value, the second level subscript being the field identifier associated
with the independent-value. An empty value is denoted by no data.

17.3 F.3 GPD Subtypes

In general all the subtypes are treated exactly as if they were the base type.

Extended types can be mapped, provided that the values are within the permissible range.

17.4 F.4 GPD Defined Datatypes

17.4.1 F.4.1 Natural number

Values of Naturalnumber are mapped as values of the base type – integer (see F.1.7).

17.4.2 F.4.2 Modulo

Values of Modulo types are mapped as values of the base type – integer (see F.1.7).

17.4.3 F.4.3 Bit

Bit maps to the values 0 and 1.

17.4.4 F.4.4 Bit string

Bitstring maps to a string of 0s and 1s.

NOTE This mapping may have smaller length limitations than expected because it is dependent on the maximum
length of strings. (The portability minimum limit for this in ISO 11756:1992 is 255, that for the proposed revision is 510.
Many implementations have larger limits.) Other possibilities are mapping to an array of Bit values or mapping to a
character string whose values are made of (say) eight bit values.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 135

17.4.5 F.4.5 Character string

Characterstring maps to a MUMPS string.

17.4.6 F.4.6 Time interval

Values of Time interval types are mapped as values of the base type – scaled (see F.1.9).

17.4.7 F.4.7 Octet

An Octet value x maps to the character value $CHARACTER(x).

17.4.8 F.4.8 Octet string

Octetstring maps to a string whose individual characters are the mappings of the equivalent Octet values.

17.4.9 F.4.9 Private

Private maps to an array of strings with numeric subscripts indicating the order of data within the array.

17.4.10 F.4.10 Object identifier

Objectidentifier maps into a string, with the value being the characters of the objectidentifier-value.

17.5 F.5 Type-Declarations and Defined Datatypes

Since MUMPS has no declaration facilities the implementation of these facilities is the responsibility of the
interface specification interpretation process.

ISO/IEC CD1 11404 (revision)

136 © ISO 2003 – All rights reserved

18 Annex G: (informative) Resolved issues from the first edition of this International
Standard

This annex contains a brief discussion of technical problems encountered in the development of the first
edition of this International Standard and the consensus resolution thereof by the technical committee.

18.1 G.1 Scope

Issue 1. Should GPD Datatypes be a reference model only?

Consensus is that GPD Datatypes has characteristics of a reference model, but its scope goes beyond that.
An entity claiming to use this International Standard as a “reference model” is said to comply indirectly, but
indirect compliance places requirements on the entity for formal statements of the relationships (mappings).
These requirements are necessary to meet the original intent of the standard. Because of the formal syntax
for the identification and definition of datatypes, direct compliance is also possible. Direct compliance is
needed so that products such as cross-language or cross-entity utilities can reference, use, and claim con-
formity to, GPD Datatypes, especially where no other relevant standards exist. In addition, the possibility of
direct compliance may encourage future software products, including new kinds of products, to use standard
GPD datatypes directly rather than defining their own syntax and semantics and then performing the mapping.

Issue 2. What datatypes should be included in the standard?

Consensus is that the standard should include all of the datatypes needed to support ISO programming
languages and the expected needs of interface specifications. If any language finds the need to distinguish
two "possibly equivalent" datatypes or constructors, then the standard should distinguish them; and if it is
necessary to insure that datatypes of two different languages could be mapped into different GPD datatypes,
then the standard should distinguish them; otherwise the standard should not.

Issue 3. Should the standard specify a minimal collection of common datatypes or a rich collection?

A primary purpose of the standard is to specify datatypes for various forms of interchange and interface. A
rich collection of datatypes encourages interface definitions to use datatypes which may be difficult to map to
many programming languages. This suggests that the set of “common” datatypes should be restricted to
those that are readily mapped to most programming languages. On the other hand, a rich collection of
datatypes encourages the user to specify the datatype he means, which may be both clearer and more
efficiently mapped than some work-around based on a small set of “common” datatypes.

The consensus is that the standard should provide a rich collection of conceptually distinct datatypes. As
Annex E demonstrates, most of the GPD datatypes can be mapped to most programming languages, and the
workarounds for particular languages become a part of the language-specific mapping rather than a part of
the interface specification. For example, Sequence is a native datatype in GPDSP, and Set is a native
datatype in Pascal. Both are common in conceptual interface specifications, but they require workarounds to
be mapped to C or Fortran. The user should not be forced to characterize a Sequence as a fixed-length Array
(which it is not) just to accommodate the limited type vocabulary of a programming language which may not
even be relevant to the application.

For various reasons, specific applications (and the related standards, if any) may find it useful to constrain the
set of GPD datatypes allowed/supported in that application (see Issue 6). Whether a language mapping
should provide for all datatypes in this International Standard is an unresolved issue, but out of the scope of
this International Standard in any case.

Issue 4. Are representation concerns appropriate in the standard?

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 137

The scope of the project expressly stated that representation is not a part of the standard. A number of
representation concerns, such as the characterization of Real as floating-point and the ordering of fields in a
Record, clearly need to be addressed by any use of the GPD datatypes in defining “neutral representations”.
Moreover, the datatypes of programming languages often have representation properties which are important
in distinguishing "internal datatypes" and are therefore necessary for mappings. Representation attributes, on
the other hand, are only a fraction of the datatype annotation capabilities needed by procedure calling
standards and applications. Consensus is that a common mechanism for such annotation is necessary (and
provided in clause 7.4), but particular annotations should not be a normative part of this International
Standard.

Issue 5. What is the relationship between this International Standard and ISO 13886 Language-Independent
Procedure Calling?

ISO/IEC 13886:1995, Information technology — Programming languages — Language-independent
procedure calling, pro-vides the procedure call model, the requirements for interface specifications and the
syntax of the Interface Definition Notation (IDN), and the requirements for GPD procedure calling service
implementations. ISO 13886 makes normative reference to this International Standard (ISO 11404) to define
all the datatype-related aspects of the IDN. ISO 13886 defines in detail the dynamic notions associated with
the Procedure and Pointer datatypes as they relate to the procedure calling model.

It was originally expected that ISO 13886 would provide the IDN syntax and this International Standard would
provide only the fundamental definitions of datatypes. But the complexities of defining datatypes made it
necessary for much of the IDN to be introduced into this International Standard. Thus, the overlap between
the two standards is the common IDN.

18.2 G.2 Conformance

Issue 6. Should support of certain datatypes be required of complying entities?

The nature of the standard should not be such as to require the support of any datatype. Rather other
standards which incorporate the GPD Datatypes, such as GPD Procedure Calling and Remote Procedure
Call, should specify what datatypes are required for the purposes of those standards.

Issue 7. Should implementations be required to support the characterizing operations?

The purpose of considering operations in this International Standard is solely to distinguish semantically
distinct datatypes which have common or similar value spaces. Moreover, where several choices were
available, the choices of characterizing operations included in the standard are arbitrary. Consequently,
mappings between language datatypes and GPD datatypes should not necessarily imply express support for
the characterizing operations appearing in the standard. However, an internal datatype should never be
mapped into a GPD datatype having characterizing operations which the internal datatype could not support.
Such a map-ping violates the notion of semantic equivalence of the datatypes.

18.3 G.6 Fundamental Notions

Issue 8. Should the GPD datatypes provide axiomatic datatype definitions?

Much of the axiomatic definition work would be replication of well-known mathematical work. There is
consensus that mathe-matical datatypes should be defined by appeal to standard mathematical references.
There is also consensus that most "axiomatic definition" of other datatypes is nothing more than mathematical
statement of closure under what is herein called "characterizing operations".

ISO/IEC CD1 11404 (revision)

138 © ISO 2003 – All rights reserved

18.3.1 G.6.6 Characterizing operations

Issue 9. Is InOrder necessary? Does the standard need to define an ordering operation?

Order is an important property of a datatype, and when the value space has multiple possible order
relationships, the choice of a particular order relationship is what makes the datatype ordered. When a
datatype has a universally accepted order relationship, it is appropriate to require that order in the standard.
When there is no such order relationship, or when everyone disagrees on the order relationship, then not
necessarily will a given implementation of the datatype support any order relationship given, and the GPD
datatype should not be defined to be ordered.

Issue 10. How many characterizing operations are enough?

There is consensus that the characterizing operations on any datatype should be limited to those which are
necessary to distinguish the datatype from types with similar value spaces. It was later determined to be
useful to include operations which, though redundant with respect to distinguishing the datatype, would be
used in the definitions of characterizing operations on other datatypes, e.g. Boolean And and Or.

Issue 11. Are conversion operations between datatypes characterizing?

"Conversion operations", that is, operations which map one datatype into another, are of several kinds, each
of which needs to be considered differently:

a) Operations which are part of the mathematical derivation of primitive datatypes are generally
"characterizing". Specifically, the Promote operation, which maps Integer into Rational and Rational to Real,
etc., is part of the mathematical characterization of the numeric datatypes.

b) Other operations which map one primitive datatype into another are clearly not "characterizing", if the
datatype is well- defined. Specifically, the Pascal ORD operation on enumerated types is not characterizing -
it has nothing to do with the meaning of the enumerated datatype itself. Similarly, Floor, which maps Real to
Integer, is useful but not characterizing for either the Real or Integer datatypes.

c) Operations which create a value of a generated type from values of the component datatypes may be
characterizing for the generator. Thus Setof is characterizing for the Set generator, and Replace is
characterizing for the Array generator.

d) Operations which project a value of a generated type onto any of its component datatypes may be
characterizing for the generator. Thus Select (subscripting) is characterizing for Array and Dereference is
characterizing for Pointer.

e) All characterizing operations on datatype generators must be one of the above, but not necessarily are all
such operations characterizing. It suffices to define any set of such operations which unambiguously
identifies the datatype generator.

Issue 12. Should characterizing operations identify exception conditions?

Consensus is no. Exceptions result from the performance of operations on datatype values, or from attempts
to move or convert a value from one environment to another. Specifications for operations, exchanges and
conversions are out of the scope of this International Standard, as stated in clauses 1 and 6.1. They are
addressed by related standards.

18.4 G.7 Elements of the Datatype Specification Language

Issue 13. Should the GPD datatypes have a concrete syntax?

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 139

To allow the standard to be used to specify datatypes unambiguously, it must have a syntax, with specific
production rules for each of the datatypes and generators. Moreover, this syntax must permit datatype
definitions to be recursive or contain forward references, in order to permit definition of datatypes such as
Tree, or the GPDSP-characteristic indefinite-list datatype.

The syntax chosen is a subset of the “common” Interface Definition Notation (see Issue 5).

18.5 G.8 Datatypes

Issue 14. Should datatypes with “units” be included in the standard?

The concept of datatypes which express values in particular units is considered important to interface
definitions, but the collection of values which might be appropriate for the “units” is open-ended and very
application-dependent. For this reason, there is consensus that this version of GPD Datatypes should not
standardize such datatypes. There is one exception to this: Time units are standardized and supported by a
number of programming languages. Therefore, Date-and-Time and TimeInterval are included in this version.

Issue 15. Should some of the datatypes in Clause 8 be in Clause 10 (derived)?

The question of whether Enumerated can be “derived from” State, or Ordinal from Integer, etc., depends on
the particular taxonomy of datatypes which is chosen. Other taxonomies of datatypes are possible which
might entail such changes. No claim is made that the taxonomy in Clause 8 is the best available, but it is
viable, and changing taxonomies would not bring about substantive improvements in the specification. What
is important is that datatypes that are similar but can be distinguished are distinguished.

18.5.1 G.8.1.4 Character

Issue 16. Should Character types be ordered?

The problem is that the accepted ordering of characters in a standard character-set by ascending value of
their integer codes is a machine-oriented view of the datatype. The “dictionary” order for the character-set
may vary from nation to nation or from application to application. Thus, although everyone agrees that these
datatypes are conceptually ordered, there is no agreement on what the order relationship is. Therefore, no
standard InOrder function can be defined, and for that reason these types are said to be unordered. (See
Issue 9.)

18.5.2 G.8.1.8 Rational

Issue 17. Can the cardinality of the Rational datatype be supported by any language or implementation?

It is possible for a mapping of Rational to fully support the datatype, as defined in 6.3.4, if the language
supports unbounded integers.

For a language/implementation which does not support unbounded integers, however, no mapping of the
Rational datatype can satisfy the requirements of clause 11.4.4.

18.5.3 G.8.1.9 Scaled

Issue 18. How is Scaled distinct from Real? Is Scaled an implementation?

Scaled is a mathematically tractable datatype which has a number of properties which tend to be associated
with representation, such as rounding. Scaled is not merely a subtype of Real, nor a poorer representation of
Real values than floating-point. (In fact, Scaled is properly represented by integral values and not, in general,
by floating-point.) It is the datatype of objects which are exact to some number of (radix) places. Scaled, with

ISO/IEC CD1 11404 (revision)

140 © ISO 2003 – All rights reserved

these semantics, is the most frequently occurring datatype in COBOL pro-grams, and also appears in other
standard languages, such as PL/I. Parameters radix and factor are provided for consistency with the usage in
programming languages. Only a single parameter, giving the common denominator of the datatype, is
semantically necessary. Since both base-two and base-ten scaling are in common usage, generalizing to an
arbitrary radix seems to be appropriate. Mappings and implementations will limit this.

Issue 19. Is it necessary to support radices of Scaled datatypes other than 2 and 10?

Many applications use conceptually Scaled datatypes with unusual radices, notably 60 and 360, although they
are represented in programs by an Integer with the scale-factor hidden in the semantic units. There is no
reason not to make such datatypes expressible as GPD datatypes, although there may be strong constraints
on the mappings to programming languages.

18.5.4 G.8.1.10 Real

Issue 20. What is the computational notion of datatypes Real and Complex?

The GPD Datatypes Real and Complex cannot usefully be the mathematical datatypes. The computational
notion of these types, regardless of representation mechanism, is one of “approximate” values. The model
used is the “scientific number”, which was a widely accepted computational model in the physical sciences
before the advent of computers. It is conceptually similar to the “floating point” model, but the standard
floating-point models (IEC 559) are too closely tied to representation concerns.

18.5.5 G.8.1.12 Void

Issue 21. Is Void a value of multiple types, as in SQL2 Null, or a datatype itself?

Void, or nil or null, is not a value of every type (or of many types). It has none of the properties of any
datatype to which it might be assigned. Every value of type Integer, for example, can be compared with zero.
Is nil < 0? Is nil = 0? Allowing such a comparison is clearly inappropriate. Nil must therefore be a value
distinct from those of any other primitive type. The SQL2 null- valued column is properly described in GPD
datatypes as a choice datatype one of whose alternatives is the true datatype of the column and and the other
is some state datatype representing the "null values". And in general, objects which “could be null”, are better
modelled as having choice datatypes. “Void” was originally called “Null”, but has been renamed to avoid
confusion with “null values” in SQL.

Issue 22. Is Undefined the same as Void?

There is consensus that Undefined is not a datatype. Undefined is a part of the behaviour of entities which
have the concept datatype, but it is distinct from the datatype of the entity. Its meaning arises from the nature
of the entity and its usage. In general, “undefined” models the case in which a value of some datatype is
appropriate, but not available. Some processing entities, e.g. SQL, have more than one “undefined” value, in
order to model different “situations” in which no value is available. Void, on the other hand, models the empty
variant in Pascal and Ada and the Null type in ASN.1 and other places where an element datatype, or value,
is syntactically or semantically required to complete a complex datatype, or value, but no (other) datatype or
value is appropriate. The Void datatype should not be confused with “undefined values” in various languages,
which do not have these semantics.

18.5.6 G.8.2.2 Selecting

Issue 23. Should the base type of Selecting and Excluding be restricted to exact datatypes?

Exactness is required to ensure independence of implementation. Any implementation of an exact datatype
must be able to distinguish exactly the conceptual values. This requirement does not exist for approximate

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 141

datatypes — it is permissible in representing approximate datatypes to have more than the conceptual values
and to be unable to distinguish values which are sufficiently close. If this is permitted for "Selecting" and
“Excluding” subtypes, the same GPD datatype as implemented by two ma-chines might actually have non-
isomorphic value spaces.

18.5.7 G.8.3.2 Pointer

Issue 24. Is Pointer a conceptual datatype or solely an implementation mechanism?

Pointer is the name of an implementation mechanism, but it has a conceptual foundation. Pointer is the
datatype form of the concept relationship in conceptual models, specifically of relationships between
otherwise independent data objects which may possess multiple such relationships. Objects of pointer
datatype represent single-ended relationships, i.e. from (any) to (object of element type), in which the usage
of the pointer determines the other object (any) in the relationship. In this regard, pointer may be considered
to be similar to the database concept key, which also conveys a single-ended relationship to the object which
the key identifies. The related concept handle, meaning a manipulable representative for an otherwise
inaccessible object, does not appear to be quite the same, since the notion of accessing the data object to
which the handle refers is intentionally not sup-ported, while accessing the object to which a pointer refers is a
characterizing operation of Pointer.

Issue 25. Is Pointer a primitive datatype or an aggregate datatype?

There is consensus that Pointer is a primitive datatype in that its values are objects with the property that
values of another datatype can be associated to them. These objects are not “constructed from” values of the
associated datatype; rather they are distinct primitive objects drawn from a conceptually large state-value
space by the process of association. This notion is similar to the mapping notion of Arrays, but unlike these
explicit mappings, the values in the domain – the pointer value-space – have no other semantics.

Issue 26. Must there be a characterizing operation which produces values of type Pointer to (T)?

After much debate on the merits of the Allocate and Associate operations, there is consensus that no single
"constructor" for datatype pointer is truly characterizing, in the sense that any implementation of the datatype
Pointer would necessarily be able to support it.

Issue 27. Must there be a null value of every datatype Pointer to (T)?

It is acknowledged that “null” is not a useful value of a pointer datatype – the sole characterizing operation
Dereference does not apply to “null”. Therefore it is possible to define “pointer” to mean “pure” pointer
datatypes that do not have “null” values, and to model the commonly occurring pointer datatypes as:

choice (boolean) of ((true): pointer to x, (false): void).

On the other hand, most programming languages which support pointer datatypes support null values of such
datatypes. Consensus is to make “null” a value of the GPD datatype pointer to (T) for consistency with most
applications. “Pure” pointer datatypes can be modelled as: pointer to (T) excluding (null).

18.5.8 G.8.4.1 Record

Issue 28. Is the ordering of fields in a Record significant?

Conceptually, a record is a collection of related information units which are accessible by name rather than by
position. There-fore, the ordering of fields in a Record is not a property of the conceptual datatype itself.
Order is, however, an important consideration in mappings and representations of the datatype.

ISO/IEC CD1 11404 (revision)

142 © ISO 2003 – All rights reserved

18.5.9 G.8.4.2 Set

Issue 29. Should the element type of a Set be required to be finite?

At the conceptual level, there is no reason to require the base datatype of a Set to be finite. There may, of
course, be implementation limitations.

Issue 30. Should the base type of Set be restricted to exact datatypes?

Exactness is required to assure independence of implementation. Any implementation of an exact datatype
must be able to distinguish exactly the conceptual values. This requirement does not exist for approximate
datatypes — it is permissible in representing approximate datatypes to have more than the conceptual values
and to be unable to distinguish values which are sufficiently close. But the values of members of a set-value
must be clearly distinguishable, in order for the uniqueness constraint and the IsIn operation to be well-
defined.

18.5.10 G.8.4.3 Bag

Issue 31. Should the base type of Bag be restricted to exact datatypes?

Exactness is required to assure independence of implementation. Like Sets, the values of members of a bag-
value must be clearly distinguishable, in order for the Delete and Insert operations to be well-defined.

18.5.11 G.8.4.5 Array

Issue 32. Is Array a variant of Sequence?

No. The important characteristic of an Array is the mapping of the index types onto the element type, while
Sequence captures the fundamental notion of sequence. They are only related by having similar
representations. An Array can be made into a sequence by adopting a convention for mapping the index
space into the ordinals. There is nothing intrinsic about this mapping: if one chooses different conventions,
as Fortran and Pascal do, one gets different sequences which represent the same array value. And in
general, there is no array datatype which can be mapped to the value space of a sequence datatype: the set
of values of a given size is the image of many array datatypes, but each different size is the image of a
different array datatype.

Issue 33. Does the syntax of the array-type properly support “Dynamic sized arrays”?

There are several “dynamic” size and shape notions applied to array types in various programming
languages:

Array-types whose values have different numbers of elements (Ada [1:?n]). Such types are designated
Sequence in this International Standard (clause 8.4.4) and are fully supported thereby, although the complete
Ada semantics may also require use of the Size subtype capability (clause 8.2.4).

“Conformant” array-types -- types of procedure parameters whose subscript ranges are dependent on the
values of other parameters. Such types are supported in this International Standard by Array types (clause
8.4.5) whose subscript ranges are “dependent-values” (clause 7.5.2), i.e. values of other parameters or other
elements of a Record which contains the Array.

Array parameters whose “shape” is implicitly passed by the caller, possibly including array parameters with a
variable number of dimensions. This is not supported directly by LI datatypes. In general, what is actually
passed is either a caller-defined sub-scripting function or a set of parameters by which the called subprogram
can reconstruct the subscripting function. In a language- independent interface, in order for the two language

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 143

environments to agree on the operations on the passed array value, the “shape” function or parameters must
be made explicit. Thus, this case is a special case of “conformant” arrays using “dependent- values” which are
other passed parameters.

18.6 G.9 Declarations

Issue 34. How will multiple and contradictory definitions of defined-datatypes be avoided?

It is expected that datatype definitions will occur in at least the following places:

a) this International Standard

b) standards containing the outward mappings of programming languages

c) standards defining service interfaces

d) the Procedure Calling and Remote Procedure Calling standards

e) users using the Interface Definition Notation for the LIPC/RPC.

f) other user applications

In all of cases a-d, the reference to a standard ensures common understanding of the name and meaning of
the defined-datatype. In case e, it is expected that all users of the same procedure interface will share a
common IDN description – a kind of “local standard” ensuring common understanding. In case f, if the
application is private to a particular user, it is not necessary for it to be shared, and if it is not private, then one
of the means a-e should be sought. Nonetheless, over time, it may be expected that multiple definitions of a
common datatype will occur in cases b and c. This would certainly be grounds for modifying Clause 10 of this
International Standard. On the other hand, definitions of different datatypes with the same name can be
expected in cases b, c and e as well. This is unfortunate and cannot be avoided in the general case, but it
does not affect the interchange of datatypes, except when conflicting standards are used in the same
application. A work-around for this should be provided in the LIPC/RPC, but in general, this situation is
probably grounds for a revision of the standards in question.

18.7 G.10 Defined datatypes

18.7.1 G.10.1.1 Natural number

Issue 35. Should NaturalNumber or Unsigned be GPD datatypes?

Naturalnumber is a semantic datatype, but for LI datatype purposes, it is nothing more than integer range(0..*)
and is so declared. "Unsigned" is an implementation convention for the representation of certain Integer and
Enumerated datatypes, including Naturalnumber.

18.7.2 G.10.1.2 Modulo

Issue 36. Should Modulo be limited to integers?

In various drafts, Modulo has been:

a) a datatype derived from Integer,

b) a datatype generator applicable to any ordered datatype, with extremely complex characterizing
operations,

ISO/IEC CD1 11404 (revision)

144 © ISO 2003 – All rights reserved

c) a defined generator, applicable only to enumerated datatypes, which redefines Successor.

Characterization (a) is deemed to be the only commonly occurring instance of (b) and has properties that do
not generalize, such as multiplication. Characterization (b) is at most a defined generator, because Modulo
affects only the operations, not the value space, and applicability to arbitrary ordered datatypes is an
unnecessarily complex generalization. Characterization (c), however, is thought to be potentially useful and is
retained as “Cyclic of (enumerated datatype)”.

18.7.3 G.10.1.3 Bit

Issue 37. What is the nature of the Bit datatype?

The LI datatypes define four two-valued datatypes, all of which are semantically different, and each of which
is some expert’s definition of "Bit". Making some or all of these datatypes identical is a feature of some
programming languages, while making them distinct is a feature of others. The LI datatypes must support the
latter, while proper use of mapping will support the former.

In the standard, the datatype Bit is used to refer to the numeric finite field of two values — the Modulo(2)
datatype derived from Integer — which is conveyed by the term "binary digit". The datatype integer
range(0..1) is different, in that Add (1,1) produces different results in the two datatypes. The datatype
Boolean is mathematically equivalent to Bit, in that identification of the Xor (Add) and And (Multiply)
operations produces the same finite field. But semantically, Boolean is not a numeric datatype and can be
characterized by other operations associated with the logic notions true and false, while Bit is a numeric
datatype and is characterized by the numeric operations Add and Multiply only. Two-valued Enumerated or
State datatypes are none of the above. They have neither numeric nor logical operations. Since the
cardinality of all the value spaces is 2, it is obviously possible to map one into another, but it is the
characterizing operations which determine the true datatype.

18.7.4 G.10.1.5 Character string

Issue 38. Is Character-string primitive?

No. A character-string must be manipulated as a sequence of members of some character-set in order for
the definition of the character-set itself to be useful. That is, the definition of any such datatype is dependent
on the (International) Standard defining the character-set. Thus the character datatype whose value space is
defined by the standard is the primitive datatype and the character-string datatypes are constructed from it.
Some programming languages make the character-string primitive in order to de-fine useful operations that
don’t generalize to Sequences or Arrays in that language. Others, such as LISP, APL and Pascal make the
single character a primitive type.

Issue 2. Should Character-string types be ordered?

The problem is that the collating sequence for character-strings using the same character-set varies from
nation to nation and is often constrained by other application-dependent standards. Thus, although everyone
agrees that these datatypes are conceptually ordered, there is no agreement on what that ordering is.
Therefore, no standard InOrder function can be defined, and for that reason these types are said to be
unordered. (See Issue 9.)

18.7.5 G.10.2 Defined generators

Issue 39. Should mathematical Matrix and Tensor constructors be standard generators?

At one level, Tensor-of-degree-n is simply an array datatype with mathematical operations, e.g.

ISO/IEC CD1 11404 (revision)

© ISO 2003 – All rights reserved 145

type tensor2 (rows: integer, columns: integer, numbers: type) = new array (1..rows, 1..columns) of (numbers);

But Tensor is, at another level, a legitimate mathematical datatype generator, which generates vector spaces,
or linear operator spaces, over a numeric datatype. The consensus is:

a) The tensor datatype generator is adequately supported by generator-declaration, and could be added to
subclause 10.2 if there were consensus on the numbering of the elements (from 0, from 1) and on the
ordering of the dimension specifications (rows first, columns first, etc.). (There is no such consensus.)

b) Conceptually, Tensor should be the mathematical object, but the mathematical type generator is not really
supported by any programming language. Some programming languages (e.g. BASIC, APL) support special
operations on array datatypes which support the mathematical interpretation of the array representation, but
these operations tend to be generalized to the array datatypes as such and only in some cases emulate the
mathematical operations. Thus Tensor is outside the scope of the LI datatypes.

Issue 40. Should File be a standard generator?

A file, seen as a medium or the object managed by the operating system, which has name, type, organization,
state, position, etc., attributes, goes beyond the scope of this standard. The datatype, its attributes and
operations, are better defined by an operating system services standard. To the extent that such file objects
are integral to programming languages, it is necessary that they be defined for the specific programming
language, since there does not appear to be a common model.

A file, seen as a structure of datatype values, may be adequately supported by an aggregate type generator,
such as Sequence, Array or Table (see clause 8.4 and also Annex E.2.7).

18.8 G.11 Mappings

Issue 41. How much of the concept "mapping onto the LI datatypes" should be standardized?

Consensus is that formal requirements for indirect conformance are necessary to relate language standards
to language-independent specifications. The mapping is a necessary part of the concept of indirect
conformance and therefore a necessary part of this standard. There is further consensus that the standard
should specify exactly what a mapping, or a set of mappings, consists of. This should include specifying
values of all "parameters" of the LI datatypes, and a discussion of the distinction between "logical
identification of two datatypes" and "physical transformation between two datatypes". It should be left to the
language standards to formalize the individual mappings, since distinguishing the language syntax
constructions which equate to various LI datatypes might be quite complicated.

Issue 42. What support of “aggregate properties” should be required?

There was no consensus on requirements for support of aggregate properties, most notably the nature of
array indexing (direct access) as against position in sequence (indirect access). Thus the consensus
standard contains no requirements for support of aggregate properties.

Issue 43. Should the standard address implementation of a mapping?

The implementation of a mapping or binding may occur at the level of language syntax (the representation of
the type itself in another language) or at the level of value representation or both. Such requirements are left
to other standards which use datatypes and datatype syntax for a particular purpose. The binding for a
datatype in databases and exchange files, for example, may specify a particular value representation but no
operations, while requirements for support of the same datatype in a programming language specify syntax
and operations but not representation.

