
ISO/IEC PDTR 19769

 2003-05-12 Version for Registration and Concurrent ballot
- 1 -

WG14 N1010

ISO/IEC PDTR 19769

Extensions for the programming language C to support new character data types

VERSION FOR REGISTRATION AND CONCURRENT BALLOT

Contents

1 Introduction... 2
2 General.. 3

2.1 Scope... 3
2.2 References... 3

3 The new typedefs .. 3
4 Encoding ... 4
5 String literals and character constants... 4

5.1 String literals and character constants notations... 4
5.2 The string concatenation ... 5

6 Library functions... 5
6.1 The mbrtoc16 function .. 6
6.2 The c16rtomb function .. 7
6.3 The mbrtoc32 function .. 7
6.4 The c32rtomb function .. 8

7 ANNEX A Unicode encoding forms: UTF-16, UTF-32 ... 9

ISO/IEC PDTR 19769

 Version for Registration and Concurrent ballot 2003-05-12
 - 2 -

1 Introduction

The C language has matured over the last decades, yet the character concept has
remained stable. Various code pages and multibyte libraries have been introduced in
the past; however, the character data type in the C language has remained 8 bit based.
Today, the introduction and the success of the Unicode/ISO10646 standard and of its
implementation in modern computer languages creates ever increasing demands on
the C language to give Unicode better support. This paper addresses the introduction
of new character data types in the C language in order to support future character
encoding forms, including Unicode.

The Unicode standard supports 3 encoding forms:

• UTF-8
• UTF-16
• UTF-32

Each encoding form has advantages and disadvantages, so that the choice of the
encoding form should be left to the application. Currently, some C applications
implement UTF-8 using char type, UTF-16 using unsigned short or wchar_t, and
UTF-32 using unsigned int or wchar_t. The current situation, however, faces the
following major problems:

• The size of wchar_t is implementation defined. While Unicode offers the
possibility to write platform independent applications, wchar_ t does not offer
platform portability for C applications or platform independent data format.

• There is no string literal for 16- or 32-bit based integer types, but the Unicode
encoding forms require string literals.

It is sensible to give all the Unicode encoding forms appropriate data type support.
UTF-8 is normally considered as one of character sets for char. This paper suggests
the implementation of 16 and 32 bit based character data types: char16_t and
char32_t. The new data types guarantee program portability through clearly defined
character width. The encoding of the new data types should be as generic as possible
in order to support not only Unicode but also future character encodings.

It is desirable in general that the C applications process strings rather than a character
and character arrays. This paper does not specify the detail of library functions for
the new data types, except one set of character conversion functions.

ISO/IEC PDTR 19769

 2003-05-12 Version for Registration and Concurrent ballot
- 3 -

2 General

2.1 Scope

This Technical Report specifies two character data types as the extensions of the
programming language C, specified by the international standard ISO/IEC 9899:1999.

2.2 References

The following standards contain provisions which, through reference in this text, constitute
provisions of Technical Report. For dated references, subsequent amendments to, or revisions
of, any of these publications do not apply. However, parties to agreements based on this
Technical Report are encouraged to investigate the possibility of applying the most recent
editions of the normative documents indicated below. For undated references, the latest
edition of the normative document referred applies. Members of IEC and ISO maintain
registers of current valid International Standards.

ISO/IEC 9899:1999, Information technology – Programming languages, their environments
an system software interfaces – Programming Language C.

ISO/IEC 10646-1:2000, Universal multi-octet character set – UCS – Part 1 : Architecture
and Basic Multilingual Plane

ISO/IEC 10646-2: 2000, Universal multi-octet character set – UCS – Part21 : CJK Unified,
Ideographs Supplementary plane, General Scripts and Symbols Plane, General Purpose
Plane

3 The new typedefs

This Technical Report introduces the following two new typedefs char16_t and
char32_t :

typedef uint_least16_t char16_t;
typedef uint_least32_t char32_t;

The new typedefs guarantee the certain width of the data types whereas the width of
wchar_t was implementation defined. The data values are unsigned while char could
take signed values. This Technical Report also introduces the new header:

uchar.h

ISO/IEC PDTR 19769

 Version for Registration and Concurrent ballot 2003-05-12
 - 4 -

The new typedefs, char16_t and char32_t, are defined in uchar.h

4 Encoding
C99 subclause 6.10.8 specifies that the value of the macro __STDC_ISO_10646__
shall be "an integer constant of the form yyyymmL (for example, 199712L), intended
to indicate that values of type wchar_t are the coded representations of the characters
defined by ISO/IEC 10646, along with all amendments and technical corrigenda as of
the specified year and month." C99 subclause 6.4.5p5 specifies that wide string
literals are initialized with a sequence of wide characters as defined by the mbstowcs
function with an implementation-defined current locale. Analogue to this macro, two
new macros will be introduced.

If the macro __STDC_UTF_16 is defined, the type char16_t shall have the UTF-16
encoding. This allows the use of UTF-16 in char16_t also when wchar_t uses a non-
Unicode encoding. In certain cases the compile-time conversion to UTF-16 may be
restricted to members of the basic character set and universal character names
(\Unnnnnnnn and \unnnn) because for these the conversion to UTF-16 is defined
unambiguously.

If the macro __STDC_UTF_32__ is defined, the type char32_t shall have the UTF-32
encoding.

If the macro __STDC_UTF_16__ is not defined, the encoding of char16_t is
implementation defined. Analogically, if the macro __STDC_UTF_32__ is not
defined, the encoding of char32_t is implementation defined.

In absence of the mentioned macros, an implementation may define other macro’s to
indicate a different encoding; in this case the provisions of sections 5 and 6 of this
document still hold, as they are independent of the actual encoding of the char16_t
and char32_t characters.

5 String literals and character constants

5.1 String literals and character constants notations
The notations for string literals and character constants for char16_t are
defined analogue to the wide character string literals and wide character
constants:

ISO/IEC PDTR 19769

 2003-05-12 Version for Registration and Concurrent ballot
- 5 -

u"s-char-sequence"

denotes a char16_t type string literal and initializes an array of char16_t. The
corresponding character constant is denoted by

 u'c-char-sequence'

and has the type char16_t. Likewise, the string literal and character constant
for char32_t are,

U"s-char-sequence" and

U 'c-char-sequence'.

5.2 The string concatenation
The new string literal formats (u"str" and U"str") should follow the same
concatenation rules as the existing L"str" strings; i.e., when adjacent literals of
the same format are concatenated the result is widened to the representation of
the other string literal also if one of the adjacent literals is a “narrow”
string. Here some examples:

 u"a" u"b" u"ab" U"a" U"b" U"ab" L"a" L"b" L"ab"

 u"a" "b" u"ab" U"a" "b" U"ab" L"a" "b" L"ab"

 "a" u"b" u"ab" "a" U"b" U"ab" "a" L"b" L"ab"

Any other catenations are implementation-defined (they might or might not be
supported).

6 Library functions

Speaking in general, it is desirable to free the C applications from character-based
operations and encourage string-based operations. The detail of the library for the
new character data types should be left to the future enhancements of the C standard.
This technical report specifies merely the 4 minimum character conversions among 3
character data types: char, char16_t and char32_t.

ISO/IEC PDTR 19769

 Version for Registration and Concurrent ballot 2003-05-12
 - 6 -

6.1 The mbrtoc16 function

Synopsis

#include <uchar.h>
size_t mbrtoc16(char16_t * restrict pc16,

const char * restrict s,
size_t n,
mbstate_t * restrict ps);

Description

If s is a null pointer, the mbrtoc16 function is equivalent to the call:

mbrtoc16(NULL, "", 1, ps)

In this case, the values of the parameters pc16 and n are ignored.

If s is not a null pointer, the mbrtoc16 function inspects at most n bytes beginning
with the byte pointed to by s to determine the number of bytes needed to complete
the next multibyte character (including any shift sequences). If the function
determines that the next multibyte character is complete and valid, it determines the
value of the corresponding wide character and then, if pc16 is not a null pointer,
stores that value in the object pointed to by pc16. If the corresponding wide character
is the null wide character, the resulting state described is the initial conversion state.

Returns
The mbrtoc16 function returns the first of the following that applies (given the
current conversion state):
0 if the next n or fewer bytes complete the multibyte character that

corresponds to the null wide character (which is the value stored).
between 1 and n inclusive

 if the next n or fewer bytes complete a valid multibyte character
(which is the value stored); the value returned is the number of
bytes that complete the multibyte character.

(size_t)(-2) if the next n bytes contribute to an incomplete (but potentially
valid) multibyte character, and all n bytes have been processed (no
value is stored).1

(size_t)(-1) if an encoding error occurs, in which case the next n or fewer bytes
do not contribute to a complete and valid multibyte character (no
value is stored); the value of the macro EILSEQ is stored in errno,
and the conversion state is unspecified.

1 When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a
sequence of redundant shift sequences (for implementations with state-dependent encodings).

ISO/IEC PDTR 19769

 2003-05-12 Version for Registration and Concurrent ballot
- 7 -

6.2 The c16rtomb function
Synopsis

#include <uchar.h>
size_t c16rtomb(char * restrict s,

char16_t c16,
mbstate_t * restrict ps);

Description

If s is a null pointer, the c16rtomb function is equivalent to the call c16rtomb(buf,
L'\0', ps) where buf is an internal buffer. If s is not a null pointer, the
c16rtomb function determines the number of bytes needed to represent the multibyte
character that corresponds to the wide character given by c16 (including any shift
sequences), and stores the multibyte character representation in the array whose first
element is pointed to by s. At most MB_CUR_MAX bytes are stored. If c16 is a null wide
character, a null byte is stored, preceded by any shift sequence needed to restore the
initial shift state; the resulting state described is the initial conversion state.

Returns

The c16rtomb function returns the number of bytes stored in the array object
(including any shift sequences). When c16 is not a valid wide character, an encoding
error occurs: the function stores the value of the macro EILSEQ in errno and returns
(size_t)(-1); the conversion state is unspecified.

6.3 The mbrtoc32 function

Synopsis

#include <uchar.h>
size_t mbrtoc32(char32_t * restrict pc32,

const char * restrict s,
size_t n,
mbstate_t * restrict ps);

Description
If s is a null pointer, the mbrtoc32 function is equivalent to the call:

ISO/IEC PDTR 19769

 Version for Registration and Concurrent ballot 2003-05-12
 - 8 -

mbrtoc32(NULL, "", 1, ps)

In this case, the values of the parameters pc32 and n are ignored.

If s is not a null pointer, the mbrtoc32 function inspects at most n bytes beginning
with the byte pointed to by s to determine the number of bytes needed to complete
the next multibyte character (including any shift sequences). If the function
determines that the next multibyte character is complete and valid, it determines the
value of the corresponding wide character and then, if pc32 is not a null pointer,
stores that value in the object pointed to by pc32. If the corresponding wide character
is the null wide character, the resulting state described is the initial conversion state.

Returns
The mbrtoc32 function returns the first of the following that applies (given the
current conversion state):
0 if the next n or fewer bytes complete the multibyte character that

corresponds to the null wide character (which is the value stored).
between 1 and n inclusive

 if the next n or fewer bytes complete a valid multibyte character
(which is the value stored); the value returned is the number of
bytes that complete the multibyte character.

(size_t)(-2) if the next n bytes contribute to an incomplete (but potentially
valid) multibyte character, and all n bytes have been processed (no
value is stored).2

(size_t)(-1) if an encoding error occurs, in which case the next n or fewer bytes
do not contribute to a complete and valid multibyte character (no
value is stored); the value of the macro EILSEQ is stored in errno,
and the conversion state is unspecified.

6.4 The c32rtomb function
Synopsis

#include <uchar.h>
size_t c32rtomb(char * restrict s,

char32_t c32,
mbstate_t * restrict ps);

Description
If s is a null pointer, the c32rtomb function is equivalent to the call c32rtomb(buf,
L'\0', ps) where buf is an internal buffer. If s is not a null pointer, the c32rtomb
function determines the number of bytes needed to represent the multibyte character

2 When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a
sequence of redundant shift sequences (for implementations with state-dependent encodings).

ISO/IEC PDTR 19769

 2003-05-12 Version for Registration and Concurrent ballot
- 9 -

that corresponds to the wide character given by c32 (including any shift sequences),
and stores the multibyte character representation in the array whose first element is
pointed to by s. At most MB_CUR_MAX bytes are stored. If c32 is a null wide character,
a null byte is stored, preceded by any shift sequence needed to restore the initial shift
state; the resulting state described is the initial conversion state.

Returns
The c32rtomb function returns the number of bytes stored in the array object
(including any shift sequences). When c32 is not a valid wide character, an encoding
error occurs: the function stores the value of the macro EILSEQ in errno and returns
(size_t)(-1); the conversion state is unspecified.

7 ANNEX A Unicode encoding forms: UTF-16, UTF-32

See Section 2.3 "Encoding Forms" and Section 3.8 "Transformations" in The Unicode
Standard, Version 3.0. Addison Wesley, 2000.

Online Edition
Section 2.3 Encoding Forms
http://www.unicode.org/uni2book/ch02.pdf

Section 3.8 Transformations
http://www.unicode.org/uni2book/ch02.pdf

Technical Report
http://www.unicode.org/reports/tr19/

See also the Annex C of ISO10646-1.

Online Edition
http://anubis.dkuug.dk/JTC1/SC2/WG2/docs/n2005/n2005-2.doc

