ISO/IEC JTC1/SC22/WG9 N544

Meeting Minutes
Revision 1 27 June 2014

Meeting #66 of ISO/IEC JTC1/SC22/WG9[footnoteRef:1] [1: Polydivisble number:: 3816547290]

Friday 27 June 2014

In accordance with Resolution 65-4 and the change of venue announcement (N542), meeting #66 was conducted as a teleconference. For those delegates that are attended the 19th International Conference on Reliable Software Technologies Ada-Europe 2014, a meeting room was available to join the teleconference. The meeting started at 09:23 on Friday 27 June 2014 (Paris time).

The detailed agenda for this meeting were circulated as N543.

[bookmark: _AGENDA][bookmark: Agenda]AGENDA
Opening Orders
National Body Reports and Introductions
Liaison Reports and Introductions
1. Ada Europe: Dirk Craeynest
1. SIGAda: Rick Sward
1. SC 23/OWGV: Erhard Ploedereder
1. Fortran, INCITS/PL22.3: Van Snyder
Convener's Report
Project Editor Reports (as needed)
1. IS 8652: Ed Schonberg and Randy Brukardt
1. IS 15291: Bill Thomas and Greg Gicca
1. TR 15942: Brian Wichmann
1. IS 18009: Erhard Ploedereder
1. TR 24718: Alan Burns
Rapporteur Group Reports (as needed)
1. Report of Ada Rapporteur Group: Jeff Cousins, Chair
1. Report of Annex H Rapporteur Group: Alan Burns, Chair
Review of Open Action Items and Unimplemented Resolutions
Committee as a Whole
· Update to Ada Annex and SPARK Annex to the WG 23 Technical Report on Vulnerabilities (Burns, Ploedereder)
· Corrigendum for Ada 2012 (Brukardt, Cousins, Taft, Tokar)
· Meeting locations (Tokar)
Unfinished Business
New Business
Scheduling of Future Meetings
Administrative Actions
Review of New Action Items
Review of New Resolutions
Final Consideration of Resolutions
Recess

[bookmark: _Opening_Orders,_Joyce][bookmark: Opening]Opening Orders, Joyce Tokar, Meeting Convenor
· Call to Order
· Appointment of Meeting Secretary
· Approval of Agenda
· Welcome and Administrative Arrangements - ECE has provided the meeting room for the attendees attending
· Approval of N539: Meeting #65 Minutes – Resolution 66-1
AGENDA

[bookmark: NBRs][bookmark: _National_Body_Reports]National Body Reports
Attendees:
National Body Representatives:
	Canada
	Brad Moore (HOD), Stephen Michell
	Report

	Germany
	TBA (HOD)
	No Report

	Italy
	Tullio Vardanega (HOD)
	No Report

	Portugal
	Miguel Pinho (HOD)
	Report

	Spain
	Juan Antonio de la Puente (HOD)
	Report

	Switzerland
	Patrick Gautschi (HOD)
	No Report

	UK
	Jeff Cousins (HOD), John Barnes
	Report

	USA
	TBD (HOD), Randy Brukardt, S. Tucker Taft
	No Report

[bookmark: Belgium][bookmark: _Canada][bookmark: Portugal][bookmark: Canada]
Canada
Canada is involved in exploring possibilities for improved parallelism support in ISO/IEC 652:2012. A study group including Luís Miguel Pinho from Portugal, Tucker Taft from the United States, Stephen Michell and Brad Moore from Canada were asked to see if a binding to the existing OpenMP standard would be feasible.

Our initial investigation found that official involvement in the OpenMP standard would be cost prohibitive. Such involvement would require significant vendor support, which would be difficult to justify in the current market without a high level of customer demand for such capabilities.
An unofficial binding could be created, but maintaining such a binding would be a challenge since the OpenMP standard itself is evolving and would be a moving target.

The interface to OpenMP in other languages involves annotating sequential code with compiler directives similar to pragmas in Ada. Applying this approach to provide a standardized, portable binding to OpenMP in Ada would likely require defining similar new pragmas and aspects in Ada, which would be difficult with only unofficial involvement with the evolving OpenMP standard. A vendor of course is free to provide an implementation defined binding to OpenMP, but such as binding would be non-portable and outside the scope of any standardization effort.

It is the belief of the study group that if support for parallelism is to be standardized in Ada, it should strengthen or at least maintain Ada's focus on program correctness. The compiler should be able to reasonably detect data races and other problems that can lead to erroneous execution.
The design of OpenMP and approaches currently taken in other languages have a different focus that is more about giving the programmer full control of the parallelism while less concerned about having the compiler detect potential problems with the programmer's code.

 We belief a better path for the Ada standard would be to eventually move towards capabilities that facilitate generation of implicit parallelism while strengthening capabilities for statically detecting and eliminating data races and other problems with the programmers code, regardless whether parallelism is desired or not. We believe that some additional syntax would provide better guidance to the compiler when parallelism is desired but implicit parallelism is not feasible.

Portugal
Although I will be in Paris I will not be able to participate in the WG9 meeting, as I am chairing a workshop on Friday. This is an unfortunate coincidence.

There is no new information concerning the restructuring of the standardization activities in Portugal (or associated fees). National work related to WG9 continues to be in direct connection with the NB. Portugal is a P member of SC22, but AFAIK WG9 is the only WG active in the SC.

The main focus of the technical work being developed has been in the parallelism extensions being proposed for Ada, which I hope is discussed at the WG9 and ARG meetings in Paris.

[bookmark: Spain]Spain
Ada Spain will distribute the Ada 2012 Reference Manual in print to all its members.

A meeting of the national WG group was held on May 29. The group supports the approval of the AIs submitted to the meeting.

Had a local meeting of SC 22 in Spain where there was considerable discussion on the status of WG23. The meeting was mostly influenced by the C++ community which are not interested in the continuation of WG23. Spain will abstain if there is a vote on the continuation of WG23 at the SC level.

The Spanish delegation for this meeting of WG 9 is Juan de la Puente (HOD).
[bookmark: UK]Switzerland
No Report
UK
The UK panel now conducts its business by e-mail.
The UK delegation is Jeff Cousins (HOD), John Barnes and Alan Burns for this meeting of WG 9.

John Barnes’ Ada 2012 Rationale was published, and publication of his new edition of Programming in Ada is imminent. Jeff Cousins reviewed and contributed to the chapter on Containers.

[bookmark: USA]USA
No Report

AGENDA
[bookmark: LiasonReports]Liaison Reports
[bookmark: AdaEurope]Ada-Europe Liaison Report:
Ada-Europe Liaison Representative, Dirk Craeynest
Ada-Europe would like to inform the WG9 convener that it will send a 2 person Ada-Europe liaison delegation to Meeting #66 in Paris, France, on Friday 27 November 2014.

The delegation consists of:
- Erhard Ploedereder
- Dirk Craeynest (presenter)

The next Ada-Europe conference will be held on June 22-26, 2015, in Madrid, Spain, and we reconfirm our usual hospitality agreement for WG9, ARG and HRG, as well as for WG23.

We reconfirm our willingness to support the Ada standardization related activities. As in previous years, Ada-Europe is willing to continue supporting the WG9 convener, hopefully together with SIGAda and the ARA.

[bookmark: _GoBack]We reported earlier the commercial publication of the Rationale in Springer's LNCS series (volume 8338). In the mean-time we also published the Reference Manual (LNCS volume 8339). Several national organizations bought a copy for each of their members, in other countries direct and indirect members decided on an individual basis.

Finally, we produced an e-book version of the RM. It is available freely from the Ada-Europe web-site, and was accessed approx. 160 times in the 4 weeks since it was announced.

[bookmark: WG23]SIGAda Liaison Report:
SIGAda Liaison Representative, David Cook
The next SIGAda meeting is planned for Portland, Oregon in October 18-21, 2014. Michael Feldman (George Washington University, Retired) has agreed to be the conference chair and Tucker Taft has agreed to be the Program Chair. In addition, Jeff Boleng has agreed to be Conference Treasurer. We are co-locating this conference in conjunction with SPLASH (Conference on Systems, Programming, Languages and Applications: Software for Humanity), sponsored by SIGPLAN.

Discussion about when and where WG 9 will meet at that SIGAda meeting: WG 9 usually meets in a meeting room after SIGAda’s conference is over. This is still the plan - we have not firmed up hotel rooms and dates yet. If not at the same venue, there are other places in Portland where it can be located. SIGAda understands that it would be best for WG 9 to meet after the end of SIGAda’s conference on the same day as SPLASH’s opening session.

ARG could run parallel with HILT’s tutorials, and perhaps ARG could meet during the weekend before HILT (when HILT’s tutorials are held). SIGAda Vice chair, Tucker Taft, would rather not miss the HILT tutorials. Perhaps WG 9 could meet on Sunday or perhaps on an evening. We understand that this would be more of a challenge, because ARG usually has one or two full days. We will be addressing these issues in the coming months.

Our Executive Committee consists of David A. Cook (Chair), Tucker Taft (Vice Chair), Clyde Roby (Secretary/Treasurer), and Dirk Craeynest (International Representative). Completing the Executive Committee are Ricky Sward (Past Chair) and Alok Srivastava (Editor of ACM Ada Letters).

WG 23 Liaison Report:
WG 23 Liaison Representative, Erhard Ploedereder
As reported at the last meeting, WG23 was without convenor after John Benito resigned in the Fall of 2013. The US had the prerogative of nominating a new convenor. Apparently after significant discussions over the products of the group and after a long delay, Tom Plum was
named convenor. His first communication to the OWG in March stated: "I have canceled the telecon meeting that would have been held on March 24-25 2014. At an appropriate time, I will distribute an agenda for a teleconference meeting. I do not intend to hold any face-to-face
meetings during 2014." OWG now had a convener who refused to convene the group. Later it became known that the US PL-22 Group (The US mirror to SC22) had taken the unprecedented step to ask for an SC22 ballot on closing WG23 without ever consulting the other national
bodies or the members involved in WG23. The ballot was withdrawn because interventions with JTC 1 convinced the JTC 1 leadership that the move by the secretary to issue such a letter
ballot on the request of a single NB with no discussion at plenary was setting a dangerous precedence for SC 22 and all of JTC 1. Also, it was rumored that it would receive only a single "Yes" vote from countries participating in SC22 and many "No" votes.

WG23 is still not back to technical work at this time. However, several telecons will now be scheduled by the convenor for July and August, posing an agenda that would, among other things, now ask the group to discuss its future. The non-US members of the group have long
decided in informal meetings that they want to continue the work and see no objective reason to disband as the US desires; even some US-members share this view. Hence any controversial discussion will depend on the position taken by other US members of WG23. New names
have shown up on the reconstituted list of WG23 members. Reasons for the fierce opposition to WG23 by US PL-N22 are not publicly known. Contingency plans have been made by non-US members, should the US succeed in shutting down WG23 after all, so that the technical work
will continue under ISO nevertheless after this very unpleasant interlude.

Meanwhile, an additional WG has asked to establish a new liaison relationship with WG23 to work on the Annexes.

The non-US members of WG23 have also informally agreed to encourage the liaised WGs to resume active work on the Annexes to counter any argument that no progress is being made on the Vulnerability TR.

The Vulnerability TR awaits corrections to the Annexes to match the state of the core document of version 2. Furthermore, the additional vulnerability descriptions which were given an extra section in version 2 will be integrated into the main section as always planned. Annex writers will be asked to provide their matching subsections. These updates, as already approved by SC22 in 2013 as future work in the unopposed business plan of WG23, may be complemented by the addition of new vulnerabilities. The latter is to be decided in future meetings of WG23.

The Code Signing Document, IS 17960, has reached DIS level, but, because of a deficiency discovered too late in the past standardized step to be repaired, it is expected to be returned to committee for this repair. The UK (and possibly Japan) has already asked officially for the repair.

FORTRAN, INCITS/PL22.3 Liaison Report:
FORTRAN, INCITS/PL22.3 Liaison Representative, Van Snyder
No Report

AGENDA

[bookmark: Convener]Convener's Report
Activities since the Last Session
There has been a change in the rules regarding ISO Working Group participation and ISO is requiring all working groups to move their documents to LiveLink.

Resolution 30A of last year’s JTC1 meeting changes the participants in WGs from NB-endorsed to individual participation. This introduces new problems with respect to the rules for conduction WG meetings, as we are experiencing with this meeting.

Resolution 30A – Change to the 2014 version of the Consolidated JTC 1 Supplement concerning WG Participation
Based on the discussions during this Plenary meeting and noting the importance of aligning JTC 1’s process with that of ISO/IEC in this area, JTC 1 approves the following changes to clause 1.12 and instructs the Editor of the Consolidated JTC 1 Supplement to incorporate these changes into the 2014 version of the Consolidated JTC 1 Supplement prior to publication.

1.12 Working groups
1.12.1 Technical committees or subcommittees may establish working groups for specific tasks (see 2.4). A working group shall report to its parent technical committee or subcommittee through a convenor appointed by the parent committee.

A working group comprises a restricted number of experts individually appointed by the P- members, A-liaisons of the parent committee and D-liaison organizations, brought together to deal with the specific task allocated to the working group. The experts act in a personal capacity and not as the official representative of the P-member or A-liaison organization (see 1.17) by which they have been appointed with the exception of those appointed by D-liaison organizations (see 1.17). However, it is recommended that they keep close contact with that P- member or organization in order to inform them about the progress of the work and of the various opinions in the working group at the earliest possible stage.

In JTC 1, national bodies that are P-members or O-members of the parent body and organizations in liaison Category A and Category C (see 1.17 of the ISO/IEC Directives, Part 1) may nominate appoint experts as members of a working group. Internal organizations (e.g. other subcommittees or other ISO or IEC technical committees, see 1.16 of the ISO/IEC Directives, Part 1) may also participate in working group meetings.

It is recommended that working groups be reasonably limited in size. The technical committee or subcommittee may therefore decide upon the total number of experts and also upon the maximum number of experts appointed by each P-member.

Once the decision to set up a working group has been taken, P-members and A- and D-liaison organizations shall be officially informed in order to appoint expert(s).

Working groups shall be numbered in sequence in the order in which they are established. When a committee has decided to set up a working group, the convenor or acting convenor shall immediately be appointed and shall arrange for the first meeting of the working group to be held within 3 months.

This information shall be communicated immediately after the committee meeting to the P-members of the committee and A- and D-liaison organizations, with an invitation to appoint experts within 6 weeks.

In JTC 1, the parent body shall assign responsibility for the administration of a working group to a convenor, if necessary supported by a secretariat. Any secretariat shall be either a national body or an organization endorsed by the national body. The national body must confirm in writing its consent to the arrangement before it can be effected. All WG Convenorships shall be for a nominal three-year terms ending at the next plenary session of the parent body following the three year term. The Convenor may be reappointed for additional three-year terms.

Germany, Japan, and Norway abstain

In 2012, the ISO Technical Management Board (TMB) adopted TMB Resolution 64/2012 which made the use of Livelink mandatory for engaging in ISO technical work. By default in JTC 1, the LiveLink documents of a WG will be visible to the world. Documents will only be protected if the WG specifically chooses a particular document to protect. For example, even after moving to LiveLink, WG 9 and WG 23 will be able to see each other's documents, and outsiders will be able to see those documents as well.

According to Henry Cuschieri, from ISO, by default in JTC 1, the LiveLink documents of a WG will be visible to the world. Documents will only be protected if the WG specifically chooses to protect a particular document. That being said, other WGs have tried to up load their documents and make them visible to their entire community without much success.

If I upload all of our documents myself, then the date on the documents will become the date that I upload them. On the other hand, it is possible to work with ISO to upload the documents for us and preserve the dates. John Benito has been working on a solution using DropBox. Therefore, although there may still be some glitches in the implementation, we will need to move our documents up to LiveLink soon.

WG 9 agreed with the stabilization of the PCTE Ada binding standard ISO/IEC
13719-3:1998.

Bill Rinehuls, former SC 22 Chair, died 25 Mar 2014.
Welcome
Goals for this Meeting
The major objectives for this meeting are:

1. Ada 2012 proposals – discussion during the Committee as a Whole session
2. Status on WG 23 and their Technical Report on Vulnerabilities – discussion during the Committee as a Whole session
3. Meeting locations – discussion during the Committee as a Whole session

AGENDA

[bookmark: PrjEd][bookmark: ASIS_15291]Project Editor Reports
ISO/IEC 15291 (ASIS)
ISO/IEC 18009 (Conformity Assessment of an Ada Language Processor)
No comments have been received on the Standard since the last report.
Hence there are no activities to report.
IS 8652 (Information Technology--Programming Languages—Ada)
TR 15942 (Guidance for the Use of Ada in High Integrity Systems)
TR 24718 (Guide for the Use of the Ravenscar Profile in High Integrity Systems)

AGENDA

[bookmark: RapRpt]Rapporteur Reports

[bookmark: ARG]Rapporteur Report ARG:
The Ada 2012 standard has already generated 120 Ada issues. The ARG meeting in Pittsburgh during November 2014 discussed all of the “regular” (i.e. on the current standard, not the potential Ada 2020 amendment) AIs on the agenda. (The agenda excluded a few AIs still awaiting input). Seven amendment AIs were also discussed. Most AIs achieved some form or other of interim approval; a couple were rejected.

As of 3 June 2014, 32 AIs have been approved by WG 9, 12 by the ARG but not yet by WG 9 and 69 are work in progress. Of the 69, 29 are ready for discussion by the ARG, 25 are candidate amendments, and the rest are pending further input.

A number of AI's have completed editorial review and are ready for approval by WG 9. The list follows. As usual, full text of the AI's can be found at www.ada-auth.org/ais.html (this list was distributed on 9 May 2014):

AI12-0031-1/05 2014-05-08 -- All_Calls_Remote and indirect calls
AI12-0036-1/03 2014-05-08 -- The actual for an untagged formal derived type cannot be tagged
AI12-0052-1/04 2014-05-08 -- Implicit objects are considered overlapping
AI12-0065-1/02 2013-12-17 -- Descendants of incomplete views
AI12-0071-1/05 2013-12-13 -- Order of evaluation when multiple predicates apply
AI12-0081-1/01 2013-10-21 -- Real-time aspects need to specify when they are evaluated
AI12-0082-1/03 2014-05-08 -- Definition of "dispatching domain"
AI12-0084-1/01 2013-10-28 -- Box expressions in array aggregates
AI12-0085-1/03 2014-05-08 -- Missing aspect cases for Remote_Types
AI12-0088-1/03 2013-12-06 -- UTF_Encoding.Conversions and overlong characters on input
AI12-0089-1/03 2014-05-08 -- Accessibility rules need to take into account that a generic function is not a function
AI12-0093-1/04 2014-05-08 -- Iterator with indefinite cursor

For the time being, work on the ASIS standard has been paused.

Future meetings are scheduled for 27-29 June 2014 in Paris, France, in conjunction with the Ada-Europe 2014 conference, and 18-19 October 2014 in Portland, Oregon, U.S.A., in conjunction with the HILT (formerly SIGAda) 2014 conference.

Continuation of the ARG: Resolution 66-2.

Resolution for the approval of the AI-s: Resolution 66-5.
[bookmark: HRG]
Rapporteur Report HRG:
The HRG has not met since the last meeting of WG9. Confusion over the state of the Vulnerabilities report meant that we have not worked further on the Ada aspects of this report. HRG will return to this work if and when WG9 sanction the work.

Continuation of the HRG: Resolution 66-3.

AGENDA

[bookmark: OpenAIs]Open Action Items and Unimplemented Resolutions
This is the "To Do" list for WG9. Some are informal action items assigned to various participants. Some are formal resolutions, which are not yet implemented. Some items are simply in suspense awaiting action by other groups.
Action Item 50-1:	
Investigate the possibility that ANSI might be willing to sell the revised ASIS standard ISO/IEC 15291:200x inexpensively, i.e. at a price similar to that of programming language standards -- $18.
Status: Open. It has been surprisingly difficult to obtain the appropriate contact information. Bill Thomas will look into this further and get back to us at the next meeting (#54).
ANSI does not set the prices. If they get a standard from ISO, then ISO sets the price and ANSI must conform to the prices set by ISO. ANSI could designate another organization to sell an ISO standard, but the ISO price must still be satisfied.
Is there an alternative to investigate here to distribute non-standard materials? Also look into the steps that John Benito has taken to distribute the C standard.
Bill Thomas will investigate further and report back at meeting #63.
Stephen Michell will investigate further and report back at meeting #67.

Action 63-3

Determine if the IRTAW group is willing to update the ISO/IEC 15942 standard to be in alignment with Ada 2012. (Tullio Vardanega)

Status: Open
Discussion: Tullio has talked with Alan Burns but no further action has been taken at this time. Revisit at the next meeting.

Action 63-6

Dan Eilers will work with JP Rosen to provide a preliminary list of the issues that prevent public packages, libraries, and bindings from working on all compilers and provide this to Tucker Taft.

Discussion: No action at this time.

Action 63-7

Find out what compilers are validated against what versions of the Standard (Randy Brukardt, Dirk Craeynest)

Discussion: The question is how to update the “official” list of validated compilers to document what is available for which version of Ada. The ARA currently posts this list. Who should post this list? How are the self validations certified? Ada Belgium could produce this list and then the ARA could link to the Ada Belgium.

Status: Closed see Resolution 66-6.
Action 64-1: JP Rosen (France) will investigate the possibilities of conducting Meeting #66 at AFNOR and report back to WG 9 no later than Meeting #65.
Discussion: Closed – WG 9 decided during meeting #64 that we would meet at the Ada-Europe conference venue. Further discussion during this meeting confirmed the decision to meet at the Ada-Europe conference venue and invite the AFNOR membership to participate in the meeting.
Resolution 64-12:
ISO/JTC 1/SC 22/WG 9 will contact ISO/JTC 1/SC 22/WG 14 to enquire about developing a cooperative effort on parallel programming models, e.g., CPLEX, and report back to ISO/JTC 1/SC 22/WG 9 at Meeting #65.

Discussion: The work on CPLEX is being monitored by Tucker Taft, Steve Michell, Brad Moore, and Miguel Pinho. See Action Item 65-1.

Action Item 65-1: Taft, Moore, Michell, Pinho to develop and present plan on the way forward for WG 9 with respect to the development of an API to OpenMP and/or CPLEX to be presented at the ARG meeting in June 2014.

Discussion: Have a report that has been sent to the ARG. It may be worth creating an Ada binding to the OpenMP runtime. Cannot claim OpenMP conformance unless you have gone to the OpenMP consortium with the binding and they have accepted it However, OpenMP does not have the concept of a binding to the OpenMP runtime. So there may not be a need to get any conformance approval from OpenMP.
For interoperability, the OpenMP runtime binding may be sufficient.

The ARG is going to review the information that has been collected and determine if there is any action that needs to be taken.

Status: Closed

[bookmark: ai2]Action Item 65-2: The Convenor of WG 9 will send a letter to AFNOR inviting them to attend the meeting at the Ada Europe conference location.

Discussion: AFNOR was contacted followed by considerable confusion ending in this meeting being conducted virtually.

Status: Closed

[bookmark: ai3]Action Item 65-3: The Convenor will contact the FORTRAN Convenor and Richard Cook to determine what the process is for the generation of corrigenda and new revision and email the findings to the WG.

Discussion: From John Reid, FORTRAN Convenor, “Each interpretation begins with a request from someone (often a committee member) for resolution of what appears to be an ambiguity or
error in the standard. It has to be submitted in a defined format, see examples in the attached file.
The submitter often includes a draft response and edits. The process that is then followed is explained in Part 1 of the attached file.

Having letter ballots (usually for one month) of J3 and then WG5 is designed to ensure that we really have got the interpretation right. With this procedure, we have never had any problems with the SC22 vote on a submitted corrigendum and there have been very few cases (not zero, I am sorry to say) where we have realized that we had something wrong in a corrigendum.

We send the corrigendum to ISO as a pdf document (example attached) and it is published without change except for the title page and headers and footers. In the past, we have had problems with someone at ISO thinking that the text can be improved. The trouble is that the slightest word change, or even font change, can alter the meaning.

We aim to send a corrigendum annually.”

From Richard Cook, “Clause 3 of JTC 1 Standing Document 8 describes the procedure for correction of defects.

Note that ITTF does not maintain a consolidated version of standards with published Amendments and Corrigenda applied.”

Status: Closed

AGENDA

[bookmark: CAAW]Committee as a Whole
· Status on WG 23 and their Technical Report on Vulnerabilities (Burns, Ploedereder)
Discussion: WG 9 should continue on the WG 23 Technical Report. Need a strong statement from WG 9 to continue to do updates on the existing Annex correcting the content with respect to Ada 2012 and add the six additional vulnerabilities.
The new convenor of WG 23 (Tom Plum) has invited new US members to WG 23.
If the US does not want to continue work in WG 23, then SC 22 should appoint a new convenor from a National Body that supports the work of WG. Then the US would not need to continue its support of the WG 23. If this does not succeed, then the plans for another organization to pick up the work of WG 23 will be executed.
Resolution 66-7:
· SPARK as an ISO Standard (Dewar)
Discussion: This topic has been deferred.
· Maintenance of Ada 2012 (Brukardt, Cousins, Taft)
Discussion: Should there be a yearly corrigendum? Or should these be developed and delivered every two years, two and a half years, or three years? Then a new edition may be produced in five years. Should there be a corrigendum and then an amendment before producing a new edition?
Need a corrigendum to correct errors in Ada 2012 and other issues associated with the completeness of the language.
Over the next twelve months, the ARG will produce a corrigendum for Ada 2012 and deliver it to WG 9. Resolution 66-8.
· Meeting locations (Tokar)
Discussion When a meeting of WG 9 is conducted, it must be approved by the host nation national body.

[bookmark: UBiz]Unfinished Business
[bookmark: NBiz]New Business
[bookmark: NextMeet]Scheduling of Future Meetings
The next meeting of WG9 will be held in conjunction with High Integrity Language Technology 2014 (HILT 2014), on the morning of 20 Oct 2014 (07:00-10:00 PDT) in Portland OR, USA.

The next meeting of WG9 will be held in conjunction with the 20th International Conference on Reliable Software Technologies Ada-Europe 2015, Friday morning 26 June 2015 in Madrid, Spain

Resolution 66-4

AGENDA

[bookmark: Admin]Administrative Actions
[bookmark: r1]Resolution 66-1:
The minutes of Meeting #65 contained in document N539 are approved.
[bookmark: r2]Resolution 66-2:
ISO/IEC JTC 1/SC 22/WG 9 continues its until the next plenary meeting and expresses its grateful appreciation to the Rapporteur and the members for their continuing service.

Jeff Cousins (UK) is appointed as Rapporteur.

The membership of the ARG is designated to be: Steve Baird (SIGAda), John Barnes (UK), Randy Brukardt (US), Alan Burns (UK), Jeff Cousins (UK), Robert Dewar (US), Gary Dismukes (US), Robert Duff (US), Pascal Leroy (TBD), Brad Moore (Canada), Erhard Ploedereder (Ada-Europe), Jean-Pierre Rosen (TBD), Ed Schonberg (US), Tucker Taft (US), and Tullio Vardanega (Italy).

The Convenor of WG 9 is authorized to act for WG 9 between meetings in appointing additional members of the ARG. In doing so, she shall consult with the Rapporteur and the National Body or Liaison Organization nominating the member.

Rapporteurs are permitted to allow other individuals to observe the deliberations of the Rapporteur Group. The admission of observers and the extent of participation permitted to observers are at the discretion of the Rapporteur with the concurrence of the membership of the Rapporteur Group.
[bookmark: r3]Resolution 66-3:
ISO/IEC JTC 1/SC 22/WG 9 continues its Annex H Rapporteur Group until the next plenary meeting and expresses its grateful appreciation to the Rapporteur and the members for their continuing service.

Alan Burns (UK) is continued as Rapporteur.

[bookmark: OLE_LINK1]The membership of the HRG is designated to be: Steve Baird (US), John Barnes (UK), Patrick de Bondeli (TBD), Alan Burns (UK), Rod Chapman (UK), Robert Dewar (US), Gary Dismukes (US), Bob Duff (US), Michael Gonzalez Harbour (Spain), Stephen Michell (Canada), Brad Moore (Canada), Miguel Pinho (Portugal), Erhard Ploedereder (Ada-Europe), Juan Antonio de la Puente (Spain), George Romanski (SIGAda), Jean-Pierre Rosen (TBD), S. Tucker Taft (US), Tullio Vardanega (Italy), and Brian Wichmann (UK).

The Convenor of WG 9 is authorized to act for WG 9 between meetings in appointing additional members of the HRG. In doing so, she shall consult with the Rapporteur and the National Body or Liaison Organization nominating the member.

Rapporteurs are permitted to allow other individuals to observe the deliberations of the Rapporteur Group. The admission of observers and the extent of participation permitted to observers are at the discretion of the Rapporteur with the concurrence of the membership of the Rapporteur Group.
[bookmark: _Resolution_53-4:][bookmark: r4]Resolution 66-4
ISO/IEC JTC 1/SC 22/WG 9 schedules future meetings as follows:

Meeting #67, in conjunction with High Integrity Language Technology 2014 (HILT 2014), 22 Oct 2014 in Portland OR, USA.
Meeting #68 in conjunction with the 20th International Conference on Reliable Software Technologies Ada-Europe 2015, Friday morning 26 June 2015 in Madrid, Spain

AGENDA
[bookmark: NewWork][bookmark: r52_6][bookmark: NewActions]Review of New Action Items

AGENDA
Review of New Resolutions
[bookmark: r5]Resolution 66-5:
AI12-0031-1/05 2014-05-08 -- All_Calls_Remote and indirect calls
AI12-0036-1/03 2014-05-08 -- The actual for an untagged formal derived type cannot be tagged
AI12-0052-1/04 2014-05-08 -- Implicit objects are considered overlapping
AI12-0065-1/02 2013-12-17 -- Descendants of incomplete views
AI12-0071-1/05 2013-12-13 -- Order of evaluation when multiple predicates apply
AI12-0081-1/01 2013-10-21 -- Real-time aspects need to specify when they are evaluated
AI12-0082-1/03 2014-05-08 -- Definition of "dispatching domain"
AI12-0084-1/01 2013-10-28 -- Box expressions in array aggregates
AI12-0085-1/03 2014-05-08 -- Missing aspect cases for Remote_Types
AI12-0088-1/03 2013-12-06 -- UTF_Encoding.Conversions and overlong characters on input
AI12-0089-1/03 2014-05-08 -- Accessibility rules need to take into account that a generic function is not a function
AI12-0093-1/04 2014-05-08 -- Iterator with indefinite cursor
These AIs are hereby approved by WG9.
[bookmark: r6]
Resolution 66-6: ISO/IEC JTC 1/SC 22/W 9 expresses support and thanks to Ada Belgium for proposing to collect the data regarding available compilers and the version of Ada for which they claim conformance; and make the data available to the community.

Resolution 66-7: A small team of WG 9 members (Taft, Ploedereder, Burns, Tokar) will produce an update of the Ada Annex and the SPARK Annex to the WG 23 Technical Report on Vulnerabilities. The HRG will review the Annexes as they are available. The HRG will provide a draft for review at the next meeting (#67) of WG 9.

Resolution 66-8: ISO/IEC JTC 1/SC 22/WG 9 directs the ARG to produce a corrigendum for Ada 2012 and deliver it to WG 9 by meeting #69 (Fall 2015).

AGENDA
Final Consideration of Resolutions
Appreciation
[bookmark: _Resolution_56-9:][bookmark: r9][bookmark: r7]Resolution 66-9:
ISO/IEC JTC 1/SC 22/W 9 expresses its grateful appreciation to Ada Europe and ECE for their gracious accommodations in providing a meeting room for those attending the teleconference for Meeting #66.
[bookmark: rE][bookmark: rb]Resolution 66-10:
ISO/IEC JTC 1/SC 22/W 9 expresses its grateful appreciation to Clyde Roby for his continuing service in maintaining the WG 9 Web Page.
[bookmark: rG][bookmark: rf][bookmark: rc][bookmark: rD]Resolution 66-11:
ISO/IEC JTC 1/SC 22/WG 9 expresses its grateful appreciation to Joyce Tokar for convening Meeting #66.

AGENDA
[bookmark: NewAIs][bookmark: NewResolutions][bookmark: recess]Recess –
The meeting ended at <TBD>. The Convenor recessed the meeting subject to her call. HODs may anticipate email ballots to be conducted during the months between this meeting and the next one.
AGENDA
[bookmark: ai1]
[bookmark: References]REFERENCES
Relevant WG9 Documents
ISO/IEC 8652:1995 Information Technology--Programming Languages—Ada
ISO/IEC 8652:1995/COR.1:2001, Technical Corrigendum to Information Technology--Programming Languages—Ada
ISO/IEC 8652:1995/AMD.1:2007, Amendment to Information Technology--Programming Languages—Ada
ISO/IEC 8652:2012 Information Technology--Programming Languages—Ada
[bookmark: N388]N388, Request for Subdivision of Project ISO/IEC 8652:1995
[bookmark: N406]N406, Procedures of the Ada Rapporteur Group
[bookmark: N412]N412, Instructions to the Ada Rapporteur Group from SC22/WG9 for Preparation of the Amendment to ISO/IEC 8652, 10 October 2002
[bookmark: N414]N414, Notification of Approval of Category C Liaisons between SC22/WG9 and Ada-Europe and SIGAda
[bookmark: N416]N416, Charter of the Annex H Rapporteur Group (HRG)
[bookmark: N417]N417, Charter of the ASIS Rapporteur Group (ASISRG)
[bookmark: N423]N423, Convener's Comments on Instructions to the Ada Rapporteur Group from SC22/WG9 for Preparation of the Amendment to ISO/IEC 8652, December 2002
[bookmark: N437]N437, ARG Rapporteur's Proposal for Defining Scope of Amendment to ISO/IEC 8652:1995, 9 April 2004
[bookmark: N456]N456, Convener Proposal for the Revision of the ASIS Standard, ISO/IEC 15291
[bookmark: N457]N457, Approved Plan for the Revision of the ASIS Standard, ISO/IEC 15291
[bookmark: N459]N459, Disposition of Informal Comments Received on Editor's Draft of Amendment, 23 March 2006
[bookmark: N460]N460, Editor's Draft, Amendment 1 to ISO/IEC 8652, March 2006
[bookmark: N462]N462, JTC1 Directives, 5th edition, Version 2, April 2006 (JTC001-N-8122)
[bookmark: N463]N463, ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards
[bookmark: N464]N464r, 2nd Preliminary draft New Work Item Proposal for the Revision of ISO/IEC 15291, ASIS
[bookmark: N465]N465, Response of ISO/IEC JTC1/SC22/WG9 to SC22 Resolution 5-15
[bookmark: N467]N467, Submission of ISO/IEC 8652:1995/FPDAM 1 to SC22 for FPDAM ballot
[bookmark: N468]N468, Example approach for structuring the revised ASIS Standard
[bookmark: N472]N472, Proposal to Revise ISO/IEC 15291, Information technology - Programming languages - Ada Semantic Interface Specification (ASIS)
N477, Canadian Contribution, Initial Work Scope Summary for updating Ada POSIX Bindings IS 14519:2001 to POSIX Draft IS 9945:2008 and Ada 2005.
N479, SIGAda contribution, Clyde Roby, Notes of Birds-of-a-Feather session on POSIX-Ada Binding, conducted at SIGAda 2006, November 15, 2006, Albuquerque, NM, USA.
N489, OWGV Summary 2008
N490, Minutes, Meeting #54 of ISO/IEC JTC1/SC22/WG9, Friday, 20 June 2008, Venice, Italy
N491, Convener's Report, 2008, ISO/IEC JTC 1/SC 22/WG 9 (Ada)
N492, Announcement and Draft Agenda, Meeting #55 of ISO/IEC JTC 1/SC 22/WG 9, Thursday, 30 October 2008, Portland, Oregon, USA
N493, Detailed Draft Agenda, Meeting #55 of ISO/IEC JTC 1/SC 22/WG 9, Friday, 30 October 2008, Portland, Oregon, USA
N494, Draft Meeting Minutes, Meeting #55 of ISO/IEC JTC1/SC22/WG9, Thursday, 30 October 2008, Portland, Oregon, USA
N495, Draft Agenda, Meeting #56 of ISO/IEC JTC 1/SC 22/WG 9, Friday, 12 June 2009, Brest, France
N496, Detailed Agenda, Meeting #56 of ISO/IEC JTC 1/SC 22/WG 9, Friday, 12 June 2009, Brest, France
N497, Meeting Minutes, Meeting #56 of ISO/IEC JTC-1/SC-22/WG 9, Friday, 12 June 2009, Brest France
N498, Instructions to the Ada Rapporteur Group from SC 22/WG 9 for Preparation of Amendment 2 to ISO/IEC 8652
N499, Announcement and Draft Agenda, Meeting #57 of ISO/IEC JTC1/SC22/WG9, Thursday, 5 November 2009, Tampa Bay, Florida
N500, Convener's Report, 2009, ISO/IEC JTC 1/SC 22/WG 9 (Ada)
N501, Detailed Agenda, Meeting #57 of ISO/IEC JTC1/SC22/WG9, Thursday, 5 November 2009, Tampa Bay, Florida
N502, Meeting Minutes, Meeting #57 of ISO/IEC JTC-1/SC-22/WG 9, Thursday 5 Nov 2009 in Tampa Bay, Florida.
N503, Announcement and Draft Agenda, Meeting #58 of ISO/IEC JTC1/SC22/WG9, Friday, 18 June 2010
N504, Detailed Agenda, Meeting #58 of of ISO/IEC JTC1/SC22/WG9, Friday, 18 June 2010
N505, ARG Rapporteur’s Proposal for Defining Scope of Amendment 2 to ISO/IEC 8652:1995, 4 June 2010
N506, Draft Letter to the Community
N507, Annex Ada to ISO/IEC JTC 1/SC 22/WG 23 N0238, Guidance to Avoiding Vulnerabilities in Programming Languages through Language Selection and Use, Draft 1, 20 June 2010
N508, Draft Minutes, Meeting #58 of ISO-IEC JTC-1 SC-22-WG 9, Friday, 18 June 2010, Valencia, Spain
N509, Convener's Report, 2009, ISO/IEC JTC 1/SC 22/WG 9
N510, Request for Subdivision of Project ISO/IEC 8652:1995
N511, Announcement and Draft Agenda, Meeting #59 of ISO/IEC JTC 1/SC 22/WG 9, Thursday afternoon, 28 October 2010, Fairfax, VA, USA
N512, Ada Annex for the WG23 Technical Report on Software Vulnerabilities, Draft 2.
N513, Draft Detailed Agenda, Meeting #59 of ISO-IEC JTC-1 SC-22-WG 9, Thursday, 28 October 2010, Fairfax, VA
N514, Draft Minutes, Meeting #59 of ISO-IEC JTC-1 SC-22-WG 9, Thursday, 28 October 2010, Fairfax, Virginia, USA
N515, Announcement and Draft Agenda, Meeting #60 of ISO/IEC JTC 1/SC 22/WG 9, Friday morning 24 June 2011, Edinburgh, UK.
N516, ISO/IEC JTC 1/SC 22/WG 23 N0296 – Ada Annex to WG23 TR on Software Vulnerabilities.
N517, ISO/IEC JTC 1/SC 22/WG 23 N0275 – SPARK Annex to WG23 TR on Software Vulnerabilities.
N518, Draft Detailed Agenda, Meeting #60 of ISO-IEC JTC-1 SC-22-WG 9, Friday, 24 June 2011, Edinburgh, UK.
N519, Draft Minutes, Meeting #60 of ISO-IEC JTC-1 SC-22-WG 9, Friday, 24 June 2011, Edinburgh, UK.
N520, Convenor's Report, 2010, ISO/IEC JTC 1/SC 22/WG 9 (Ada).
N521, Announcement and Draft Agenda, Meeting #61 of ISO/IEC JTC 1/SC 22/WG 9, Thursday afternoon, 10 November 2011, Denver, CO, USA.
N522, Draft Minutes, Meeting #61 of ISO-IEC JTC-1 SC-22-WG 9, Thursday, 10 November 2011, Denver, CO, USA.
N523, Responses to JTC 1/SC 22/WG 9/National Body Comments on Draft revision of the Ada Standard
N524, Detailed Agenda Meeting #62 of ISO/IEC JTC1/SC22/WG9 Friday 15 June 2012 in Stockholm, Sweden.
N525, Draft Minutes, Meeting #62 of ISO-IED JTC-1 SC-22 WG-9. Friday 15 June 2012, Stockholm, Sweden.
N526, ISO/IEC JTC 1/SC 22 N Date: 2012-03-30 ISO/IEC CD 8652.
N527, ISO/IEC JTC 1/SC 22 N Date: 2012-05-18 ISO/IEC WD 8652.
N528, ISO/IEC JTC 1/SC 22 N Date: 2012-06-06 ISO/IEC DIS 8652.
N529, Convenor's Report, 2011, ISO/IEC JTC 1/SC 22/WG 9 (Ada).
N530, Meeting #63 Announcement and Draft Agenda.
N531, Detailed Agenda, Meeting #63 of ISO/IEC JTC 1/SC 22/WG 9, Friday 7 Dec 2012, Boston, USA
N532, Meeting Minutes Meeting #63 of ISO/IEC JTC 1/SC 22/WG 9 Friday 7 December 2012 in Boston, USA
N533, Meeting #64 Announcement and Draft Agenda, Friday 14 June 2013, Berlin, Germany
N534, Draft Detailed Agenda, Meeting #64 of ISO/IEC JTC 1/SC 22/WG 9, Friday 14 June 2013 in Berlin, Germany
N535, Draft Meeting Minutes Meeting #64 of ISO/IEC JTC 1/SC 22/WG 9, Friday 14 June 2013 in Berlin, Germany
N536, Convenor's Report, 2012, ISO/IEC JTC 1/SC 22/WG 9 (Ada)
N537, Meeting #65 Announcement and Draft Agenda
N538, Draft Detailed Agenda, Meeting #65 of ISO/IEC JTC1/SC22/WG9, Friday 15 November 2013 in Pittsburgh, PA, USA
N539, Draft Meeting Minutes Meeting #65 of ISO/IEC JTC 1/SC 22/WG 9, Friday 15 November 2013 in Pittsburgh, PA, USA
N540, Meeting #66 Announcement and Draft Agenda
N541, Convenor's Report to INCITS
N542, Meeting #66 Change of Venue Announcement
N543, Detailed Agenda, Meeting #66 of ISO/IEC JTC 1/SC 22/WG 9, Friday 27 June 2014

2014-05 Presentation to SC Chairs and Secs re WG participation r2 (1).pdf

Presentation to JTC 1 SC Chairs
and Secretaries

Expert representation in working groups
Use of Livelink (ecommittees)

2014-05-12

Part 1: Expert Representation
ISO/IEC Directives, part 1 - Consolidated JTC 1
Supplement 2014 – (1.12 Working groups)
A working group comprises a restricted number of experts
individually appointed by the P-members*, A-liaisons of
the parent committee and D-liaison organizations,
brought together to deal with the specific task allocated to
the working group. The experts act in a personal
capacity and not as the official representative of the P-
member or A-liaison organization (see 1.17) by which
they have been appointed with the exception of those
appointed by D-liaison organizations (see 1.17).

* and O-members in JTC 1

“some experts do not always make the difference between an
informal pool of NB’s perception during a WG meeting and an
official NB position expressed in an SC Plenary or a ballot.”

- ITTF staff can help explain the distinction to groups of experts
as needed.

- Experts are appointed by National Bodies.
- Expressing a national body position at a WG meeting seems

premature since the draft is, by definition, not mature
- A national body position at a WG meeting is, by definition, not

binding since no decisions are taken at the WG level.

“... in a WG some countries may have many experts while at the
SC level it is the ‘one country - one vote’ system that is used. A

WG consensus may not be an SC consensus if the WG
conveners and experts are not conscious of this dynamic.”

- There are provisions in the Directives that permit a committee
to limit the number of experts in a working group if it becomes
necessary to do so.

- The consensus reached at the WG level is to move the
document to the CD stage. Any further consensus is
determined at the committee (TC or SC) level, with input from
the WG as requested.

“We understand that there are no national delegations to WG
meetings – but some national hosts have in the past several

months required lists of attendees from our national body as a
security measure to gain entrance in to the building. BSI and

DIN are recent examples. Given that there are no national
delegation lists can they do this and if so how would national

body accomplish this?”

- It is appropriate that any organization hosting a meeting
would need an RSVP from prospective attendees in order to
know how to plan the event.

- The list of Working Group members available in Livelink
shows the maximum number of attendees.

- The Convenor may urge all experts to respond to the host
directly, or a National Body might wish to collect the names of
experts and provide them to the host.

2. Meeting planning is an issue for any host. If there are no
delegation lists how does a host know the size of the meeting to

expect and plan for since it should not be assumed that all
experts will attend every face to face meeting?

Please see previous slide.

“My policy is that it is at the «project editors» discretion to invite
individual experts to contribute at different stages of the

development a standard. My goal is that we develop standards
of highest possible quality, and to achieve that we need to have

the best minds contributing to our work.”

- There is no such thing as «my policy». There is only one
policy, set by the TMB and SMB and shown in the ISO/IEC
Directives (and associated Supplement).

- Project Editors do not have the right to choose who to invite
to meetings or who can contribute to a draft. All
registered WG experts can participate in all WG meetings
and contribute to a draft.

- Project editors EXECUTE the DECISIONS of the committee.
They DO NOT act WITHOUT the expressed direction from
the committee.

Questions: What is the correct procedure to approve the
progressions of projects such as WD -> CD (2) CD -> DIS, (3) DIS

-> FDIS and > (4) DIS or FDIS -> Publication?? Are they by WG
consensus only? Are they by SC Resolutions? Are they by

ballot results only without any Resolutions?

WD -> CD
The Working Group retains the Working Draft until it is happy that it is ready to proceed
to the Committee Draft stage at which time the draft is relayed to the parent committee
secretary for distribution as a CD ballot.
CD -> DIS
The committee (TC or SC) retains the Committee Draft until it is happy that it is ready to
proceed to the Draft International Standard (DIS) stage at which time the draft is relayed
to ISO CS for distribution to all members as a DIS ballot.
DIS -> FDIS
The results of the DIS ballot and the comments submitted will determine whether an
FDIS ballot is needed. The committee Chair and Secretary have a role in determining
this.
DIS or FDIS -> Publication
Same as above

If there are no “votes” at the WG level, how do you know when
to progress a draft to the next stage? How does the SC

progress the document after the ballot closes? Who holds the
BRM, and who attends it?

- A Working Draft is considered ready to progress to the
next stage when consensus has been reached in the
Working Group to do so. The Convenor determines that
consensus has been reached. Consensus does not imply
unanimity.
- The committee (TC or SC) is responsible for conducting
the CD ballot. Comments received may be remanded to a
Working Group for review and resolution. The
recommendation of the Working Group is provided to the
committee.

“Is it appropriate to have NB delegations in WGs? Is
it appropriate for NB contributions to be submitted to

WGs?”

- See slide 2 for the exact wording shown in the ISO/IEC
Directives regarding participation in Working Groups. Experts
in working groups do not attend meetings as members of a
NB delegation.

- The participants in a Working Group are experts so it stands
to reason that the contributions into WG meetings would
come from experts. It is not appropriate for NB contributions
to be submitted to WGs.

Part 2: Use of Livelink
.TECHNICAL MANAGEMENT BOARD RESOLUTION 64/2012
Adopted at 54th meeting of the Technical Management Board, Geneva (Switzerland),
13-14 June 2012

Policy on the use of ISO IT Services for ISO technical work
The Technical Management Board,
Approves the proposed policy on the use of IT Services for ISO
technical work discussed at its June 2012 meeting with the
modification that e-Committees is also mandatory for working groups,
and
Requests the ISO Central Secretariat to take the necessary steps to
implement and communicate this policy.

Policy on using ISO IT Services for ISO
Technical Work

https://connect.iso.org/x/ToAw

https://connect.iso.org/x/ToAw

“With regards to the mandatory use of livelink, am I right in
thinking that both the DIN and AFNOR livelink are considered
part of the general ISO service in that they share information

with the Global Directory? i.e. if you are registered on the
Global Directory then you can access the DIN and AFNOR

service.”

- Yes, DIN and AFNOR Livelink are considered part of the ISO
service

- The Task Force for Seamless IT Environment (TFSITE) has
worked to make all three servers as close in terms of
functionality as possible

- When experts are registered in the Global Directory, it does
not matter where a committee works: experts will get
automatic access to ISOTC, DIN or AFNOR Livelink as
appropriate

“It seems that Livelink doesn't distribute a new announcement
to all WG members in Global Directory when a new document is
stocked in WG folder. (Yes, all WG members can later access to
the WG documents. But WG convener has to send an
announcement each time he puts a new document.) Is it
possible to set an automatic e-mail announcement to WG
members when a document is stocked in WG folder?”

- When a document is uploaded, it is first not visible to
committee members. A notification is required through the N-
documents notification feature

- There are no automatic notifications, however a WG
Convenor can choose when and how many documents to
notify at a time. Notifying a document takes 3 clicks.

“These individual experts to not need access to Livelink, they
will receive relevant documents from the project editors.”

- It is not the role of the Project Editor to distribute documents
to a select group of experts.

- All registered experts have access to Livelink. To assure
transparency, this is the only tool that should be used to
distribute documents.

- No-one other than registered experts should be invited to
Working Group meetings or should receive documents. .

.”..every NB can register up to 5 members/experts to one SC or
WG. This rule seemed to be made at the beginning of Livelink

introduction. But every NB should have more than 5
members/experts to one SC or WG. By this strange rule, NBs

can not use the Livelink.”

 - There is no technical limit to how many experts a NSB can assign to
a TC/SC/WG. As per TMB resolution 69/2009, the system allows the
parent committee to input a restriction, which will then block NSBs from
adding more than the defined number of experts. But by default there
is no limit.
- HOWEVER: NSBs should not use this to appoint all members of their
national committees as committee members of the ISO Committee.
that is what we have the NMC/NTC server for. People appointed
should be the ones actually participating in the work.
- Some NSBs have internal rules on who is able to access documents.
Ultimately, experts are appointed by their member body.

		Presentation to JTC 1 SC Chairs and Secretaries

		Part 1: Expert Representation

		“some experts do not always make the difference between an informal pool of NB’s perception during a WG meeting and an official NB position expressed in an SC Plenary or a ballot.”

		“... in a WG some countries may have many experts while at the SC level it is the ‘one country - one vote’ system that is used. A WG consensus may not be an SC consensus if the WG conveners and experts are not conscious of this dynamic.”

		“We understand that there are no national delegations to WG meetings – but some national hosts have in the past several months required lists of attendees from our national body as a security measure to gain entrance in to the building. BSI and DIN are recent examples. Given that there are no national delegation lists can they do this and if so how would national body accomplish this?”

		2. Meeting planning is an issue for any host. If there are no delegation lists how does a host know the size of the meeting to expect and plan for since it should not be assumed that all experts will attend every face to face meeting?

		“My policy is that it is at the «project editors» discretion to invite individual experts to contribute at different stages of the development a standard. My goal is that we develop standards of highest possible quality, and to achieve that we need to have the best minds contributing to our work.”

		Questions: What is the correct procedure to approve the progressions of projects such as WD -> CD (2) CD -> DIS, (3) DIS -> FDIS and > (4) DIS or FDIS -> Publication?? Are they by WG consensus only? Are they by SC Resolutions? Are they by �ballot results only without any Resolutions?�

		If there are no “votes” at the WG level, how do you know when to progress a draft to the next stage? How does the SC progress the document after the ballot closes? Who holds the BRM, and who attends it?

		“Is it appropriate to have NB delegations in WGs? Is it appropriate for NB contributions to be submitted to WGs?”

		Part 2: Use of Livelink

		Policy on using ISO IT Services for ISO Technical Work

		“With regards to the mandatory use of livelink, am I right in thinking that both the DIN and AFNOR livelink are considered part of the general ISO service in that they share information with the Global Directory? i.e. if you are registered on the Global Directory then you can access the DIN and AFNOR service.”

		��“It seems that Livelink doesn't distribute a new announcement to all WG members in Global Directory when a new document is stocked in WG folder. (Yes, all WG members can later access to the WG documents. But WG convener has to send an announcement each time he puts a new document.) Is it possible to set an automatic e-mail announcement to WG members when a document is stocked in WG folder?”

		“These individual experts to not need access to Livelink, they will receive relevant documents from the project editors.”

		.”..every NB can register up to 5 members/experts to one SC or WG. This rule seemed to be made at the beginning of Livelink introduction. But every NB should have more than 5 members/experts to one SC or WG. By this strange rule, NBs can not use the Livelink.”�

image2.emf
14-006A.txt

14-006a.txt
 J3/14-006

To: J3

From: Stan Whitlock

Subject: Outstanding Fortran Interpretations

Date: 2014 January 12

 Outstanding Fortran Interpretations, January 12, 2014

 Stan Whitlock for /interp

> 05-015 == closed F95 interps

> 016 = 10-006T1-5r1 == F03 Corrigenda 1-5 interps

> 017 = N1823 - F03 combined corrigenda 1-5

> 021 = N1907 == F08 Corrigendum 1

> 022 = N1902 == F08 Corrigendum 1 interps

> 023 = N1957 == F08 Corrigendum 2

> 024 = N1959 == F08 Corrigendum 2 interps

+ = N2002 == F08 Corrigendum 3

+ = N2002y== F08 Corrigendum 3 interps

> WG5 LB #6 N1987/88/90: 17 interps, 15 passed, 1 subsumed

> WG5 LB #7 N1991/92/94: 8 interps passed

+ J3 interp answers from m202: 5 passed by J3 meeting

+ WG5 LB N1995/98/99 on F08 Corrigendum 3

= 10 J3 consideration in progress

[keep this text document to 70 characters per line]...................

Table of Contents

Part 0 contains the summary status of all of the Fortran

 interpretations

Part 1 contains the interpretation processing rules from 00-142

Part 2 contains active F90/F95 interpretations:

 - only F90/0145

 - the F95 interps numbered F95/1-32 and 66-104 are all closed

Part 3 contains active F03 interpretations: F03/0001-0141

Part 4 contains active F08 interpretations: F08/0001...

==

Part 0: Summary Status of these Fortran Interpretations

==

Note N:

 d == done {if S = C* | T*, then done is assumed}

 * == active

Status S: Defect Type T:

 P == J3 consideration in progress C == Clarification

 M Passed by J3 meeting E Erratum

 B Passed by J3 letter ballot I Interpretation

 W Passed by WG5 ballot

 X Excluded for the reasons given

 C1 In F2008 Corrigendum 1

 C2 In F2008 Corrigendum 2

 C3 In F2008 Corrigendum 3

N S T number title

- - - ------ -----

* P E F90/0145 Expressions in <type-spec> of a FUNCTION statement

d C2 I F03/0017 Dummy procedure pointers and PRESENT

d C2 C F03/0018 Multiple identical specific procedures in

 type-bound generic interfaces

d C2 E F03/0019 Multiple identical specific procedures in

 generic interface blocks

d C2 E F03/0021 What kind of token is a stop code?

d C3 E F03/0030 IEEE divide by zero

* P E F03/0042 IEEE funny values and Standard real generic

 intrinsic procedures

d C2 C F03/0046 Unlimited polymorphic pointers in

 common blocks

d C3 I F03/0047 Polymorphic arguments to intrinsic

 procedures

d C1 E F03/0048 Control edit descriptors in UDDTIO

* P I F03/0051 Repeat specifiers and UDDTIO

d C3 E F03/0053 The BIND attribute for C_PTR and C_FUNPTR

* P E F03/0059 Structure components in namelist input

d C3 E F03/0064 Recursive declaration of procedure interfaces

d C2 I F03/0065 Relational equivalence

* P I F03/0084 IEEE_SET_ROUNDING_MODE in a subroutine

d C1 E F03/0085 Finalizing targets of pointer or allocatable

d C1 I F03/0091 Array components cannot depend on length type

 parameters

d C2 E F03/0096 Can a read statement change the unit value?

d C3 E F03/0100 Error in field width for special cases of signed

 INFINITY output

d C2 E F03/0103 Restrictions on dummy arguments not present for

 polymorphic type or parameterized derived type

d C1 I F03/0105 SIZE= specifier and UDDTIO

d C1 I F03/0110 Restoring dropped restriction on ENTRY

d C2 I F03/0116 indistinguishable specifics for a generic

 interface with use association

d C2 E F03/0118 Are lower bounds of assumed-shape arrays assumed?

d C2 E F03/0120 When are parameterized sequence types the same

 type?

* P C F03/0121 Precise FP semantics of the REAL intrinsic

d C1 I F03/0123 Implicit typing in derived types

d C1 E F03/0124 definition is poorly defined

d C1 I F03/0128 Subobjects in namelist output

d C3 E F03/0139 Functions returning procedure pointers

d C1 E F08/0001 Generic resolution with pointer dummy arguments

d C1 E F08/0002 Are assumed- or deferred-shape objects allowed in

 namelist?

d C1 E F08/0003 Is a disassociated pointer allowed as an actual

 DIM argument?

d C2 E F08/0004 Is TARGET argument of ASSOCIATED a pointer or

 nonpointer dummy?

d C1 E F08/0005* optional arguments and ASSOCIATED - subsumed by

 F08/0004

d C1 I F08/0006 generic resolution with banned argument

 combinations

d C1 I F08/0007 Can zero have more than one bit sequence

 representation?

d C2 I F08/0008 IEEE exceptions for intrinsic functions

d C1 I F08/0009 Is ABS ever required to be the optional IEC

 60559 abs?

d C1 E F08/0010 deallocating objects that are associated with

 other objects

d C1 E F08/0011 How many times are constructed values finalized?

d C1 E F08/0012* Are constants finalized? - subsumed by F08/0011

d C1 E F08/0013 How does finalization interact with allocatable

 assignment?

d C1 E F08/0014 Finalizing assignment to vector-subscripted

 object

d C1 E F08/0015 IMPLICIT

d C1 E F08/0016 Can a vector-subscripted argument become undefined?

d C1 E F08/0017 Elemental subroutine restrictions

d C1 E F08/0018 Impure elemental restrictions

d C1 E F08/0019 Transformational Bessel functions

d C1 E F08/0020 FINDLOC and logical arguments

d C1 E F08/0021 STORAGE_SIZE and unlimited polymorphic

d C1 E F08/0022 DO CONCURRENT and file i/o

d C1 E F08/0023 DO CONCURRENT and POINTER

d C1 E F08/0024 Dummy arguments of impure elemental procedures

d C1 E F08/0025 DO CONCURRENT and ALLOCATABLE

d C1 E F08/0026 DO CONCURRENT and output interleaving

d C1 E F08/0027 ATOMIC_REF example

d C1 E F08/0028 Does a procedure reference cause loop termination?

* P E F08/0029 G0 edit descriptor and floating-point output

d C1 E F08/0030 Unlimited format repeat effects

d C2 E F08/0031 PURE INTENT(OUT) finalization

d C2 E F08/0032 PURE FUNCTION result finalization

d C1 E F08/0033 PURE polymorphic finalization

d C1 E F08/0034 ELEMENTAL INTENT(OUT) finalization

d C1 I F08/0035 Maximum value for SHIFT argument to SHIFTL

 and SHIFTR

d C1 E F08/0036 NORM2 example in Annex C

d C1 E F08/0037 PROCEDURE POINTER vs PROTECTED

d C2 C F08/0038 Are pointless restrictions on DIM arguments

 intended?

d C1 E F08/0039 Many-one vector subscript usage

d C2 E F08/0040 MOVE_ALLOC for coarrays

* P E F08/0041 Segment ordering rules

d C2 E F08/0042 SOURCE= questions

d C2 E F08/0043 Executing a type-bound procedure on a coindexed

 object

d C1 I F08/0044 Resolving the type of a coarray or coindexed object

* P E F08/0045 constraints on entities of type LOCK_TYPE

d C1 E F08/0046 VALUE attribute restrictions

d C1 I F08/0047 public generic with same name as private type

d C2 E F08/0048 Sequence association for coarrays

d C1 E F08/0049 ELEMENTAL functions with nonconstant type parameters

d C1 E F08/0050 Ordering requirements on definition of specification

 functions

d C1 E F08/0051 Pure procedure arguments with VALUE

d C1 E F08/0052 Private type-bound procedures

d C1 E F08/0053 Restrictions on generic declarations, generic

 resolution

d C2 E F08/0054 Requirements for needing an explicit interface

d C2 E F08/0055 G editing for reals

d C2 E F08/0056 Non-polymorphic ALLOCATE with polymorphic SOURCE=

d C2 E F08/0057 Interoperability with empty types

d C2 E F08/0058 ENTRY point RESULT variable

d C2 E F08/0059 Auto-targetting requirements

d C2 E F08/0060 Procedure pointer assignment with an EXTERNAL target

d C2 E F08/0061 Description of the CONTIGUOUS attribute misworded?

d C2 C F08/0062 Mixing default initialization with DATA

 initialization

d C2 I F08/0063 G editing to a narrow output field

d C2 E F08/0064 STATUS of GET_ENVIRONMENT_VARIABLE

d C2 E F08/0065 Should certain procedures in intrinsic modules be

 pure?

d C2 E F08/0066 Are certain expressions with pointer initialization

 constant?

d C2 E F08/0067 Passing arrays of extended type objects

d C2 E F08/0068 Pointer association and extended type arrays

d C2 E F08/0069 Which part of an effective argument becomes

 undefined?

d C2 E F08/0070 Finalization of INTENT(OUT) arguments

d C3 E F08/0071 Vector subscript target

d C2 E F08/0072 Final subroutines with corank

d C2 E F08/0073 Polymorphic auto-targetting

d C2 E F08/0074 Implicit type in BLOCK construct

d C3 E F08/0075 Pointer function reference as variable in assignment

d C3 E F08/0076* Pointer function reference in READ

 Subsumed by F07/0075 == W

d C2 E F08/0077 Function references as variables in DATA statements

d C2 E F08/0078 Are the IEEE values +0 and -0 distinguished

d C2 E F08/0079 NAMELIST and type specification

d C2 E F08/0080 Array constructors with polymorphic values

d C2 E F08/0081 Deallocation error handling

d C2 E F08/0082 Generic identifier and dtv arguments

d C3 E F08/0083 Type parameter default expressions allow circular

 dependence

d C3 E F08/0084 Pointer arguments to PURE functions

d C3 E F08/0085 Problems with PARAMETERs

d C3 E F08/0086 Implied-shape and separate PARAMETER statement

d C3 E F08/0087 Mixed-kind character assignment

d C3 E F08/0088 Can ALLOCATE with SOURCE= have side-effects in a

 PURE proc?

* P E F08/0089 Variable-denoting functions change existing

 semantics

d C3 E F08/0090 What restrictions apply to initialization and

 PARAMETER?

d C3 E F08/0091 Derived type with no components

d C3 E F08/0092 Derived type parameter requirements

d C3 E F08/0093 Process exit status and error termination

d C3 E F08/0094 Procedure statement and double colon

d C3 E F08/0095 Is PRESENT allowed in specification and constant

 expressions

d C3 E F08/0096 Is VALUE permitted for an array in a BIND(C)

 procedure?

d C3 E F08/0097 Is the optional comma allowed in

 TYPE(CHARACTER*...)?

d C3 E F08/0098 How many ACQUIRED_LOCK= specifiers are allowed in a

 LOCK stmt?

* M I F08/0099 VOLATILE in specification expressions

* M E F08/0100 IMPORT statement and prior explicit declaration

* M E F08/0101 NAMELIST and multiple occurrences of a variable

* M E F08/0102 MERGE and polymorphism

* M E F08/0103 Pointers to internal procedures with different host

 instances

==

Part 1: Interpretation Processing Rules

==

0. All interpretations are listed in J3 standing document 006.

1. Interpretations are processed by the J3/interp group and given a

 number. The interpretation is marked "J3 consideration in

 progress". An answer is formulated and presented to J3 in a

 meeting paper.

2. J3 votes on the answer at a J3 meeting; a simple majority vote

 marks the answer as "passed by J3 meeting".

3. Between J3 meetings the chair of /interp sends a J3 letter ballot

 to J3 to approve interp answers that have been "passed by J3

 meeting". The letter ballot runs for 30 days. Not voting on

 three of four consecutive J3 letter ballots is grounds to

 terminate J3 membership. An interp answer passes by a 2/3rds

 vote; a no vote must be accompanied by an explanation of the

 changes necessary to change the member's vote to yes.

 J3/interp reserves the right to recall an interp answer for more

 study even if the answer passes.

4. The chair of J3/interp gathers all interp answers that are marked

 "passed by J3 letter ballot" and forwards them to the WG5

 convenor. The WG5 convenor holds a ballot of individual members;

 a no vote must be accompanied by an explanation of the changes

 necessary to change the member's vote to yes. The answers that

 pass this ballot become "WG5 approved".

 J3/interp reserves the right to recall an interp answer for more

 study even if the answer passes.

5. "WG5 approved" answers are processed into a corrigendum document

 by taking the edits from the interp answers and putting them in

 the format required by ISO. A WG5 vote is made on forwarding the

 corrigendum to SC22. Interps so forwarded are marked

 "Corrigendum".

6. J3/interp creates a edit for the next Fortran Standard if one is

 needed for all interps marked "Corrigendum".

--

==

Part 2: Active F90/F95 interpretations

==

--

NUMBER: F90/0145

TITLE: Expressions in <type-spec> of a FUNCTION statement

KEYWORDS: expression - specification, expression - initialization,

 FUNCTION statement, host association, use association

DEFECT TYPE: Erratum

STATUS: J3 consideration in progress

QUESTION:

The syntax rule R1217 shows that the type and type parameters of a

function can be specified in the FUNCTION statement (12.5.2.2).

(a) If a <type-spec> appears in a FUNCTION statement, can the

initialization and specification expressions of that <type-spec>

involve names of entities that are declared within the function or

are accessible there by host or use association?

(b) Section 5.1 states:

 "The <specification-expr> (7.1.6.2) of a <type-param-value>

 (5.1.1.5) or an <array-spec> (5.1.2.4) may be a nonconstant

 expression provided the specification expression is in an

 interface body (12.3.2.1) or in the specification part of a

 subprogram."

As a FUNCTION statement is not part of the specification part of a

subprogram, this text in the standard appears to distinguish between

FUNCTION statements that are in interface blocks and ones that are

not. This text seems to prohibit such examples as:

 INTEGER I

 ...

 CONTAINS

 CHARACTER*(I+1) FUNCTION F()

 ...

 COMMON // I

 ...

where it can be confusing as to which I is being referenced in the

FUNCTION statement. While host association does not apply to

interface bodies, for consistency should the text quoted from Section

5.1 have been "... is in the specification part of an interface body

(12.3.2.1) or in the specification part of a subprogram."?

(c) Section 7.1.6.1 states:

 "If an initialization expression includes a reference to an

 inquiry function for a type parameter or an array bound of an

 object specified in the same <specification-part>, the type

 parameter or array bound must be specified in a prior

 specification of the <specification-part>."

Was this text intended to apply to FUNCTION statements even though

they are not part of any <specification-part>, thus disallowing

fragments such as:

 INTEGER (KIND=KIND(X)) FUNCTION F()

 INTEGER(KIND=KIND(0)) X

 ...

Similar text appears in Section 7.1.6.2.

ANSWER:

(a) A specification expression in the <type-spec> of a FUNCTION

statement may involve names of entities that are declared within the

function or are accessible there by host or use association, but an

initialization expression in such a <type-spec> may only involve

names that are accessible by host or use association.

(b) No. It was not the intent of the standard to distinguish between

the two types of FUNCTION statements cited. As elaborated in the

discussion of part (a), the standard intended to allow the

<type-spec> expression of a FUNCTION statement to be a nonconstant

expression. The sentence cited is corrected with a supplied edit.

(c) Yes, the text cited from 7.1.6.1 was intended to apply to

FUNCTION statements. The sentence quoted and the corresponding

sentence in 7.1.6.2 are corrected with supplied edits. The code

fragment is not standard conforming.

Discussion:

(a) An initialization expression is a constant expression with an

additional rule relating to exponentiation (7.1.6.1). Since it is a

constant expression, the only names it can contain are the names of

named constants, structure constructors, intrinsic procedures, and

variables whose type parameters or bounds are inquired about.

 * Named constant

 Section 5.1.2.1 states:

 "A named constant must not be referenced in any ... context

 unless it has been defined in a prior PARAMETER statement or

 type declaration statement using the PARAMETER attribute, or

 made accessible by use association or host association."

 Since the FUNCTION statement is the first statement of the

 scoping unit, there can be no prior PARAMETER statement or type

 declaration statement using the PARAMETER attribute, so the

 first clause does not apply. A named constant can appear in a

 <type-spec> of a function statement if it is accessible within

 the function by host or use association.

 * Structure constructor

 Rule R502 shows that the only opportunities for expressions to

 appear in <type-spec>s are in a <kind-selector> or in a

 <char-selector>. However, a structure constructor can not

 appear in a <kind-selector> because rule R505 shows that a

 <kind-selector> must be an integer expression. Similarly, R506

 shows that any initialization expression in a <char-selector>

 must be type integer. Therefore, a structure constructor can

 not appear in an initialization expression in the <type-spec>

 of a FUNCTION statement.

 * Intrinsic procedure

 The intrinsic procedure names or classes of intrinsic

 procedures that may appear in an initialization expression are

 given in 7.1.6.1.

 * Variables whose type parameters or bounds are inquired about

 The text from section 7.1.6.1 as cited in question (c) was

 intended to apply to initialization expressions in the

 <type-spec> of a FUNCTION statement. With the correction

 supplied, this means that if a variable appears as the argument

 to an inquiry intrinsic in the <type-spec> of a FUNCTION

 statement, the function must be a module procedure or an

 internal procedure, and the variable must exist in (be

 accessible from) the host scoping unit.

Rule R502 defines <type-spec>. The only opportunity for a

<type-spec> to contain a <specification-expr> is when the data type

is character (<type-param-value> may be a <specification-expr>).

Section 7.1.6.2 states that a specification expression is a

restricted expression that is scalar, of type integer, and each

operation must be intrinsic. In addition, rule (2) of 7.1.6.2 states

that a primary of a specification expression can be a dummy argument

that has neither the OPTIONAL nor INTENT(OUT) attribute. The

following code fragment demonstrates a use of such a dummy argument:

 CHARACTER*(N+1) FUNCTION S(N)

 INTEGER, INTENT(IN) :: N

Rule (2) also states that the primary can be a subobject of such a

dummy argument. Section 6.1.2 indicates that a structure component

must not be referenced or defined before the declaration of the

parent object. Similar rules are needed to prevent a substring from

being referenced ahead of the declaration of its parent, and an array

element or array section from being referenced ahead of the

declaration of the array. Edits are provided to supply these rules.

Since a subobject can not be referenced before its parent object is

declared and the FUNCTION statement is the first statement of the

subprogram, the parent's declaration could not have occurred. Thus a

subobject must not be referenced in the <type-spec> on a FUNCTION

statement for objects declared within the function.

Rule (3) states that a primary can be a variable that is in a common

block. The following code fragment demonstrates a use of such a

common block member:

 CHARACTER*(N+1) FUNCTION S()

 ...

 COMMON N

As in rule (2), rule (3) allows a subobject of such a variable but

for the same reasons as above, such a subobject designator can not

appear in the <type-spec> expression of a FUNCTION statement.

Rule (4) states that a primary may be a variable that is accessible

by use association or host association. The following code fragments

demonstrate uses of such variables:

 PROGRAM MAIN

 INTEGER :: N = 21

 ...

 CONTAINS

 CHARACTER(LEN = 2*N) FUNCTION SS(K) ! N is host

 ... ! associated.

 END FUNCTION

 END PROGRAM

 and

 MODULE MOD

 INTEGER K

 DATA K /20/

 END MODULE

 CHARACTER*(K*2) FUNCTION CHECK(STR) ! K is use

 ! associated.

 USE MOD

 ...

 END FUNCTION

Rule (4) also states that the primary can be a subobject of such a

use or host associated variable.

A structure constructor can not appear in a FUNCTION <type-spec>

specification expression because the expression must be of type

integer and any operations (which might yield an integer value from

one or more structure constructors) must be intrinsic.

Other rules of 7.1.6.2 state which intrinsic procedure names or

classes of intrinsic procedures may appear in a specification

expression.

Section 7.1.6.2 also states:

 A variable in a specification expression must have its type

 and type parameters, if any, specified by a previous

 declaration in the same scoping unit, or by the implicit type

 rules currently in effect for the scoping unit, or by host or

 use association.

The discussion above regarding specification expressions has already

ruled out "previous declarations" so the first clause of the cited

sentence does not apply. The other clauses apply equally to a

FUNCTION statement <type-spec> and to type declaration statements

inside the function.

(b) When the discussion for part (a) is applied to the code fragment

provided, it means that the 'I' referenced in the <type-spec> of the

FUNCTION statement is the common block member.

EDITS:

1. Section 5.1, in the first sentence of the paragraph that starts

 "The <specification-expr> (7.1.6.2)" [40:39-41],

 change "in an interface body (12.3.2.1) or in the specification

 part of a subprogram"

 to "contained in an interface body (12.3.2.1), is contained

 in the specification part of a subprogram, or is in the

 <type-spec> of a FUNCTION statement (12.5.2.2)"

2. Section 6.1.1, add to the end of the paragraph before the examples

[62:29]

 "A substring must not be referenced or defined before the

 declaration of the type and type parameters of the parent string,

 unless the type and type parameters are determined by the

 implicit typing rules of the scope."

3. Section 6.2.2, add after the sentence "An array section is an

array." [64:16]

 "An array element or array section must not be referenced

 or defined before the declaration of the array bounds."

4. Section 7.1.6.1, in the paragraph after the constraints [78:21-22]

 change "object specified in the same <specification-part>, the

 type parameter or array bound must be specified in

 a prior specification of the <specification-part>."

 to "object declared in the same scoping unit, the type

 parameter or array bound must be specified in a

 specification prior to the initialization expression."

5. Section 7.1.6.2, in the 2nd paragraph after the constraint

[79:28-29]

 change "entity specified in the same <specification-part>, the

 type parameter or array bound must be specified in

 a prior specification of the <specification-part>."

 to "entity declared in the same scoping unit, the type

 parameter or array bound must be specified in a

 specification prior to the specification expression."

SUBMITTED BY: Janice C. Shepherd

HISTORY: 93-193 m126 F90/0145 submitted

 94-023r1 m128 response, approved uc

 94-116r1 m129 X3J3 ballot failed 22-1

 94-336 m131 revised response, approved u.c

 95-034r1 m132 X3J3 ballot failed 15-5

 95-281 m135 revised response, reworded edit 3, WG5

 approved (N1161)

 96- m136 X3J3 ballot failed 15-1, WG5 approval removed.

--

==

Part 3: Active Fortran 2003 Interpretation Requests

==

--

NUMBER: F03/0030

TITLE: IEEE divide by zero

KEYWORDS: IEEE-754, divide-by-zero

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Is infinity / 0.0 a divide by zero exception?

Is NaN / 0.0 a divide by zero exception?

Fortran 2003 defines (in 14.2) infinity / zero and NaN / zero

cases as IEEE_DIVIDE_BY_ZERO. IEEE-754 defines (in 6.1 and 6.2)

those two as unexceptional.

ANSWER:

On an IEEE-conformant processor, these cases do not raise exceptions

(see clauses 6.1 and 6.2 of IEC 60559:1989).

The definitions in 14.2 were intended to describe IEC 60559:1989

exceptions with sufficient latitude to allow use on machines that do

not conform to IEC 60559:1989. However, the definition of

IEEE_DIVIDE_BY_ZERO is not consistent with IEC 60559:1989.

Furthermore, the definition of the IEEE_OVERFLOW flag is also not

consistent with IEC 60559:1989, because this exception is not raised

for operations on infinite operands.

Additionally, if the data type is not an IEEE data type, but the

exception is supported, the circumstances under which the exception is

raised are processor dependent.

Edits are provided.

EDITS to 10-007r1:

[403:7-9] Clause 14.3, first paragraph, first bullet (IEEE_OVERFLOW),

 Replace with

 "IEEE_OVERFLOW occurs in an intrinsic real addition, subtraction,

 multiplication, division, or conversion by the intrinsic function

 REAL, as specified by IEC 60559:1989 if IEEE_SUPPORT_DATATYPE is

 true for the operands of the operation or conversion, and as

 determined by the processor otherwise. It occurs in an intrinsic

 real exponentiation as determined by the processor. It occurs in a

 complex operation, or conversion by the intrinsic function CMPLX,

 if it is caused by the calculation of the real or imaginary part of

 the result."

[403:10-11] Clause 14.3, first paragraph, second bullet

 (IEEE_DIVIDE_BY_ZERO),

 Replace with

 "IEEE_DIVIDE_BY_ZERO occurs in a real division as specified by IEC

 60559:1989 if IEEE_SUPPORT_DATATYPE is true for the operands of the

 division, and as determined by the processor otherwise. It is

 processor-dependent whether it occurs in a real exponentiation with

 a negative exponent. It occurs in a complex division if it is

 caused by the calculation of the real or imaginary part of the

 result."

[462:24+] Clause A.2, after the fifth bullet from the end of the clause

 "the extent to which a processor supports IEEE arithmetic (14)",

 Insert new bullet points

 "- the conditions under which IEEE_OVERFLOW is raised in a

 calculation involving non-IEC 60559:1989 floating-point data;

 - the conditions under which IEEE_OVERFLOW and IEEE_DIVIDE_BY_ZERO

 are raised in a floating-point exponentiation operation;

 - the conditions under which IEEE_DIVIDE_BY_ZERO is raised in a

 calculation involving non-IEC 60559:1989 floating-point data;"

SUBMITTED BY: Fred Tydeman

HISTORY: 05-109 m171 F03/0030 submitted

 05-109r1 m171 Revised to include IEEE_OVERFLOW,

 Passed by J3 meeting

 05-170 m172 Passed J3 letter ballot #11

 N1622 m172 Failed WG5 ballot N1629

 10-238r1 m193 Revised answer - Passed J3 meeting

 11-129 m194 Passed as amended by J3 letter ballot

 #22 10-254

 11-006Ar1 m196 Adjust edits to reference 10-007r1

 N1878 m196 Failed WG5 ballot 1 N1876

 13-246 m200 Revised - passed by J3 meeting

 13-262 m201 Passed J3 letter ballot #28 13-255r1

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F03/0042

TITLE: IEEE funny values and Standard real generic intrinsic

 procedures

KEYWORDS: IEEE-754, real math library

DEFECT TYPE: Erratum

STATUS: J3 consideration in progress

QUESTION:

Is an infinite result from an infinite argument to a real math

function exceptional (raises an exception)?

Is a NaN result from a NaN argument to a real math function

exceptional (raises an exception)?

What are the results (value and exceptions) for the following

(section 13.7.*) real math library functions [suggested results

for most are included; no exception happens unless specified]:

 ABS(-0.0) returns +0.0

 ABS(+/-infinity) returns +infinity

 ABS(NaN) returns a NaN

 ACOS(x), where |x|>1, returns a NaN and raises invalid

 ACOS(NaN) returns a NaN

 AINT(-0.0) returns -0.0

 AINT(NaN) returns a NaN

 AINT(+infinity) returns +infinity

 AINT(-infinity) returns -infinity

 ANINT(-0.0) returns -0.0

 ANINT(NaN) returns a NaN

 ANINT(+infinity) returns +infinity

 ANINT(-infinity) returns -infinity

 ASIN(x), where |x|>1, returns a NaN and raises invalid

 ASIN(NaN) returns a NaN

 ATAN(-0.0) returns -0.0

 ATAN(+infinity) returns +pi/2

 ATAN(-infinity) returns -pi/2

 ATAN(NaN) returns a NaN

 ATAN2(NaN,x) returns a NaN

 ATAN2(y,NaN) returns a NaN

 ATAN2(+/-0.0, -0.0) returns +/-pi (and not raise invalid)

 ATAN2(+/-0.0, +0.0) returns +/-0.0 (and not raise invalid)

 ATAN2(+/-0.0, x) returns +/-pi for x < 0.0

 ATAN2(+/-0.0, x) returns +/-0.0 for x > 0.0

 ATAN2(y, +/-0.0) returns -pi/2 for y < 0.0

 (and not raise divide by zero)

 ATAN2(y, +/-0.0) returns +pi/2 for y > 0.0

 (and not raise divide by zero)

 ATAN2(+/-y, -infinity) returns +/-pi for finite y > 0.0

 ATAN2(+/-y, +infinity) returns +/-0.0 for finite y < 0.0

 ATAN2(+/-infinity, x) returns +/-pi/2 for finite x

 ATAN2(+/-infinity, -infinity) returns +/-3pi/4

 (and not raise invalid)

 ATAN2(+/-infinity, +infinity) returns +/-pi/4

 (and not raise invalid)

 CEILING(+/-infinity) returns +/-infinity

 CEILING(-0.0) returns -0.0

 CEILING(NaN) returns a NaN

 COS(+/-0.0) returns 1

 COS(NaN) returns a NaN

 COS(+/-infinity) returns a NaN and raises invalid

 COSH(+/-0.0) returns 1

 COSH(NaN) returns a NaN

 COSH(+/-infinity) returns a +infinity DIM(NaN,y) returns a NaN

 DIM(x,NaN) returns a NaN

 DIM(+/-0.0, +/-0.0) returns a +0.0

 DIM(+infinity, -infinity) returns a NaN and raises invalid

 DIM(+infinity, +infinity) returns +0.0

 DIM(-infinity, -infinity) returns +0.0

 DIM(-infinity, +infinity) returns +0.0

 DPROD(NaN,y) returns a NaN

 DPROD(x,NaN) returns a NaN

 DPROD(+/-0.0, +/-infinity) returns a NaN and raises invalid

 DPROD(+/-infinity, +/-0.0) returns a NaN and raises invalid

 DPROD(+/-infinity, +/-infinity) returns an infinity with its sign

 being the XOR of the arguments, and raises no exceptions.

 DPROD(+/-0.0, +/-0.0) returns a zero with its sign

 being the XOR of the arguments, and raises no exceptions.

 EXP(NaN) returns a NaN

 EXP(+/-0.0) returns 1

 EXP(-infinity) returns +0.0

 EXP(+infinity) returns +infinity

 EXPONENT(+/-0.0) returns 0 [should be -HUGE(0)] and raises invalid

 EXPONENT(NaN) returns HUGE(0) and raises invalid

 EXPONENT(+/-INF) returns HUGE(0) and raises invalid

 EXPONENT(denormal) returns the value as if the number were

 normalized and the exponent range were unbounded

 If /e/ is not representable as a default integer, invalid is raised

 and sign(/e/)*HUGE(0) should be returned.

 FLOOR(NaN) returns a NaN

 FLOOR(-0.0) returns -0.0

 FLOOR(+/-infinity) returns +/- infinity

 FRACTION(-0.0) returns -0.0

 FRACTION(NaN) returns a NaN

 FRACTION(denormal) returns the value as if the number were

 normalized and the exponent range were unbounded

 FRACTION(+/-infinity) returns +/- infinity

 INT(NaN) returns an unspecified value and raises invalid

 INT(+/-infinity) returns an unspecified value and raises

 invalid

 INT(+/-large), where large cannot be represented as an integer,

 returns an unspecified value and raises invalid

 LOG(+/-0.0) returns -infinity and raises divide-by-zero

 LOG(NaN) returns a NaN

 LOG(1.0) returns +0.0

 LOG(x), for x < 0, returns a NaN and raises invalid

 LOB(+infinity) returns +infinity

 LOG10(+/-0.0) returns -infinity and raises divide-by-zero

 LOG10(NaN) returns a NaN

 LOG10(1.0) returns +0.0

 LOG10(x), for x < 0, returns a NaN and raises invalid

 LOG10(+infinity) returns +infinity

 MAX(NaN,NaN) returns a NaN

 MAX(NaN,y) returns y [some say it should be NaN]

 MAX(x,NaN) returns x [some say it should be NaN]

 MAX(-0.0,+0.0) returns +0.0

 MAX(-0.0,-0.0) returns -0.0

 MAX(+infinity,y) returns +infinity

 MAX(-infinity,y) returns y

 MIN(NaN,NaN) returns a NaN

 MIN(NaN,y) returns y [some say it should be NaN]

 MIN(x,NaN) returns x [some say it should be NaN]

 MIN(-0.0,+0.0) returns -0.0

 MIN(-0.0,-0.0) returns -0.0

 MIN(-infinity,y) returns -infinity

 MIN(+infinity,y) returns y

 MOD(NaN,y) returns a NaN

 MOD(x,NaN) returns a NaN

 MOD(+/-infinity,y) returns a NaN and raises invalid

 MOD(+/-infinity,+/-infinity) returns a NaN and raises invalid

 MOD(x,+/-0.0) returns a NaN and raises invalid

 MOD(+/-0.0,+/-0.0) returns a NaN and raises invalid

 MODULO(NaN,y) returns a NaN

 MODULO(x,NaN) returns a NaN

 MODULO(+/-infinity,y) returns a NaN and raises invalid

 MODULO(+/-infinity,+/-infinity) returns a NaN and raises invalid

 MODULO(x,+/-0.0) returns a NaN and raises invalid

 MODULO(+/-0.0,+/-0.0) returns a NaN and raises invalid

 NEAREST(NaN,y) returns a NaN

 NEAREST(x,NaN) returns a NaN

 NEAREST(x,+/-0.0) returns a NaN and raises invalid [why???]

 NEAREST(+infinity,+num) returns +infinity ???

 NEAREST(+infinity,-num) returns +maximum finite number

 NEAREST(-infinity,+num) returns -maximum finite number

 NEAREST(-infinity,-num) returns -infinity ???

 NINT(NaN) returns an unspecified value and raises invalid

 NINT(+/-infinity) returns an unspecified value and raises

 invalid

 NINT(+/-large), where large cannot be represented as an

 integer, returns an unspecified value and raises invalid

 RRSPACING(NaN) returns a NaN

 RRSPACING(+/-infinity) returns +/-infinity

 [differs from current F2003]

 RRSPACING(+/-0.0) returns +0.0

 RRSPACING(+/-denormal) returns ???

 SCALE(NaN,y) returns a NaN

 SCALE(+/-infinity,y) returns +/-infinity

 SCALE(-0.0,y) returns -0.0

 SET_EXPONENT(NaN,y) returns a NaN

 SET_EXPONENT(+/-infinity,y) returns +/-infinity

 SET_EXPONENT(-0.0,y) returns -0.0

 SET_EXPONENT(denormal,y) returns ???

 SIGN(NaN,y), where 0 < y, returns the same NaN,

 but with the sign bit cleared.

 SIGN(NaN,y), where y < 0, returns the same NaN,

 but with the sign bit set.

 SIN(NaN) returns a NaN

 SIN(+/-infinity) returns a NaN and raises invalid

 SIN(-0.0) returns -0.0

 SINH(NaN) returns a NaN

 SINH(+/-infinity) returns +/- infinity

 SINH(-0.0) returns -0.0

 SPACING(NaN) returns a NaN

 SPACING(+/-infinity) returns +infinity

 SPACING(-0.0) returns TINY(+0.0)

 SPACING(denormal) returns TINY(+0.0) ???

 SQRT(NaN) returns a NaN

 SQRT(+infinity) returns +infinity

 SQRT(-0.0) returns -0.0

 SQRT(x), where x < 0.0, returns a NaN and raises invalid

 TAN(NaN) returns a NaN

 TAN(+/-infinity) returns a NaN and raises invalid

 TAN(-0.0) returns -0.0

 TANH(NaN) returns a NaN

 TANH(+/-infinity) returns +/-1.0

 TANH(-0.0) returns -0.0

13.7 [300:13-15] incorrectly requires an infinite result or a

NaN result to always signal some IEEE exception.

Consider changing [300:13] "infinite result" to "infinite result

(from finite arguments)". Reason: IEEE-754 mathematical

operations on infinity that produce an infinity are

unexceptional.

Consider changing [300:14] "NaN result" to "NaN result (from

non-NaN arguments)". Reason: IEEE-754 mathematical operations

on quiet NaN operands that produce a quiet NaN result are

unexceptional.

Consider adding to 13.7 [300:15+] something along the lines of:

"Unless specified otherwise, a math function with NaN

argument(s) shall return a NaN, which should be one of the NaN

arguments." This allows not having to specify the results for

each specific math function.

Consider adding the above suggested cases to each of the 13.7.*

functions, perhaps, with a bold face IEEE sub-heading.

ANSWER:

The penultimate sentences of 13.7 was intended for the case

where all arguments on entry have normal or denormal values

and edits are supplied to correct this.

To specify the results of all the intrinsics for non-normal

values is beyond the scope of an interpretation. Perhaps this

should be considered for an extension that is adopted for the

next revision of the standard. Meanwhile, guidance is provided

by the second and third paragraphs of 14.8, which state

"The inquiry function IEEE_SUPPORT_NAN is provided to inquire

whether the processor supports IEEE NaNs. Where these are supported,

their behavior for unary and binary operations, including

those defined by intrinsic functions and by functions in intrinsic

modules, shall be consistent with the specifications in the IEEE

International Standard.

The inquiry function IEEE_SUPPORT_INF is provided to inquire whether

the processor supports IEEE infinities. Where these are supported,

their behavior for unary and binary operations, including

those defined by intrinsic functions and by functions in intrinsic

modules, shall be consistent with the specifications in the IEEE

International Standard. "

EDITS:

Page and line numbers refer to 04-007.

[300:13&14] Subclause 13.7. In the penultimate sentence, replace

"If" by "If the values of all input arguments are normal or

denormal and" and replace "if" by "if the values of all input

arguments are normal or denormal and"

SUBMITTED BY: Fred Tydeman

HISTORY: 05-121r1 m171 F03/0042 submitted

--

NUMBER: F03/0047

TITLE: Polymorphic arguments to intrinsic procedures

KEYWORDS: polymorphism, intrinsic procedures

DEFECT TYPE: Interpretation

STATUS: No edits in F2008 Corrigendum 3

QUESTION:

The descriptions of the intrinsic procedures often use the term "type"

without qualification. It is unclear whether they mean "declared

type" or "dynamic type". If they mean "dynamic type", then this would

appear to allow unlimited polymorphic arguments to intrinsic

procedures like ABS and SIN. Resolution of generic intrinsic

procedures in this case would create an undue (and likely unintended)

burden on the processor, and the declared type of the result of such a

function call would be unclear as well.

Question 1:

Are the arguments of the intrinsic functions ALLOCATED, ASSOCIATED,

LBOUND, SHAPE, SIZE, and UBOUND permitted to be polymorphic?

Question 2:

(a) Is the ARRAY argument of the intrinsic function CSHIFT permitted

 to be polymorphic?

If so:

(b) If the argument is polymorphic, is the result polymorphic? What

 are the declared and dynamic types of the result?

Question 3:

(a) Are the ARRAY and BOUNDARY arguments of the intrinsic function

 EOSHIFT permitted to be polymorphic?

If so:

(b) If one of these arguments is polymorphic, then must the other be

 polymorphic?

(c) Do the requirements on their types refer to their declared types

 or dynamic types?

(d) If either argument is polymorphic, is the result polymorphic? What

 are the declared and dynamic types of the result?

Question 4:

(a) Are the A and MOLD arguments of the intrinsic function

 EXTENDS_TYPE_OF permitted to be polymorphic?

If so:

(b) If one of these arguments is polymorphic, must the other be

 polymorphic?

(c) Do the requirements on their types refer to their declared types

 or dynamic types?

Question 5: This question is deferred to interp F08/0102.

(a) Are the TSOURCE and FSOURCE arguments of the intrinsic function

 MERGE permitted to be polymorphic?

If so:

(b) If one of these arguments is polymorphic, must the other be

 polymorphic?

(c) Do the requirements on the types of the arguments refer to their

 declared types or dynamic types?

(d) If either argument is polymorphic, is the result polymorphic?

 What are the declared and dynamic types of the result?

Question 6:

Are the FROM and TO arguments of the intrinsic function MOVE_ALLOC

permitted to be polymorphic?

Question 7:

(a) Are the ARRAY and VECTOR arguments of the intrinsic function PACK

 permitted to be polymorphic?

If so:

(b) If one of these arguments is polymorphic, must the other be

 polymorphic?

(c) Do the requirements on the types of the arguments refer to their

 declared types or dynamic types?

(d) If either argument is polymorphic, is the result polymorphic?

 What are the declared and dynamic types of the result?

Question 8:

(a) Are the SOURCE and PAD arguments of the intrinsic function RESHAPE

 permitted to be polymorphic?

If so:

(b) If one of these arguments is polymorphic, must the other be

 polymorphic?

(c) Do the requirements on the types of the arguments refer to their

 declared types or dynamic types?

(d) If either argument is polymorphic, is the result polymorphic?

 What are the declared and dynamic types of the result?

Question 9:

(a) Are the A and B arguments of the intrinsic function SAME_TYPE_AS

 permitted to be polymorphic?

If so:

(b) If one of these arguments is polymorphic, must the other be

 polymorphic?

(c) Do the requirements on their types refer to their declared types

 or dynamic types?

Question 10:

(a) Is the SOURCE argument of the intrinsic function SPREAD permitted

 to be polymorphic?

If so:

(b) If the argument is polymorphic, is the result polymorphic? What

 are the declared and dynamic types of the result?

Question 11:

(a) Is the SOURCE argument of the intrinsic function TRANSFER

 permitted to be polymorphic?

(b) Is the MOLD argument of the intrinsic function TRANSFER permitted

 to be polymorphic?

If the answer to (b) is yes:

(c) If the MOLD argument is polymorphic, is the result polymorphic?

 What are the declared and dynamic types of the result?

Question 12:

(a) Is the MATRIX argument of the intrinsic function TRANSPOSE

 permitted to be polymorphic?

If so:

(b) If the argument is polymorphic, is the result polymorphic? What

 are the declared and dynamic types of the result?

Question 13:

(a) Are the VECTOR and FIELD arguments of the intrinsic function

 UNPACK permitted to be polymorphic?

If so:

(b) If one of these arguments is polymorphic, must the other be

 polymorphic?

(c) Do the requirements on the types of the arguments refer to their

 declared types or dynamic types?

(d) If either argument is polymorphic, is the result polymorphic?

 What are the declared and dynamic types of the result?

Question 14:

Are any of the other arguments of any intrinsic procedure permitted to

be polymorphic?

ANSWER:

The assertion that it is unclear whether "type" means declared, dynamic,

or both, is misguided. The general rule is that wherever it makes

sense, it means both. Where only one meaning makes sense, it means

that one. Where only one meaning is intended but it would otherwise

not be clear from context, it is qualified as "declared type" or

"dynamic type".

Answer 1:

Yes.

Answer 2:

(a) Yes.

(b) Yes. "The result is of the type ... of ARRAY".

Answer 3:

(a) Yes.

(b) No.

(c) The requirements apply to both the declared type and the dynamic

 type.

(d) "The type has ... the type ... of ARRAY". Therefore it is polymorphic

 if ARRAY is polymorphic.

Answer 4:

(a) Yes.

(b) No.

(c) The requirements refer to the declared type; this is explicitly

 stated.

Answer 5: This question has been deferred to interp F08/0102

 TSOURCE and FSOURCE are required have the same declared type, but may be

 polymorphic. The questions of what the requirements are on the dynamic type,

 and whether the result is polymorphic, are deferred to interp F08/0102.

Answer 6:

Yes.

Answer 7:

(a) Yes.

(b) No.

(c) The requirements refer to both the declared type and the dynamic

 type. Note that this means that if either ARRAY or VECTOR is not

 polymorphic, the requirement for type matching means that the

 dynamic type of the polymorphic argument is known.

(d) The result "has the same type" as ARRAY, and therefore is polymorphic

 if ARRAY is polymorphic.

Answer 8:

(a) Yes.

(b) No.

(c) The requirements refer to both the declared type and the dynamic

 type.

(d) The result "has the same type" as SOURCE, and therefore is polymorphic

 if and only if SOURCE is polymorphic.

Answer 9:

(a) Yes.

(b) No.

(c) The requirements are explicitly stated to refer to the declared type.

Answer 10:

(a) Yes.

(b) Yes. "The result is ... of the same type ... as ARRAY.".

Answer 11:

(a) Yes.

(b) Yes.

(c) "The result is of the same type ... as MOLD.".

Answer 12:

(a) Yes.

(b) Yes. The declared and dynamic types of the result are those of

 the argument.

Answer 13:

(a) Yes.

(b) Yes.

(c) The requirements refer to both the declared type and the dynamic

 type.

(d) Yes. The result has the same declared and dynamic types as VECTOR,

 and is polymorphic if and only if VECTOR is polymorphic.

Answer 14:

Yes. For example, IMAGE_INDEX, LCOBOUND, PRESENT, STORAGE_SIZE, and

UCOBOUND.

EDITS:

None.

SUBMITTED BY: Rob James

HISTORY: 05-138 m171 F03/0047 submitted - contained the

 questions/answers

 05-138r1 m171 Contained the edits, passed by J3 meeting

 05-170 m172 Passed J3 letter ballot #11

 N1622 m172 Failed WG5 ballot N1629

 13-242 m200 Revised - passed by J3 meeting

 13-262 m201 Passed J3 letter ballot #28 13-255r1

 N1990 m202 Passed as amended by WG5 ballot 6 N1987/88/90

** Q5 was deferred to F08/0102; A2(b) and A13(d) were modified

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F03/0051

TITLE: Repeat specifiers and UDDTIO

KEYWORDS: repeat specifier, POS=, UDDTIO

DEFECT TYPE: Interpretation

STATUS: J3 consideration in progress

QUESTION:

Consider the following program:

MODULE m

 TYPE t

 INTEGER :: i

 INTEGER :: j

 END TYPE

 INTEGER :: ipos

 INTERFACE READ(FORMATTED)

 MODULE PROCEDURE formattedReadT

 END INTERFACE

CONTAINS

 SUBROUTINE formattedReadT (dtv, unit, iotype, vlist, iostat, iomsg)

 CLASS(T), INTENT(INOUT) :: dtv

 INTEGER, INTENT(IN) :: unit

 CHARACTER(*), INTENT(IN) :: iotype

 INTEGER, INTENT(IN) :: vlist(:)

 INTEGER, INTENT(OUT) :: iostat

 CHARACTER(*), INTENT(INOUT) :: iomsg

 READ(unit, *) dtv%i

 INQUIRE(unit, POS=ipos)

 READ(unit, *) dtv%j

 END SUBROUTINE

END MODULE

PROGRAM foo

 USE m

 TYPE(t) :: a

 OPEN(10, FILE='file.txt', ACCESS='stream', FORM='formatted')

 WRITE(10, '(A)') '2*3 5'

 REWIND(10)

 READ(10, *) a

 PRINT *, a%i, a%j, ipos

END PROGRAM

10.9 of Fortran 2003 states that the r*c form of list-directed input

is equivalent to r occurrences of c. So, when the read is performed,

it is as if the input record contains two occurrences of the number 3.

The first child read statement reads the first 3, and does not advance

the file position to the next record (because it is a child data

transfer statement). It appears that the second read statement should

read the second 3. But the file position between the child read

statements is unclear.

What does the above program print?

ANSWER:

The standard does specify the behavior of a processor when a list

directed input record contains a r*c constant, but that is irrelevant

to the question at hand. Executing an INQUIRE statement using an

internal unit is prohibited by [235:16] 9.10.2.1p2. The program does

not conform.

EDITS:

None.

SUBMITTED BY: Rob James

HISTORY: 05-142 m171 F03/0051 submitted

 05-142r2 m171 Passed by J3 meeting

 05-167/170 m172 Failed J3 letter ballot #11

 06-369r1 m178 Passed by J3 meeting

 07-250r1/272 m181 Failed J3 letter ballot #13

 13-248 m200 Revised - withdrawn

The question raised at m200 was about the definition of "internal unit

(9.6.4.8.3)" [226:4], which seems to conflict with the Terms and

Definitions [12:26-31]:

 1.3.94

 internal file

 character variable that is connected to an internal unit (9.4)

 1.3.95

 internal unit

 input/output unit that is connected to an internal file (9.5.4)

The clarification we needed but couldn't find is probably [208:8-10]:

 An internal unit is used to refer to an internal file and is

 specified by an internal-file-variable or a file-unit-number

 whose value is equal to the unit argument of an active defined

 input/output procedure (9.6.4.8).

/Stan

--

NUMBER: F03/0053

TITLE: The BIND attribute for C_PTR and C_FUNPTR

KEYWORDS: BIND attribute, C_PTR, C_FUNPTR, private components

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

1. Do the derived types C_PTR and C_FUNPTR have the BIND attribute?

This affects whether an object of one of these types is permitted

directly in COMMON. C5101 in the Fortran 2008 standard states "If a

common-block-object is of a derived type, it shall be a sequence type

or a type with the BIND attribute and it shall have no default

initialization."

2. Whether the derived types C_PTR and C_FUNPTR have the BIND

attribute affects whether they are extensible. Subclause 4.5.7.1 of

the Fortran 2008 standard states "A nonsequence derived type that does

not have the BIND attribute is an extensible type." Are these types

extensible?

3. Subclause 15.3.3 of the Fortran 2008 standard states that C_PTR and

C_FUNPTR are derived types with private components. Are user-defined

derived types with the BIND attribute permitted to have private

components?

ANSWER:

1. No, these types do not have the BIND attribute. 15.3.3 does not

specify that they have the BIND attribute. 15.3.4 does not require

them to have the BIND attribute in order to make them interoperable.

15.3.5 would require them to interoperate with a C struct if they had

the BIND attribute; this is absurd, since C object pointers and C

function pointers are clearly not structs.

Note that whether these types have default initialization is not

specified by the standard, so possession of BIND would not necessarily

have allowed them in COMMON anyway.

Edits are provided to correct incomplete, and thus misleading,

statements about derived types and the BIND attribute.

2. No, these types were not intended to be extensible. It was an

oversight that these types were not explicitly excluded from being

extensible by subclause 4.5.7.1 paragraph 1 of the Fortran 2008

standard. An edit is provided to correct this.

3. Yes, a user-defined derived type with the BIND attribute is

permitted to have private components. This situation is the same

as for SEQUENCE types, which are similar (but not interoperable).

As with SEQUENCE types, making a component PRIVATE does prevent

access, in a conforming program, to the component by a programmer who

is sufficiently determined; however, it continues to fulfill the

software engineering role for which it was intended. Note further

that there are many other situations where two different Fortran

derived types will interoperate with the same C derived type; this is

not a defect in either standard, but simply a consequence of the two

languages having different approaches to type compatibility.

EDITS to 10-007r1:

[19:15-16] In 1.3.147.6,

 replace the definition of "extensible type"

 with "type that may be extended using the EXTENDS clause (4.5.7.1)".

{Repair definition of extensible type.}

[77:3] In 4.5.7.1p1,

 After "A derived type" insert

 ", other than the type C_PTR or C_FUNPTR from the intrinsic module

 ISO_C_BINDING,"

{Prohibit these types from subsequent extension.}

[431:6] In 15.3.4p1, replace the first sentence with

 "Interoperability between derived types in Fortran and struct types

 in C is provided by the BIND attribute on the Fortran type."

{Reduce misleading opening blather - this is just here so we didn't

 start the subclause with a bunch of constraints. Alternatively we

 could move paragraph 2 (and note 15.12) to replace paragraph 1.}

[431:12+2] In 15.3.4, Note 15.11,

 After "is interoperable" insert "with a C struct type".

{Correct another misleading sentence.}

[431:13-18] In 15.3.4p2,

 Change all four occurrences of "Fortran derived type"

 to "derived type";

 change the single occurrence of "Fortran type" to "derived type".

{Remove unnecessary and confusing qualification of "derived type" with

 "Fortran".}

SUBMITTED BY: John Reid

HISTORY: 05-151 m171 F03/0053 submitted - Passed by J3 meeting

 05-170 m172 Passed J3 letter ballot #11

 N1622 m172 Failed WG5 ballot N1629

 11-217r1 m195 Revised answer for Fortran 2008 - Passed

 by J3 meeting

 11-241 m196 Passed as amended by J3 letter ballot

 #24 11-229

 12-165r2 m198 Passed by J3 letter ballot #25 12-147

 12-193 m199 Failed WG5 ballot #3 N1932/N1933/N1939

 12-190 m199 Revised answer/edits - passed by J3 meeting

 13-237 m200 Passed as amended by J3 letter ballot

 #27 13-203

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F03/0059

TITLE: Structure components in namelist input

KEYWORDS: Namelist, UDDTIO, component

DEFECT TYPE: Erratum

STATUS: J3 consideration in progress

QUESTION:

Consider the following program:

 MODULE m

 PRIVATE

 TYPE, PUBLIC :: t

 INTEGER :: i

 INTEGER :: j

 CONTAINS

 PROCEDURE, PRIVATE :: readFormatted => readFormattedT

 GENERIC :: READ(FORMATTED) => readFormatted

 END TYPE

 CONTAINS

 SUBROUTINE readformattedT(dtv, unit, iotype, v_list, iostat, &

 & iomsg)

 CLASS(t), INTENT(INOUT) :: dtv

 INTEGER, INTENT(IN) :: unit

 CHARACTER(*), INTENT(IN) :: iotype

 INTEGER, INTENT(IN) :: v_list(:)

 INTEGER, INTENT(OUT) :: iostat

 CHARACTER(*), INTENT(INOUT) :: iomsg

 READ (unit, *) dtv%i

 dtv%j = dtv%i * 2

 END SUBROUTINE

 END MODULE

 PROGRAM p

 USE m

 TYPE(t) :: x

 NAMELIST /nml/ x

 READ (*, nml)

 PRINT *, x%i, x%j

 END PROGRAM

Question 1:

Is the following input valid for the above program?

&nml

 x%i = 100

/

Question 2:

If the input is valid, what is the output of the program, when using

this input?

ANSWER:

1. No, this input is not valid for the given program. The name of a

component of a structure should not appear in namelist input if that

structure would be processed by a user-defined derived-type I/O

procedure. Edits are supplied to correct this oversight.

2. N/A

EDITS:

[243:24-27]

Replace

 "If the namelist group object name is the name of a variable of

 derived type, the name in the input record may be either the name

 of the variable or the designator of one of its components,

 indicated by qualifying the variable name with the appropriate

 component name."

with

 "If the namelist group object is a variable of derived type, the

 name in the input record may be the name of the variable. If the

 variable would not be processed by a user-defined derived-type

 input/output procedure, the name in the input record may also be

 the designator of one of its components, using the syntax of

 object designators."

SUBMITTED BY: Rob James

HISTORY: 05-174 m172 F03/0059 submitted

 05-221 m173 Passed by J3 meeting

 06-133 m175 Failed J3 letter ballot #12 - typo fixed

 Rich Bleikamp's NO comment for F03/0059:

 The replacement text reads "if the variable would not be processed

 by a UDDTIO ...", but I think the presence of an object designator

 might actually determine whether or not the object designator is

 processed by a UDDTIO routine (sort of the reverse decision

 process than what is being suggested, where being processed by a

 UDDTIO routine precludes the use of a non-simple variable name in

 the input record).

 Second, the sentence immediately after the replaced text talks

 about "Successive qualifications" being applied to the name. I

 think this reads awkwardly with the suggested edit.

 Third, I think the answer may be wrong. For namelist input, we

 should allow (perhaps we already do) object designators all the

 time, and just not invoke the UDDTIO routine if the object

 designator is not a simple variable name, or if the resulting

 objects datatype/shape do not match an existing interface for a

 UDDTIO routine. Also, its not clear to me (its too late in the

 day), but perhaps we really want to allow an object designator

 that's an array element reference to invoke a UDDTIO routine.

 We could use the datatype and shape of the object designator to

 determine whether or not a UDDTIO routine should be invoked

 (still a compile time decision). I'm not at all sure we'd want

 to allow component references in such a case, or perhaps a

 component reference in the input record just precludes the

 possibility of invoking a UDDTIO routine for that input value.

 The tradeoffs here are:

 1) allow some more functionality (which we may already allow),

 such as array element references appearing in a namelist input

 record (as a namelist group object name, possibly qualified),

 and still cause a UDDTIO routine to be invoked, and

 2) keep the rules simple enough that the user and compiler's I/O

 library can easily agree on what's supposed to happen, and

 what input values are therefore allowed.

 I was going to suggest a replacement edit, but my head hurts too

 much :).

--

NUMBER: F03/0064

TITLE: Recursive declaration of procedure interfaces

KEYWORDS: procedure, interface

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Q1. Consider the following program:

 PROGRAM foo

 PROCEDURE(sub) :: p

 INTERFACE

 SUBROUTINE sub(p2)

 IMPORT p

 PROCEDURE(p) :: p2

 END SUBROUTINE

 END INTERFACE

 END PROGRAM

C1216 appears to prohibit the case of an interface name in a procedure

declaration statement being the name of something declared in a later

procedure declaration statement. But it does not appear to prohibit

the case of an interface name being the name of something declared in

a later interface body.

In the above program, the characteristics of p rely on the

characteristics of sub. The characteristics of sub, in turn, rely on

the characteristics of p.

Is this program standard-conforming?

Q2. Consider the module

 MODULE m1

 CONTAINS

 SUBROUTINE s(p)

 PROCEDURE(s) :: p

 END SUBROUTINE

 END MODULE

Constraint C1216 does not apply here since "s" is not declared by a

procedure declaration statement; unlike Q1, it is also not declared by

an interface body. However, the characteristics of S have not been

determined before the procedure declaration statement has been

processed, and that cannot be processed until we know what the

interface of S is.

Is this program unit standard-conforming?

Q3. Consider the module

 MODULE m2

 CONTAINS

 SUBROUTINE s1(a)

 PROCEDURE(s2) :: a

 END SUBROUTINE

 SUBROUTINE s2(b)

 PROCEDURE(s1) :: b

 END SUBROUTINE

 END MODULE

The interface of A depends on the interface of S2, which depends on

the characteristics of B, which depends on the characteristics of S1,

which depends on the characteristics of A; a circular dependency.

Is this program unit standard-conforming?

Q4. Consider

 MODULE m3

 PROCEDURE(s),POINTER :: sptr

 CONTAINS

 SUBROUTINE s(p)

 PROCEDURE(sptr) :: p

 END SUBROUTINE

 END MODULE

In the normal course of events there is no problem declaring a

procedure pointer to have the interface of a module procedure that is

defined later, and this is desirable, but in this case there seems to

be a circular dependency between the characteristics of sptr, s, and

p.

Is this program unit standard-conforming?

ANSWER:

None of the examples are standard-conforming, as the standard does not

establish an interpretation for them.

An edit is provided to clarify this.

EDIT to 10-007r1:

[288:3] 12.4.3.6p2, append new sentence

 "The interface specified by <interface-name> shall not depend on any

 characteristic of a procedure identified by a

 <procedure-entity-name> in the <proc-decl-list> of the same

 procedure declaration statement."

SUBMITTED BY: Rob James

HISTORY: 05-179 m172 F03/0064 submitted

 05-226 m173 Passed by J3 meeting

 06-133 m175 Failed J3 letter ballot #12

 09-149 m187 Passed by J3 meeting

 09-187r2 m188 Failed J3 letter ballot #18 09-155

 13-245 m200 Revised - passed by J3 meeting

 13-262 m201 Passed J3 letter ballot #28 13-255r1

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F03/0084

TITLE: IEEE_SET_ROUNDING_MODE in a subroutine

KEYWORDS: IEEE_ARITHMETIC

DEFECT TYPE: Interpretation

STATUS: J3 consideration in progress

QUESTION:

Section 7.1.7 of the Fortran 2008 standard says that if the value of an

expression can be determined before execution of the program, it is

standard-conforming to use the predetermined value.

Consider the subprogram

 SUBROUTINE S()

 USE, INTRINSIC :: IEEE_ARITHMETIC

 USE, INTRINSIC :: IEEE_FEATURES

 INTEGER, PARAMETER :: sp = IEEE_SELECTED_REAL_KIND(6,30)

 real(sp) :: X = 0.5559013_sp

 real(sp) :: Y = 1.2092481_sp

 real(sp) :: Z1, Z2

 IF (IEEE_SUPPORT_ROUNDING(IEEE_NEAREST,X) .AND. &

 IEEE_SUPPORT_ROUNDING(IEEE_UP,X)) THEN

 CALL IEEE_SET_ROUNDING_MODE(IEEE_UP)

 Z1 = X*Y

 CALL IEEE_SET_ROUNDING_MODE(IEEE_NEAREST)

 Z2 = X*Y

 PRINT *, 'Residual: ', Z1 - Z2

 ENDIF

 END

(1) Is a processor permitted always to print zero for the residual

 Z1 - Z2 ?

(2) Same question, after giving X and Y the PARAMETER attribute.

ANSWER:

(1) Yes. The processor is allowed to evaluate expressions (constant

or otherwise) in any mathematically equivalent way. In particular, it

is permitted to evaluate using higher precision than any precision

available when the program is executed. For example, it might compute

Z1 == Z2 == 0.67222259081253, then compute Z1 - Z2 == 0.0, regardless

of how the program might do rounding at the seventh decimal digit when

it is executed.

(2) Yes, for the same reasons as question (1).

EDITS to 10-007r1:

None.

SUBMITTED BY: Michael Ingrassia

HISTORY: 06-372 m178 F03/0084 submitted

 11-218 m195 Revised answer for Fortran 2008 - Passed

 by J3 meeting

 11-241 m196 Passed as amended by J3 letter ballot

 #24 11-229

 12-165r2 m198 Passed as amended by J3 letter ballot

 #25 12-147

 12-193 m199 Failed WG5 ballot #3 N1932/N1933/N1939

F03/0084

Bader NO vote:

The answers given to both (1) and (2) in the interp appear to me

to be counterintuitive; the programmer would expect that the

calculation of Z1 and Z2 respectively obey the imposed rounding

mode. In particular, I suspect there are situations where it is

more obvious to the compiler than to the programmer that expressions

are evaluated at compile time, and that different processors may

have differing capabilities in identifying such expressions. The

resolution of such situations is one target that the IEEE facilities

were designed for. I therefore am in favor of the stance that, if

supported, the setting of the rounding mode should take precedence

over processor-dependent compile-time evaluations.

Corbett NO vote:

I disagree with the interpretation given. I believe that the

assignments should require conversions to be done and that the

conversions should be done in accord with the rounding mode

currently in effect. Therefore, the results should not be zero.

Long NO vote:

I was confused by John's comment that the rounding mode on

entry to the subroutine affected the value of Z1 since the computation

of Z1 follows a call that resets the rounding mode. I think the real

question here is what the standard means by "mathematical". I had

always thought in terms of things like algebra. John's answer seems

to imply that computational numerics (as specified by IEEE) are part

of the concept of "mathematical". In other contexts, I think that

John's interpretation could be harmful. On the other hand, the

current answer does seem to make the usefulness of the

IEEE_SET_ROUNDING_MODE routine more limited that would be

expected. Also, does the concept of mathematically equivalent apply to

the aggregation of multiple statements, or does it apply to just one

expression? A processor that used the "mathematically equivalent"

argument to get 0 would need to forward sub the expressions for Z1 and

Z2 into the print statement to get X*Y - X*Y. I don't think we

intended to allow forward substitution of expressions across one of

the IEEE mode setting routines.

Maclaren comment:

This relates to F03/0065, but is the other way round. Unlike that one,

I consider this consistent with the majority of the semantic wording in

the C standard.

Muxworthy No vote:

I agree with John's vote.

Reid NO vote:

The IEEE rounding mode on entry to the procedure may vary from

call to call. The value of Z1 depends on this rounding mode.

Therefore, the processor should not always print zero for Z1-Z2.

Whether or not Z1 and Z2 have the PARAMETER attribute makes no

difference. Yes, the processor is allowed to evaluate an

expression in any mathematically equivalent way, but here the

mathematics dictates that a particular form of rounding, defined

in the IEEE standard, be applied.

Snyder NO vote:

 The answer makes rounding mode changes pointless.

 The work-around usually advanced to cause rounding mode changes to

 have effect (but not advanced in the answer to the interpretation)

 is to store intermediate results that are computed with different

 rounding modes in VOLATILE variables if they are ultimately to be

 combined in a single expression.

 Subclause 5.3.19 states, in part, however, that "The VOLATILE

 attribute specifies that an object may be referenced, defined, or

 become undefined, by means not specified by the program." Setting

 the rounding mode is done by means that ARE specified by the

 program, so the advice is not germane. One who reads subclauses

 5.3.19, 14.4, 14.11.6, and 14.11.21, and the answer to this

 interpretation, might not realize that the use of VOLATILE variables

 is required, under the present interpretation, for subclauses 14.4,

 14.11.6, and 14.11.21 to be meaningful.

 A better answer would have been to amend 7.1.5.2.4 to require that

 all entities within the expression are evaluated with the same

 rounding mode, or to specify that quantities evaluated with

 different rounding modes cannot be considered to be mathematically

 equivalent, even if evaluated by textually identical expressions.

 This might require processors either to abandon certain

 optimizations, or to perform more detailed dataflow analysis that

 propagates rounding mode to determine when those optimizations are

 permitted.

 If the position implied by the answer to this interpretation is to

 be maintained, the absence of edits is entirely inadequate. The

 definition of VOLATILE must be changed to encompass actions that ARE

 specified by the program, and to encompass advice concerning

 rounding mode changes. Advice to store intermediate results that

 are computed with different rounding modes into VOLATILE variables,

 if they are to be combined in a single expression, must be included

 in subclauses 14.4 and 14.11.21.

 During the requirements phase for the 2008 standard, there was a

 request (in 04-219) for a "strict mode" similar to that described in

 section G.2 of the Ada standard, in which rounding mode settings

 would actually have an effect without needing to resort to VOLATILE

 variables. If a "strict mode" had been provided, it might have made

 sense to allow a processor to ignore rounding mode changes outside

 strict regions. A request for a "strict mode" will be presented

 during the requirements-gathering phase for the next revision of the

 standard, for this as well as other reasons.

..

F03/0084: Replies from the editor

 John Reid writes:

<<<

 The IEEE rounding mode on entry to the procedure may vary from

 call to call. The value of Z1 depends on this rounding mode.

 Therefore, the processor should not always print zero for Z1-Z2.

 Whether or not Z1 and Z2 have the PARAMETER attribute makes no

 difference. Yes, the processor is allowed to evaluate an

 expression in any mathematically equivalent way, but here the

 mathematics dictates that a particular form of rounding, defined

 in the IEEE standard, be applied.

>>>

No it does not. IEEE peculiarities play no part in the mathematical

Reals.

IEEE is merely one form of computer arithmetic. (It would make very

bad mathematics, since IEEE numbers are not even a subset of the

2-point compactification of the Reals, thus nearly all mathematical

identities and theorems about the Reals would get destroyed.) Computer

arithmetic is *computational* not *mathematical*. ALL computer

arithmetics frequently give different computational answers for

mathematically-equivalent expressions.

And I cannot believe you are again trotting out this nonsense saying

constant expressions should not be treated as constant. If I have

 "REAL(KIND=INT(a+b)) :: x(INT(a+b)) = a+b; y=a+b",

with a and b being floating-point named constants, I am not allowed

to evaluate a+b at compile time? Surely you jest. Or I can in the

KIND= but not in the array bound? Unless the array is in COMMON or

has the SAVE attribute? Surely you jest even more. Or I can

everywhere except in the "y ="? You cannot be serious.

Furthermore, the rationale you are using is applicable to all routines

regardless of whether they call IEEE_SET_ROUNDING and would thereby

destroy many basic optimisations. You.Really.Can.Not.Be.Serious.

--

NUMBER: F03/0100

TITLE: Error in field width for special cases of signed INFINITY

 output

KEYWORDS: formatted output, signed infinity

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Is there an error in the description for the output of a IEEE infinity

with a sign and a field width of 3 or 8?

Fortran 2008, 10.7.2.3.2 paragraph 7, [252:33-34], describes the

output of IEEE infinities; this specifies asterisks (field overflow) if

the field width is less than 3, and omission of "inity" if the field

width is less than 8. However, this does not take into account the

fact that there might be a plus or minus sign in the field.

The current text also fails to take into account the case of <w> = 0,

for both Infinity and NaN values.

ANSWER:

Yes, there is an error in the special cases. Edits are provided to

correctly describe the required field widths for signed infinities.

An edit is also provided to repair the description of the output of

NaN values.

EDITS to 10-007r1:

[252:33-34] 10.7.2.3.2p7, Replace "If <w> is ... produced." with

 "The minimum field width required for output of the form 'Inf' is 3

 if no sign is produced, and 4 otherwise. If <w> is greater than

 zero but less than the minimum required, the field is filled with

 asterisks. The minimum field width for output of the form

 'Infinity' is 8 if no sign is produced and 9 otherwise. If <w>

 is greater than or equal to the minimum required for the form

 'Infinity', the form 'Infinity' is output. If <w> is zero or <w>

 is less than the minimum required for the form 'Infinity' and

 greater than or equal to the minimum required for the form 'Inf',

 the form 'Inf' is output. Otherwise, the field is filled with

 asterisks."

[252:37] Same subclause, p8, Replace "If <w> ... askerisks." with

 "If <w> is greater than zero and less than 3, the field is filled

 with asterisks. If <w> is zero, the output field is 'NaN'.".

SUBMITTED BY: Dick Hendrickson

HISTORY: 07-271 m181 F03/0100 submitted

 07-271r2 m181 Passed by J3 meeting

 07-321 m182 Failed J3 letter ballot #14 07-279

 07-340r1 m182 Passed by J3 meeting

 08-133r2 m183 Passed by letter ballot #15 08-101

 08-164 m184 Failed WG5 ballot #5 N1722-N1726

 13-247 m200 Revised - passed by J3 meeting

 13-262 m201 Passed as amended by J3 letter ballot #28

 13-255r1

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F03/0121

TITLE: Precise FP semantics of the REAL intrinsic

KEYWORDS: REAL intrinsic

DEFECT TYPE: Clarification

STATUS: J3 consideration in progress

QUESTION:

Must the intrinsic function REAL with KIND parameter wp return a value

that is a REAL (KIND=wp) floating point number?

RATIONALE FOR THE QUESTION:

Computer hardware may use a wider floating-point format for registers

than for memory; e.g., 80 bits for registers and 64 bits for memory

for the case of standard double precision floating point numbers.

Some algorithms require a high level of control over floating point

semantics. If the intrinsic function REAL with KIND parameter wp is

guaranteed to return a REAL (KIND=wp) result then a programmer can use

this to force intermediate results into main memory format, never mind

that the optimizing compiler may have placed the intermediate in a

register.

I am interested in a J3 interpretation of this matter, especially a

loud and clear affirmative interpretation, because it appears that

some present Fortran compilers optimize away my explicit use of the

REAL intrinsic. The context is code for compensated summation (Kahan

summation). I appreciate that parentheses are inviolable courtesy of

the Fortran standard, but in order to have code that cannot be broken

by an optimizing compiler I seem to need also a language mechanism to

force intermediate results into main memory format.

Bas Braams

Chemistry Department and

Emerson Center for Scientific Computation

Emory University

Atlanta, GA

ANSWER:

Yes, for purposes of determining the type and kind of the result, for

use in subclause 7.1.9.3, the result of the intrinsic function REAL with

KIND argument wp returns a value that is of type REAL(KIND=wp).

However, if it is used within an expression involving intrinsic

operations,

 "the processor may evaluate any mathematically equivalent

 expression, provided that the integrity of parentheses is not

 violated."

and

 "mathematically equivalent expressions of numeric type may produce

 different computational results",

which means that it is unlikely to serve your purpose.

Intermediate results can be rounded to storage format by assignment to a

VOLATILE variable.

EDITS to 10-007r1:

None.

HISTORY: 08-208r1 m185 F03/0121 submitted

 10-240 m193 Draft answer for F2008 - Passed by J3 meeting

 11-129 m194 Passed by J3 letter ballot #22 10-254

 N1878 m186 Failed WG5 ballot 1 N1876

 11-260 m196 Revised answer

 11-260r1 m196 Passed by J3 meeting

 12-165r2 m198 Passed by J3 letter ballot #25 12-147

 12-193 m199 Failed WG5 ballot #3 N1932/N1933/N1939

F03/0121

Bader NO vote:

The answer as a whole seems misleading; given the specification

of the REAL intrinsic and existing rules for type conversions (or

their absence) in expressions, the answer should simply be "yes".

The reference to mathematically equivalent expressions is mostly

irrelevant (since by parenthesization the programmer's purpose

should very likely be achievable), and that to VOLATILE variables

is simply unnecessary.

Corbett NO vote:

I previously voted for the answer given. Since then, I

have been convinced I was mistaken. I no longer think

that REAL(X), where X has type REAL but has a different

kind type parameter value from that of type default real,

should be considered mathematically equivalent to X. I

now agree with Mr. Braams that the intrinsic function REAL

should do a real conversion.

I agree with Van that nothing in the standard or in the

existing interpretations requires VOLATILE to force a

conversion. Interpretation F90/000001 is the only

interpretation I have found that addresses the issue,

and it, of course, could not require the use of VOLATILE.

I agree with John that VOLATILE should not be required to

force a conversion.

Long NO vote:

Similar to F03/0084, this hinges on the meaning of "mathematical".

I'm not convinced that a processor is allowed to treat

X and REAL(X,wp) as mathematically equivalent. The REAL function

(may) perform an operation that is outside the scope of normal

algebra.

Maclaren comment:

The recommendation to use VOLATILE is wrong. There is a common myth in

among C and C++ programmers and even in informative text in the

standards that volatile implies this semantic, but it is not justified

by their normative text, nor do all compilers support it. Fortran

should not follow suit - in particular, Fortran 2008 5.3.19 makes no

such guarantee.

In particular, because 5.3.19 provides licence to the processor and not

to the programmer, a compiler is at liberty to optimise all references

to VOLATILE variables if it does not provide any method of accessing it

other than those specified by the program. Regrettably, the correct

response is:

 There is no feature in Fortran to provide this facility, though

 assignment to a VOLATILE variable will often work. On some

 processors, making that a BIND(C) variable in a module will be

 needed but, on a few, this recipe will not work at all.

This should be addressed properly in a future revision.

Muxworthy comment:

Like Van, I find the Answer unsatisfactory although the outcome (no

edit) is correct. The answer is Yes. This is stated clearly in

13.7.138. What a processor might or might not do behind the scenes is

irrelevant. If it does not obey 13.7.138 it is non-standard-

conforming. (We are talking about a high-level language, not C).

Reid NO vote:

I think it is unacceptable to recommend the use of the VOLATILE

attribute for a variable that is referenced, defined, or becomes

undefined only within the Fortran program. The desired effect

may be obtained by assigning the intermediate result to a

variable without the VOLATILE attribute because this rules out

the exceptions explained in the final sentence of the first

paragraph of the answer ("Furthermore, ...").

Snyder NO vote:

 The answer refers to subclause 7.1.5.2.4 without identifying that

 subclause: "the processor may evaluate any mathematically

 equivalent expression, provided that the integrity of parentheses is

 not violated," and uses that as justification for the answer.

 Subclause 7.1.5.2.4 is entirely irrelevant to the question.

 Subclause 4.1.2 specifies that "For each type there is a set of

 valid values." Subclause 4.2 specifies that "the set of values...

 depend[s] on the values of the parameters."

 Subclause 13.7.2, as amended by the answer to interp F08/0008,

 says, in part, "A program shall not invoke an intrinsic procedure

 under circumstances where a value ... returned as a function result

 is not representable by objects of the specified type and type

 parameters."

 Allowing the REAL intrinsic function to return a result that is

 claimed to have a specified kind, and a value that is not a member

 of the set of valid values for that kind, violates the requirements

 of subclauses 4.1.2, 4.2, and 13.7.1 as amended by interpretation

 F08/0008. An interpretation should not introduce an inconsistency

 that will later need to be resolved by yet another interpretation.

 Even if F08/0008 were to fail, the result of the answer to this

 interpretation would be to introduce a conflict to 13.7.1 status quo

 ante, which reads, in part, "A program is prohibited from invoking

 an intrinsic procedure under circumstances where a value to be

 returned in a subroutine argument or function result is outside the

 range of values representable by objects of the specified type and

 type parameters," and continues with caveats not germane to the

 present interpretation.

 The only reason ever to invoke the REAL intrinsic function with a

 real argument and a KIND argument is to produce a result with the

 specified kind, and a value that is a member of the set of valid

 values for that kind. This is exceedingly rare, except perhaps as

 an actual argument (where the processor must necessarily produce a

 value that is a member of the set of valid values, and additionally

 is represented by the specified type and kind), and therefore

 requiring processors to produce a value for the result of REAL that

 is a member of the set of valid values for the kind of the result

 would have no measurable effect on performance in any program other

 than an arcane SPEC benchmark.

 The answer should be "Although a processor is allowed to replace an

 expression with a mathematically equivalent expression, subclauses

 4.1.2, 4.2, and 13.7.1 (or 13.7.1 as amended by interpretation

 F08/0008) require the value of the result of every intrinsic

 function to be a member of the set of valid values for the type and

 kind of the function result." No normative edits would be required,

 although it would be helpful to add a recommendation in a note (or a

 requirement) to 13.7.138p5 Case (i) that the result have a value

 that is not different from the argument by more than one unit in its

 least significant place (unless the argument is NaN), and that it be

 rounded according to IEC 60559:1989 and the rounding mode currently

 in effect if the IEEE_ARITHMETIC module is accessible (unless the

 argument is NaN).

 Advice in the presently proposed answer is offered to use the

 VOLATILE attribute. Subclause 5.3.19 states, in part, however,

 that "The VOLATILE attribute specifies that an object may be

 referenced, defined, or become undefined, by means not specified by

 the program." Invoking the REAL intrinsic function is a means that

 IS specified by the program, so the advice is not germane.

 One who reads subclauses 4.1.2, 4.2, 5.3.19, 7.1.5.2.4 and 13.7.1

 would have no clue that the way to make REAL operate as essentially

 all users expect it to operate is to store its result into a

 variable that has the VOLATILE attribute! If one must have the

 presently proposed answer, having no edits is entirely inadequate.

 Subclause 5.3.19 must be amended to include effects that ARE

 specified by the program. Subclauses 5.3.19 and 13.7.138 must be

 amended to include advice to use the VOLATILE attribute to make REAL

 function as essentially all users expect it to. Further, there must

 be an explicit exemption for REAL in subclause 13.7.1, and maybe in

 4.1.2 and 4.2 as well.

 A perverse reading of 13.7.1, adroitly sidestepping subclauses 4.1.2

 and 4.2, might be that a function is allowed to return a value that

 is not a member of the set of valid values for the type and kind of

 the result, but that a program is not allowed to invoke the function

 in such a way as to produce that result. This would make it illegal

 instead of pointless to invoke the REAL intrinsic function with the

 hope to produce a value that is a member of the set of valid values

 for the kind of the result. That is, for example, that REAL is

 permitted to act consistently with the present answer to this

 interpretation, but a program is not permitted to invoke

 REAL(3.14159265358979323846264338d0,kind(1.0e0)) if the processor

 uses 32-bit IEEE arithmetic for default real, because the result

 would not be a member of the set of valid values. If so, in order

 to detect programs that are not standard conforming, a helpful

 processor should announce an error in this circumstance, which

 requires producing a value that is a member of the set of valid

 values, and comparing it to the proposed result value instead of

 using it as the result value. One might argue that 13.7.1 was

 aimed, for example, at SQRT(-1.0), for which the mathematical

 function approximated by the intrinsic function has no values that

 are representable by the type and kind of the result. But it

 doesn't say so, and that argument does not reasonably apply to

 REAL. Since 13.7.138p5 Case (i) explicitly says that REAL produces

 an approximation to its argument, it is more reasonable for

 REAL(3.14159265358979323846264338d0,kind(1.0e0)) to produce an

 approximation that is a member of the set of valid values for the

 kind of the result, than for its invocation to be prohibited, or for

 it to produce a result that is not a member of the set of valid

 values for the kind of the result.

 If a processor absolutely must reduce REAL with a real argument to

 the identity operation under certain circumstances, a command-line

 argument to cause this behavior could be provided, with a caveat

 that using that setting admits behavior that is not consistent with

 the standard.

..

F03/0121: Replies from the editor

<<<

 I think it is unacceptable to recommend the use of the VOLATILE

 attribute for a variable that is referenced, defined, or becomes

 undefined only within the Fortran program. The desired effect

 may be obtained by assigning the intermediate result to a

 variable without the VOLATILE attribute because this rules out

 the exceptions explained in the final sentence of the first

 paragraph of the answer ("Furthermore, ...").

>>>

Well no. Inter-statement optimisation is alive and well (re, in spite

of F90/000001: some vendors have to compete on SPEC benchmarks and the

like!), and the people moaning about the REAL() intrinsic not doing

what they want frequently also want the optimisation cranked up to that

level. In that case, VOLATILE is something that does, in fact, work.

One might plausibly argue that we are being more helpful here than we

need to.

Nick opined:

<<<

 ... is a common myth in among C and C++ and even in informative text

 in the standards that volatile implies this semantic

>>>

If informative text in the standard implies this semantic, that is a

clear indication of the intent of the C committee.

<<<

 but it is not justified by their normative text,

>>>

That is your opinion. You might or might not be right. My

understanding of the normative text is otherwise i.e. the same as the

informative implication. I might or might not be right. Under the

circumstances, since this is the Fortran committee not the C

committee, we should take the informative text as being correct

rather than what some of the barracks-room lawyers say.

<<<

 nor do all compilers support it

>>>

Many compilers have many bugs in many areas, and volatile is no

exception to this. Indeed, papers have been written on such very

topics. However, this case is very simple (no multi-threading

required!) and in my experience it does work reliably.

--

NUMBER: F03/0139

TITLE: Functions returning procedure pointers

KEYWORDS: procedure pointer

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

(1) Is a function permitted to return a procedure pointer?

 Much of the language talks about the function result variable,

 but a procedure pointer is not a variable. For example, 2.2.3

 says [12:16]

 "The VARIABLE that returns the value of a function is called

 the RESULT VARIABLE."

 (emphasis mine); which indicates that the value of a function is

 returned in a variable.

(2) Where may a function reference that returns a procedure pointer

 appear? In particular,

 (a) as a <selector> in a SELECT TYPE or an ASSOCIATE statement;

 (b) within parentheses as a primary;

 (c) as the argument to an intrinsic inquiry function such as

 KIND or LEN.

(3) [12:18-19] says

 "a subroutine may be used to change the program state by

 changing the values of any of the data objects accessible

 to the subroutine".

 A procedure pointer is not a data object, so is this meant to

 imply that a subroutine is not permitted to change the state of a

 procedure pointer? Similar text for functions appears in the same

 paragraph.

ANSWER:

(1) Yes, a function is permitted to return a procedure pointer; the

 text calling this a variable is in error. Edits are supplied to

 correct these mistakes.

(2) It was intended that a function reference that returns a

 procedure pointer only be permitted as an argument to the

 ASSOCIATED and NULL intrinsic functions and in places where an

 ordinary procedure name would be acceptable. Parentheses around

 a pointer act to dereference the pointer and return a copy of the

 value: this action is inapplicable to procedures. Thus the

 answers to the specific sub-questions are No, No, and No again.

 Clarifying edits are provided.

(3) No, this implication is not intended. A clarifying edit is

 provided.

EDITS for (1b):

[10:33+] Insert new term after "1.3.77 <<function>>"

 "1.3.77a <<function result>>

 entity that returns the value of a function".

[15:31-33] Delete term 1.3.121 <<result variable>>.

[52:2] 4.3.1.2p2, after "function result" delete "variable".

[58:23] 4.4.3.2p5,

 "result variable in the function" -> "function result".

[87:9] 5.1p2 "its result variable" -> "the function result".

[109:24] 5.5p4,

 "name of the result variable of that function subprogram"

 -> "result of that function".

{Function *subprogram*s do not have results, the function specified by

 the FUNCTION statement does, as do the ones defined by the ENTRY

 statements, but the subprogram is just syntax.}

[112:15] 5.7.1.1 C587, "result variable" -> "function result".

[114:22] 5.7.2.1 C5100, "result variable" -> "function result".

[130:26] 6.7.3.2p2, after "function result" delete "variable".

[278:11] 12.3.1 "result value"->"function result".

{Reads a bit awkwardly, but it is important to use the correct terms

 and to be consistent with 12.3.3 (which does) otherwise this is

 undefined meaningless blather.}

[307:5,9] 12.6.2.2p3, "result variable" -> "function result", twice.

[307:12,14,15] p4, "result variable" -> "function result", thrice.

[307:15-16] Delete "The characteristics ... variable.".

[307:16-17] "its result variable." -> "its function result."

[307:17] "is a pointer" -> "is a data pointer".

[307:18,18,20] "result variable" -> "function result", thrice.

[307:20+2] NOTE 12.41, "The ... subprogram." ->

 "The function result is similar to any other entity (variable or

 procedure pointer) local to the function subprogram.".

[307:20+4] "this variable" -> "this entity".

[307:20+5] "that variable" -> "that entity".

[309:23,24] 12.6.2.5p3,

 "result variable name" -> "name of the function result",

 twice.

[310:2] 12.6.2.6p3, after "name of its result" delete "variable".

[310:2-3] Delete "The characteristics ... the result variable.".

[310:5-6] "result variables identify the same variable"

 -> "result names identify the same entity"

 and delete ", although their names need not be the same".

[310:6] "scalars" -> "scalar variables".

[314:3] After "The result" delete "variable".

[433:7] "result variable is a scalar"->"result is a scalar variable".

[441:7,10] 16.3.1p4, "result variable" -> "function result", twice.

[441:18-20] 16.3.3p1, "result variable" -> "function result", thrice.

[449:3-4] 16.5.3.1p1 "result variables" ->

 "function results that are variables".

[450:20] 16.5.3.4p6,

 "result variables" -> "function results that are variables".

[456:11] 16.6.6p1, item (15)(e),

 "the result variable of a function"

 -> "a variable that is the function result of that procedure"

{Also fixes all function results becoming undefined when a single

 procedure is invoked!}

EDITS for (2b).

[133:26+] Insert new constraint

 "C702a (R701) The <expr> shall not be a function reference that

 returns a procedure pointer."

[170:23+] Insert new constraint

 "C804a (R805) The <expr> shall not be a function reference that

 returns a procedure pointer."

[316:12+] 13.2.1 after p6, insert new paragraph

 "An argument to an intrinsic procedure other than ASSOCIATED, NULL,

 or PRESENT shall be a data object."

EDITS for (3).

[30:28] After "data objects" insert "or procedure pointers".

SUBMITTED BY: Malcolm Cohen

HISTORY: 09-295 m190 F03/0139 submitted - Passed by J3 meeting:

 B answers passed

 10-105 m191 Passed as amended by J3 letter ballot #20

 09-307

 N1816 m191 Failed WG5 ballot #7 {N1805/6} - interp

 updated - see 10-135r1

 13-249 m200 Revised - passed by J3 meeting

 13-262 m201 Passed as amended by J3 letter ballot #28

 13-255r1

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

** Add extra edit to [307:16-17]; change the edit for [433:7]

 N2002 m203 In F2008 Corrigendum 3

--

==

Part 4: Active Fortran 2008 Interpretation Requests

==

--

NUMBER: F08/0029

TITLE: G0 edit descriptor and floating-point output

KEYWORDS: G edit descriptor, 0 width

DEFECT TYPE: Erratum

STATUS: J3 consideration in progress

QUESTION:

For data types other than floating-point, the effect of the G0 edit

descriptor is precisely defined. For floating-point output, the

effect is precisely defined only if the value is an IEEE NaN or

Infinity, the result is otherwise left up to the processor to select

"reasonable" values for w, e, and d (if d is unspecified).

The standard states [258:7-9 10.7.5.2.2p2]:

 "the G0 and G0.d edit descriptors follow the rules for the

 Gw.dEe edit descriptor, except that any leading or trailing

 blanks are removed".

One might deduce from the wording of this that there is no upper limit

on the choice of w, since the production of additional leading (or

trailing) blanks has no effect on the output.

Q1. Is a value for w or e that results in the field being filled with

 asterisks reasonable? This is not, after all, an error condition.

Q2. Is a value for d that results in significant loss of precision

 reasonable? E.g. d==1, or for a less extreme example,

 d==PRECISION(value)/2.

Q3. Is a value for d that produces many more digits than the precision

 reasonable? E.g. d==1000000. Or, for a less extreme example,

 d==PRECISION(quad) with a single precision value.

Q4. Is a value for e that produces many more digits in the exponent

 than the exponent range reasonable? E.g. e==1000000.

Q5. If the standard cannot tell me what "reasonable" means, what

 purpose does it serve for it to say that it must be reasonable?

 I cannot see how to tell whether a processor conforms to the

 standard in this respect.

DISCUSSION:

The standard permits, but does not require, the "best" values of w, d

or e to be chosen for each internal value.

ANSWER:

A1. No, that is not reasonable. An edit is supplied to clarify the

 meaning of "reasonable".

A2. No, a value of d that results in a significant loss of precision

 is not reasonable. An edit is supplied to correct this.

A3. No, it is not reasonable for d to be ridiculously large.

 An edit is supplied to clarify the intent.

A4. No, e should not be bigger than that required to represent the

 largest finite machine-representable number. An edit is

 supplied to specify this.

A5. Yes, the use of the word "reasonable" in this context is entirely

 meaningless. An edit is supplied to remove this misleading

 terminology.

EDITS to 10-007r1:

In 10.7.5.2.2, paragraph 2:

[258:9] In 10.7.5.2.2p2 last sentence:

 "Reasonable processor-dependent" -> "Processor-dependent".

{A5.}

[258:10] In 7.5.2.2p2 last sentence, after "value" insert

 ", that do not result in the field being filled with asterisks".

{A1.}

[258:10] Append new sentences to 10.7.5.2.2p2:

 "The value of <d> shall not result in the production of an output

 value that differs from the internal value by more than

 100*SPACING(value), and shall not be more than two larger than the

 maximum number of digits that might be required to distinguish

 between two different machine numbers of the kind of the internal

 value. The value of <e> shall not be so large that the exponent

 would have a leading zero both when the internal value is the

 largest finite machine number and when it is the smallest finite

 machine number of that kind."

{The first sentence limits the choice of <d> to lose no more than 2

 digits of precision (A2) and to have no more than 2 spurious digits

 of precision (A3); for some floating-point formats, the upper bound

 is not strong, being d <= 2+MAX(PRECISION(value)+2,RANGE(value)*2).

 The second sentence would allow e==4 for a lop-sided exponent range,

 e.g. -1100 to +900, but would limit e to at most 3 if the exponent

 range is e.g. -308 to +308 (A4).

 Neither of these restrictions prevent a processor from producing

 fewer mantissa or exponent digits for particular values if that does

 not result in serious loss of accuracy.}

SUBMITTED BY: Malcolm Cohen

HISTORY: 10-179 m192 F08/0029 submitted

 10-179r1 m192 Draft answer with straw vote on alternative

 10-179r2 m192 Revised draft - Passed by J3 meeting

 10-202 m192 Passed by J3 letter ballot #21 10-199

 11-006Ar1 m196 Adjust edits to reference 10-007r1

 N1889 m196 Failed WG5 ballot 2 N1877

F08/0029

Corbett NO vote:

I agree that the word "reasonable" should not appear in the

Fortran standard. The first two proposed edits should be

incorporated. The third edit should not be adopted.

I object to the third edit on general grounds. The issues dealt

with in the third edit should be matters of "quality of

implementation." I see no reason for the Fortran standard to

restrict implementors' choices in this area.

I also object to the third edit on specific grounds. The

proposed edit makes no provision for nonzero scale factors. If

a nonzero scale factor is in effect, an implementation might

reasonably choose a value of d that is outside the range

specified by the edit, if only to avoid the scale factor being

outside the allowed range of values.

The phrase

 and shall not be no more than two larger than the

 maximum number of digits that might be required to

 distinguish between two different machine

 numbers of the kind of the internal value.

should say either "any" between "between" and "two",

or should say "all pairs of" instead of "two."

--

NUMBER: F08/0041

TITLE: Segment ordering rules

KEYWORDS: segment, allocation

DEFECT TYPE: Erratum

STATUS: J3 consideration in progress

QUESTION:

(1) Was it intended to allow the allocation of a variable that is not

 a subobject of a coarray to be unordered with respect to its

 definition by another image through a pointer component of a

 coarray?

For example,

 PROGRAM example1

 TYPE t1

 REAL,ALLOCATABLE :: c(:)

 END TYPE

 TYPE t2

 TYPE(t1),POINTER :: p

 END TYPE

 TYPE(t1),TARGET :: x

 TYPE(t2) :: y[*]

 y%p => x ! y[n]%p => x[n] for all n.

 SYNC ALL

 IF (THIS_IMAGE()==1) THEN

 ALLOCATE(x%c(1000)) ! Allocates x[1]%c.

 ELSE

 y[1]%p%c(THIS_IMAGE()) = 999 ! Defines some part of x[1]%c.

 END IF

 END PROGRAM

(2) If a variable is already defined (initially or by some segment

 that precedes all other segments in this question), may one image

 reference it while another image causes it to become undefined in

 unordered segments?

For example, is

 PROGRAM example2

 REAL :: x(100)[*]

 x = 1

 SYNC ALL

 IF (THIS_IMAGE()==1) THEN

 PRINT *,SUM(x)

 ELSE

 CALL destroy(x)

 END IF

 CONTAINS

 SUBROUTINE destroy(x)

 REAL,INTENT(OUT) :: x(:)

 END SUBROUTINE

 END PROGRAM

standard-conforming? This does not appear to violate any of the

segment ordering requirements in 8.5.2 because it is not defined in

any unordered segment (so bullet 1 does not apply), there is no

allocation or pointer association status (so bullet 2 does not apply),

and there is no dummy argument being defined (so bullet 3 does not

apply).

ANSWER:

(1) No, this example violates the requirement of the first bullet in

 paragraph 3 of 8.5.2, which says:

 "if a variable is defined on an image in a segment, it shall not

 be referenced, defined, or become undefined in a segment on

 another image unless the segments are ordered".

 x[1]%c is defined in segment 2 by images 2-N, but is made

 undefined on image 1 (allocation makes a variable undefined except

 when default initialization occurs).

(2) No, this example was not intended to be standard-conforming. An

 edit is supplied to clarify the intent.

EDITS to 10-007:

[189:14] In 8.5.2 paragraph 3, first bullet point,

 After "if a variable is defined"

 Insert "or becomes undefined"

 (before "on an image in a segment").

{Forbid uncoordinated undefinings of variables.}

SUBMITTED BY: John Reid

HISTORY: 10-201 m193 F08/0041 submitted

 10-201r1 m193 Revised - Passed by J3 meeting

 11-129 m194 Failed J3 letter ballot #22 10-254

** start negative comments

 John Reid's NO vote on F08/0041:

 There are errors in both examples. In example (1), the component of

 type t2 should have type t1. In example (2), the PRINT statement

 should reference x on another image, e.g. PRINT *, x(1)[2].

 More seriously, the edit proposed in 10-201 has been removed. While

 it is not necessary for allocation, it is needed for pointer

 association. This means that it is desirable to rewrite the

 questions and answers. Here is my suggestion

 QUESTION:

 (1) If a variable is already defined (initially or by some segment

 that precedes all other segments in this question), may one

 image reference it while another image causes it to become

 undefined in unordered segments?

 For example, is

 PROGRAM example2

 REAL :: x(100)[*]

 x = 1

 SYNC ALL

 IF (THIS_IMAGE()==1) THEN

 PRINT *,x(1)[2]

 ELSE

 CALL destroy(x)

 END IF

 CONTAINS

 SUBROUTINE destroy(x)

 REAL,INTENT(OUT) :: x(:)

 END SUBROUTINE

 END PROGRAM

 standard-conforming? This does not appear to violate any of the

 segment ordering requirements in 8.5.2 because it is not defined in

 any unordered segment (so bullet 1 does not apply), there is no

 allocation or pointer association status (so bullet 2 does not

 apply), and there is no dummy argument being defined (so bullet 3

 does not apply).

 (2) Was it intended to allow a pointer assignment to a pointer that

 is not a subobject of a coarray to be unordered with respect to

 its definition by another image through a pointer component of

 a coarray?

 For example,

 PROGRAM example1

 TYPE t

 REAL,POINTER :: p

 END TYPE

 REAL,TARGET :: a=0.0, b=1.0

 TYPE(t) :: y[*]

 y%p => a ! y[n]%p => a for all n.

 SYNC ALL

 IF (THIS_IMAGE()==1) THEN

 y%p => b ! y[1]%p => b

 ELSE

 y[1]%p = 999 ! Defines a[1] or b[1]?

 END IF

 END PROGRAM

 ANSWER:

 (1) No. This case has been overlooked in the segment ordering rules.

 An edit is supplied to correct this.

 (2) No. This case, too, has been overlooked in the segment ordering

 rules. An edit is supplied to correct this.

 EDITS to 10-007:

 [189:14] In 8.5.2 paragraph 3, first bullet point,

 After "if a variable is defined"

 Insert "or becomes undefined"

 (before "on an image in a segment").

 [189] In 8.5.2 Segments, paragraph 3, replace the second bullet

 item by

 "if the allocation or the pointer association status of a

 variable is changed on an image in a segment, that variable

 shall not be referenced or defined in a segment on another

 image unless the segments are ordered, and".

 Van Snyder's No vote on F08/0041:

 "is defined" is a static concept. The requirement should

 always have been "becomes defined". Therefore the edit should

 be to replace "variable is defined" to "variable becomes

 defined or undefined" -- or do we need another interp to

 repair this?

 Jim Xia's No vote on F08/0041:

 The first example should be fixed to have t2 contains a pointer

 component of type t1. The second example is perfectly legal. Seems

 we need to rework on this interp.

 result of ballot on F08/0041:

 In example (1), the component of type t2 is changed to type t1.

 However, more work is needed on this interp as a result of these

 comments => F08/0041 fails.

 The edit in 10-201 referred to above is:

 [189] In 8.5.2 Segments, paragraph 3, replace the second bullet

 item by

 "if the allocation or the pointer association status of a

 variable is changed on an image in a segment, that variable

 shall not be referenced or defined in a segment on another

 image unless the segments are ordered, and"

** end negative comments

--

NUMBER: F08/0045

TITLE: constraints on entities of type LOCK_TYPE

KEYWORDS: lock, polymorphism

DEFECT TYPE: Erratum

STATUS: J3 consideration in progress

QUESTION:

Consider the following program:

 Program example

 Use Iso_Fortran_Env, Only:lock_type

 type :: m

 class(*), allocatable :: lock

 end type

 type(m) :: om[*]

 allocate(lock_type :: om%lock)

 call inner(om) ! Problem call.

 Contains

 Subroutine inner(omm)

 Type(m),Intent(Out) :: omm

 Print *,Allocated(omm%lock)

 End Subroutine

 End Program

Constraint C1304 attempts to prohibit a variable with a LOCK_TYPE

subobject from appearing in a variable definition context, such as the

call to inner, but the dynamic type of om%lock cannot be determined

statically.

Is this program standard-conforming?

ANSWER:

The example was not intended to be standard-conforming. An ALLOCATE

statement with a <type-spec> should not have been permitted to add

components of type LOCK_TYPE; an edit is supplied to correct this

error.

EDITS to 10-007:

[127:7] In C641,

 After "C_PTR" replace "or" by ",";

 After "C_FUNPTR" insert

 ", LOCK_TYPE (13.8.2.16), or a type with a direct component of

 type LOCK_TYPE that is not a direct component of the declared

 type of any <allocate-object>,".

{Fix condition to prohibit LOCK_TYPE and any type with a LOCK_TYPE

 direct component. Note that we only want to prohibit "new" lock_type

 components from appearing in the <type-spec>, we don't want to forbid

 ones that are already in the declared type.}

[127:8] After "LOCK_TYPE" delete "(13.8.2.16)".

{Reference now appears one line earlier, so is unnecessary.}

SUBMITTED BY: R. Bader

HISTORY: 10-210 m193 F08/0045 submitted

 10-210r1 m193 Revised - Passed by J3 meeting

 11-129 m194 Failed by J3 letter ballot #22 10-254

** start negative comments

 Jim Xia's No vote on F08/0045:

 The edits makes it illegal to specify LOCK_TYPE as <type-spec> if

 the coarray itself is of LOCK_TYPE. For example,

 type(lock_type), allocatable :: locks[*]

 The edits make the following allocate statement illegal

 ALLOCATE (LOCK_TYPE: locks[*])

 result of ballot on F08/0045:

 /interp will take this back for more work since we think that Jim

 has a valid complaint => F08/0045 fails

 Perhaps the edit should be changed to

 [127:7] In C641,

 After "C_PTR" replace "or" by ",";

 After "C_FUNPTR" insert

 ", or a type with a direct component of type LOCK_TYPE

 (13.8.2.16) that is not a direct component of the declared

 type of any <allocate-object>,".

 [127:7+] Insert new constraint

 "C641a (R626) If an <allocate-object> is unlimited polymorphic,

 <type-spec> shall not specify the type LOCK_TYPE

 (13.8.2.16)."

** end negative comments

--

NUMBER: F08/0071

TITLE: Vector subscript target

KEYWORDS: Pointer assignment, Vector subscript

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Consider

 PROGRAM m197006

 REAL,TARGET :: x(100) = [(i,i=1,100)]

 REAL,POINTER :: p(:)

 TYPE t

 REAL,POINTER :: q(:)

 END TYPE

 TYPE(t) y

 p => x ! (1)

 y = t(x) ! (2)

 p => x([1,4,9,25]) ! (3)

 y = t(x([1,4,9,25])) ! (4)

 PRINT *,y%q

 END PROGRAM

The pointer assignment statement at (1) associates P with X.

The intrinsic assignment statement at (2) includes the effect of

pointer assignment of X to Y%Q, but is not a pointer assignment

statement.

The pointer assignment statement at (3) is not standard-conforming

according to 6.5.3.3.2 paragraph 2:

 "An array section with a vector subscript shall not be

 ... the <data-target> in a pointer assignment statement"

However, the intrinsic assignment statement at (4) is not subject to

this requirement as it is not a pointer assignment statement.

Note that the quoted paragraph is entirely duplicative, as in:

 - the first bullet item is covered by 12.5.2.4p18,

 - the second bullet item is covered by C724 in 7.2.2.2

 (but C724 does not cover this case either),

 - the third bullet item is covered by C901 in 9.5.1.

Editorial improvements have been made in corrigendum 1. The entire

paragraph has been rewritten.

Q1. Was the statement marked (4) intended to be allowed?

Q2. If not, was it intended to be prohibited by a constraint like

 C724, or was it intended to be a simple requirement?

 (Editorial note: in any case surely the requirement should appear

 in the pointer assignment subclause.)

ANSWER:

A1. No, this was not intended. An edit is supplied to correct this.

A2. Constraint C724 was intended to cover this case. An edit is

 supplied to correct this.

EDIT:

[158:19-20] In 7.2.2.2 Syntax of the pointer assignment statement,

 C724, change ""(R737) A <variable>"

 to "A variable that is a pointer target",

 making the whole constraint read:

 "A variable that is a pointer target shall have either the TARGET

 or POINTER attribute, and shall not be an array section with a

 vector subscript."

{Make the constraint apply to all forms of pointer assignment.}

{Notice that this edit incorporates the list item concerning vector

subscripts from 6.5.3.3.2p2 status quo ante corrigendum 1.}

SUBMITTED BY: Malcolm Cohen

HISTORY: 12-121 m197 F08/0071 submitted

	 12-121r1 m197 Revised wording with same edits - passed

 by J3 meeting

 12-165r2 m198 Failed J3 letter ballot #25 12-147

 13-250 m200 Revised - passed by J3 meeting

 13-262 m201 Passed J3 letter ballot #28 13-255r1

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0075

TITLE: Pointer function reference as variable in assignment

KEYWORDS: Pointer function, assignment, defined operator

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

(1) Consider the following

 module Funcs

 interface operator (.op.)

 module procedure Unary, Binary

 end interface

 contains

 function Unary (Arg)

 integer, intent(in) :: Arg

 integer, pointer :: Unary

 ...

 end function Unary

 function Binary (Arg1, Arg2)

 integer, intent(in) :: Arg1, Arg2

 integer, pointer :: Binary

 ...

 end function Binary

 end module Funcs

 program What

 use Funcs

 integer :: X, Y = 42

 10 .op. x = y

 end program What

Is the "10" in "10 .op. x = y" an operand, and therefore an argument of

a reference to Binary, or is .op. a reference to Unary and "10" a

statement label?

(2) Consider the following

 module Funcs

 interface operator (.op.)

 module procedure Unary, Binary

 end interface

 contains

 function Unary (Arg)

 integer, intent(in) :: Arg

 character(len=...), pointer :: Unary

 ...

 end function Unary

 function Binary (Arg1, Arg2)

 integer, intent(in) :: Arg1, Arg2

 character(len=...), pointer :: Binary

 ...

 end function Binary

 end module Funcs

 program What

 use Funcs

 integer :: X = 42, Y

 read (10) .op. x, y

 end program What

Is "10" an <io-control-spec-list>, or is "(10) .op. x" a <format>?

Note that this program is valid Fortran 90, and "(10) .op. x" is

a <format> according to the Fortran 90 standard.

ANSWER:

It was an oversight that the programs in (1) and (2) conform to the

syntax and constraints in two different ways.

The problem stems from the over-ambitious extension of allowing

pointer function references to denote variables; this was unambiguous

for <function-reference> syntax, but is not for operator syntax.

Also, operator syntax has other restrictions on it that are intended

to prevent modification of an operand, and these are subverted if the

result is treated as a variable.

Edits are supplied to remove the treatment of pointer-valued operators

as variables.

EDITS:

[117:13] In 6.2, R602, change "<expr>" to "<function-reference>".

[117:15] In 6.2, C602,

 change "<expr> ... has"

 to "<function-reference> shall have".

[158:18+] In 7.2.2.2, R737, add new production

 "<<or>> <expr>".

{Restore description of <data-target> to F2003 version.}

[158:20+] In 7.2.2.2, After C724, add new constraint

 "C724a (R737) An <expr> shall be a reference to a function that has

 a data pointer result."

{Restore F2003 constraint (more or less).}

SUBMITTED BY: Van Snyder

HISTORY: 12-149 m198 F08/0075 submitted

 12-149r1 m198 Revised edit

 12-149r2 m198 Clarified answer, passed J3 meeting

 12-196 m199 Subsumed F08/0076 and Failed J3 letter ballot

 #26, 12-184

 12-197 m199 Revised answer/edits - passed by J3 meeting

 13-237 m200 Passed by J3 letter ballot #27 13-203

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0076

TITLE: Pointer function reference in READ

KEYWORDS: Pointer function reference, READ, defined operator

DEFECT TYPE: Erratum

STATUS: Subsumed by F08/0075 - No edits in F2008 Corrigendum 3

QUESTION:

Consider the following

 module Funcs

 interface operator (.op.)

 module procedure Unary, Binary

 end interface

 contains

 function Unary (Arg)

 integer, intent(in) :: Arg

 character(len=...), pointer :: Unary

 ...

 end function Unary

 function Binary (Arg1, Arg2)

 integer, intent(in) :: Arg1, Arg2

 character(len=...), pointer :: Binary

 ...

 end function Binary

 end module Funcs

 program What

 use Funcs

 integer :: X = 42, Y

 read (10) .op. x, y

 end program What

Is "10" an <io-control-spec-list>, or is "(10) .op. x" a <format>?

Note that this program is valid Fortran 90, and "(10) .op. x" is

a <format> according to the Fortran 90 standard.

 An edit is supplied

to remove the ambiguity in the current standard.

ANSWER:

This is another example of the same problem as F08/0075, viz syntactic

ambiguity caused by the F2008 feature "operator syntax for variable

denotation". Therefore this interpretation request is subsumed by

F08/0075.

EDITS:

See F08/0075.

SUBMITTED BY: Van Snyder

HISTORY: 12-150 m198 F08/0076 submitted

 12-150r1 m198 Revised answer and edits, passed J3 meeting

 12-196 m199 Subsumed by F08/0075, J3 letter ballot #26,

 12-184

 Result: This is another instance of the same problem (syntactic

 ambiguity) caused by the same feature (operator syntax

 for variable denotation) as F08/0075, so needs to be

 answered together with F08/0075 => example will be added to

 F08/0075, and F08/0076 is therefore subsumed by F08/0075.

 12-197 m199 F08/0075 passed by J3 meeting

 N1990 m202 Passed by WG5 ballot 6, N1987/88/90 -

 subsumed by F08/0075

 N2002 m203 Subsumed by F08/0075 - no edits in F2008

 Corrigendum 3

--

NUMBER: F08/0083

TITLE: Type parameter default expressions allow circular dependence

KEYWORDS: type parameter expressions, circular dependence

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Consider

 type :: T (I, J)

 integer, kind :: I = J + 1

 integer, kind :: J = I + 1

 end type T

 type(t) :: X(1,2)

 print *, x%i, x%j

 end

1. Is the program standard conforming?

2. What does it print?

ANSWER:

1. The program is not conformant because the standard does not establish

an interpretation.

An edit is supplied to make it clear that the program is not comformant.

2. The standard does not establish an interpretation.

EDITS for 10-007r1:

[152:9] Replace item (9) in the list in 7.1.12p1:

 (9) "a previously declared kind type parameter of the type being

 defined,"

SUBMITTED BY: Van Snyder

HISTORY: 12-172 m199 F08/0083 submitted - passed by J3 meeting

 13-237 m200 Passed by J3 letter ballot #27 13-203

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0084

TITLE: Pointer arguments to PURE functions

KEYWORDS: PURE function, POINTER, INTENT(IN)

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

 Consider the following subprogram:

 Real Pure Function F(X)

 Real,Pointer :: X

 Real :: F

 f = 1.0

 x = 2.0 ! (A)

 Nullify(x) ! (B)

 End Function F

 This subprogram does not conform to Fortran 2003, because both

 statements (A) and (B) violate constraint C1272 which says

 "C1272 In a pure subprogram any designator with a base object that

 ... is a dummy argument of a pure function ... shall not be

 used ... [in] a variable definition context ...".

However, the corresponding constraint in Fortran 2008, C1283, is

missing the condition that applies the constraint to a dummy

argument of a pure function, except when it has INTENT(IN). Thus

the statements marked (A) and (B) do not violate C1283, and

therefore this subprogram appears to conform to Fortran 2008.

Was this subprogram intended to be standard-conforming?

ANSWER:

No, this subprogram was not intended to be standard-conforming.

An edit is supplied to re-insert the omitted condition.

EDIT to 10-007r1:

[312:31] In 12.7, constraint C1283, after "association",

 insert ", is a dummy argument of a pure function".

SUBMITTED BY: Tobias Burnus

HISTORY: 12-174 m199 F08/0084 submitted

 12-174r1 m199 Revised

 12-174r2 m199 Passed by J3 meeting

 13-237 m200 Passed by J3 letter ballot #27 13-203

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0085

TITLE: Problems with PARAMETERs

KEYWORDS: PARAMETER

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

(1) Consider the program fragment

 Subroutine s

 Parameter (n=1)

 Integer :: x,n !(A)

 Parameter (x=3)

 The type declaration statement marked "!(A)", declares the

 entities X and N to be of type INTEGER. Furthermore, as we see by

 the immediately preceding and following PARAMETER statements, both

 X and N are named constants.

 Unfortunately, a constraint says

 C507 (R503) "An <initialization> shall appear if the entity is a

 named constant (5.3.13)."

 (BTW, R503 is <entity-decl>.)

 Therefore one concludes that the type declaration statement marked

 "!(A)" is not conforming as it violates C507 for both X and N.

 Is this statement intended to be conforming?

(2) Firstly, consider

 Subroutine s2(n)

 Integer,Parameter :: x(n:n+1) = [1,2]

 Character(n),Parameter :: y = 'abc'

 ...

 The type declaration statements are not conforming because

 according to 5.2.2p1, X and Y are automatic data objects, and C506

 says that <initialization> shall not appear in that case.

 Now consider

 Subroutine s2b(n)

 Implicit Character(n) (a-z)

 Parameter (y = 'abc')

 Integer :: x(n:n+1)

 Parameter(x=[1,2])

 This is not valid Fortran 2003, because 5.2 contains the

 requirement:

 "The combination of attributes that may be specified for a

 particular entity is subject to the same restrictions as for

 type declaration statements regardless of the method of

 specification. This also applies to PROCEDURE, EXTERNAL, and

 INTRINSIC statements."

 This requirement does not appear in F2008. However, there is no

 indication in the Introduction of this new feature.

 Is this extension to Fortran 2003 deliberate?

ANSWER:

(1) Yes, the type declaration statement was intended to be allowed.

 An edit is supplied to correct this mistake.

(2) No, the omission of this requirement was inadvertent. An edit

 is supplied to correct this mistake.

EDITS:

[88:14] In 5.2.1, Replace constraint "C507 (503)" completely with

 "C507 (R501) If the PARAMETER keyword appears, <initialization>

 shall appear in each <entity-decl>."

{Fix Q1.}

[88:14+] In 5.2.1, immediately after constraint C507, insert new

 constraint:

 "C507a An expression that specifies a length type parameter or

 array bound of a named constant shall be a constant

 expression."

{Fix Q2.}

SUBMITTED BY: Malcolm Cohen

HISTORY: 12-189 m199 F08/0085 submitted

 12-189r1 m199 Passed by J3 meeting

 13-237 m200 Failed as amended by J3 letter ballot

 #27 13-203

 13-239 m200 Revised - passed by J3 meeting

 13-262 m201 Passed J3 letter ballot #28 13-255r1

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0086

TITLE: Implied-shape and separate PARAMETER statement

KEYWORDS: Implied-shape, PARAMETER

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Q1. Consider

 Program test1

 Character(*) a,b(*)

 Dimension c(*)

 Parameter (a='123', b=['1','2','3'])

 Character(*),Parameter :: c = ['44','55','66']

 Print *,a,b,c

 End

The definition of the assumed-length character named constant A

conforms to Fortran 77 to Fortran 2008. However, the definition of

the implied-shape named constant B appears not to conform to Fortran

2008, as the standard says in 5.4.11p2

 "A named array constant defined by a PARAMETER statement shall have

 its shape specified in a prior specification statement."

On the other hand, the named constant C does not have such a

requirement, so its definition would appear to be conforming.

This apparent requirement on the named constant B would thus appear to

be inconsistent with those on the named constant C, as well as

inconsistent with the way that assumed length works, and with the

general principle of allowing attributes to be specified either in a

single type declaration statement or with separate specification

statements.

Is the program intended to conform to the Fortran standard?

Q2. Consider

 Subroutine test2(a)

 Real,Dimension(*) :: a,c

 Parameter (c = [45.6])

 a(:size(c)) = c

 End Subroutine

The <array-spec> in the type declaration statement is ambiguous; if it

is an <implied-shape-spec> then the declaration of A as an

assumed-size array is erroneous, but if it is an <assumed-size-spec>

then the declaration of C as an implied-shape array is erroneous.

Is this program-unit intended to be standard-conforming?

ANSWER:

A1. Yes, the program was intended to conform to the Fortran standard.

 An edit is provided to modify the requirement for prior

 specification so as to allow this case.

A2. Yes, the program is intended to conform to the Fortran standard.

 An edit is provided to add syntax to permit this unambiguously.

EDITS to 10-007r1:

[94:10] 5.3.8.1, R515,

 Change "<implied-shape-spec-list>" to "<implied-shape-spec>".

{This will be the unambiguous implied-shape syntax.}

[94:10+] Insert new production

 "<<or>> <implied-shape-or-assumed-size-spec>".

{This will be the otherwise-ambiguous syntax.}

[95:32] 5.3.8.5p1

 Replace sentence

 "An assumed-size array is declared with an <assumed-size-spec>."

 with

 "A dummy argument is declared to be an assumed-size array by an

 <assumed-size-spec> or an <implied-shape-or-assumed-size-spec>."

{Now two ways of declaring assumed size.}

[95:33-] Insert new BNF term

 "R520a <assumed-implied-spec> <<is>> [<lower-bound> :] *"

[95:33] R521 <assumed-size-spec>, after "<<is>>"

 Replace entire RHS

 "[<explicit-shape-spec>,]... [<lower-bound> :] *"

 with

 "<explicit-shape-spec-list>, <assumed-implied-spec>"

{The unambiguous case has a list of <explicit-shape-spec>s.}

[95:37+] Insert new BNF rules and constraint

 "R521a <implied-shape-or-assumed-size-spec> <<is>>

 <assumed-implied-spec>

 C534a An object whose array bounds are specified by an

 <implied-shape-or-assumed-size-spec> shall be a dummy data

 object or a named constant."

{The otherwise-ambiguous case. Note careful wording.}

[96:24-25] 5.3.8.6p1

 Replace sentence

 "An implied-shape array is declared... <implied-shape-spec-list>."

 with

 "A named constant is declared to be an implied-shape array with an

 <array-spec> that is an <implied-shape-or-assumed-size-spec> or

 an <implied-shape-spec>."

{Now two ways of declaring implied shape.}

[96:26] R522,

 Replace right-hand-side (after "<<is>>")

 "[<lower-bound> :] *"

 with

 "<assumed-implied-spec>, <assumed-implied-spec-list>".

{This is now the unambiguously implied-shape spec.}

[96:28] p2,

 Change "<implied-shape-spec>s" -> "<assumed-implied-spec>s"

 and "the <implied-shape-spec-list>" -> "its <array-spec>",

 making the entire paragraph read:

 "The rank of an implied-shape array is the number of

 <assumed-implied-spec>s in its <array-spec>."

{Change rank determination to accord with new syntax term.}

[107:11] 5.4.11p1 "shape" -> "rank".

{In the PARAMETER statement, only require the rank to be specified in

 a prior specification statement.}

NOTE for future investigation:

 The current wording of C533 is slightly defective, as it does not

 clearly prohibit "REAL,DIMENSION(*) :: dummy,nondummy", seeing as

 how that does indeed declare "the array bounds of a dummy data

 object". C533 should probably be reworded similarly to C534a.

SUBMITTED BY: Bill Long

HISTORY: 12-191 m199 F08/0086 submitted - revised by Malcolm

 Cohen - passed by J3 meeting

 13-237 m200 Failed letter ballot

 13-235 m200 Revised with straw votes

 13-235r1 m200 Passed by J3 meeting

 13-262 m201 Passed as amended by J3 letter ballot #28

 13-255r1

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

 N2002 m203 In F2008 Corrigendum 3

** Revised edits from draft corrigendum ballot - replace entire interp

--

NUMBER: F08/0087

TITLE: Mixed-kind character assignment

KEYWORDS: Mixed kind, character assignment

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

For a processor that supports both ASCII and ISO 10646 UCS-4

character kinds, assuming without loss of generality that

Selected_Char_Kind('ASCII') is equal to 1 and that

Selected_Char_Kind('ISO_10646') is equal to 10646,

consider the following program:

 Module charkinds

 Integer,Parameter :: ascii = 1

 Integer,Parameter :: ucs4 = 10646

 End Module

 Module overload

 Use charkinds

 Interface Assignment(=)

 Module Procedure char_asg

 End Interface

 Contains

 Subroutine char_asg(a,b)

 Character(*,ascii),Intent(Out) :: a

 Character(*,ucs4),Intent(In) :: b

 Do i=1,Min(Len(a),Len(b))

 a(i:i) = Achar(Mod(Iachar(b(i:i))+1,127))

 End Do

 a(i:) = Repeat('*',Len(a)-Len(b))

 End Subroutine

 End Module

 Program test

 Use overload

 Character(10,ascii) x

 x = ucs4_'Hello'

 Print *,'"',x,'"'

 End Program

This program conforms to Fortran 95, which permitted user-defined

assignment between all characters with different kinds.

However, Fortran 2008 provides intrinsic assignment between

ISO 10646 characters and ASCII characters, so user-defined assignment

is not permitted (12.4.3.4.3 and Table 7.8).

Thus there seems to be a contradiction between the Fortran 95

compatibility description in 1.6.3 and 12.4.3.4.3.

Is the program intended to conform to Fortran 2008?

And if it does, does it print

 "Hello "

(intrinsic assignment)

 "Ifmmp*****"

(user-defined assignment)?

ANSWER:

The program was not intended to conform to the standard.

An edit is provided to remove the contradiction.

EDITS:

[24:14] 1.6.3p1, "Any"

 -> "Except as identified in this subclause, any".

{No longer true.}

[24:15] Split the sentence "The ..." introducing the list into a

 separate paragraph (which will be the third paragraph), and

 insert a new paragraph (as the second paragraph) as follows:

 "Fortran 95 permitted defined assignment between character strings

 of the same rank and different kinds. This part of ISO/IEC 1539

 does not permit that if both of the different kinds are ASCII,

 ISO 10646, or default kind."

{Describe the incompatibility.}

[25:2+] 1.6.4, after p3, insert a new paragraph.

 "Fortran 90 permitted defined assignment between character strings

 of the same rank and different kinds. This part of ISO/IEC 1539

 does not permit that if both of the different kinds are ASCII,

 ISO 10646, or default kind."

{Describe the incompatibility.}

SUBMITTED BY: Van Snyder

HISTORY: 13-204 m200 F08/0087 submitted

 13-204r1 m200 Revised - passed by J3 meeting

 13-262 m201 Passed J3 letter ballot #28 13-255r1

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0088

TITLE: Can ALLOCATE with SOURCE= have side-effects in a PURE proc?

KEYWORDS: Allocate, SOURCE=, PURE, side-effects

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

On comp.lang.fortran Ian Harvey brought up a pointer/PURE

question.

Given a type definition like

 type :: int_ptr

 integer, pointer :: i

 end type int_ptr

And a PURE function like

 PURE function FUN (arg)

 type(int_ptr), intent(in) :: arg

 type(int_ptr), allocatable :: tmp

 FUN = 1

 allocate (tmp, source=arg)

 tmp%i = 2

 end function fun

Is FUN standard conforming?

Doesn't the use of source=arg allow the function to modify a global

entity via the tmp%i = ...? There don't seem to be any constraints on

what arg%i can point to, which means that the assignment to tmp%i can

have side effects.

Note that C1283(1) prevents usage like

 arg%i = 2

ANSWER:

This was not intended to be standard-conforming.

An edit is supplied to remedy this oversight.

EDITS:

[312:37] In C1283, delete "or" and add a new item

 "(4a) as the <source-expr> in a SOURCE= clause if the designator is

 of a derived type that has an ultimate pointer component, or"

SUBMITTED BY: Dick Hendrickson

HISTORY: 13-226 m200 F08/0088 submitted

 13-226r1 m200 Edits added - passed by J3 meeting

 13-262 m201 Passed J3 leter ballot #28 13-255r1

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0089

TITLE: Variable-denoting function references change existing

 semantics

KEYWORDS: Pointer function, argument, ASSOCIATE, SELECT TYPE

DEFECT TYPE: Erratum

STATUS: J3 consideration in progress

QUESTION:

Questions 1-3 use this module:

 Module m200c2

 Integer,Target :: x = 42

 Contains

 Function fx()

 Integer,Pointer :: fx

 fx => x

 End Function

 End Module

Q1. Consider this main program

 Program q1

 Use m200c2

 Call test(x,fx()) ! The call.

 Contains

 Subroutine test(a,b)

 Integer :: a,b

 a = a*10 ! The assignment.

 Print *,a,b

 End Subroutine

 End Program

According to Fortran 2003, "fx()" in the CALL statement is an

expression and not a variable, and has the value 42. It follows

that the assignment "a = a*10" is standard-conforming and does

not affect the value of B. Therefore this program prints

 420 42

However, according to Fortran 2008, "fx()" in the CALL statement is a

variable, and therefore the assignment does not conform to the

standard because it affects the value of B and so violates 12.5.2.13

item (3) which requires all updates to B to go through the dummy

argument, and therefore the behaviour of the program is unspecified.

This conflicts with the statement in clause 1 that all Fortran 2003

programs remain conforming in Fortran 2008.

Is this program intended to remain standard-conforming?

Q2. Consider this main program

 Program q2

 Use m200c2

 Call test(x,fx()) ! The call.

 Contains

 Subroutine test(a,b)

 Integer,Target :: a,b

 a = a*10 ! The assignment.

 Print *,a,b

 End Subroutine

 End Program

According to Fortran 2003, "fx()" in the CALL statement is an

expression and not a variable, and has the value 42. It follows

that the assignment "a = a*10" is standard-conforming and does

not affect the value of B. Therefore this program prints

 420 42

However, according to Fortran 2008, "fx()" in the CALL statement is a

variable, and therefore the assignment to A affects the value of B, so

the program will print

 420 420

This apparently conflicts with the statement in clause 1 that Fortran

2008 is an upwards compatible extension to Fortran 2003.

Is this program intended to have altered semantics?

Q3. Consider this main program

 Program q3

 Use m200c2

 Associate(y=>fx()) ! The association.

 x = 0 ! The assignment.

 Print *,x,y

 End Associate

 End Program

This main program apparently conforms to both Fortran 2003 and Fortran

2008, but according to Fortran 2003 "fx()" in the association is an

expression, evaluated on entry to the construct, and therefore Y

becomes associated with the value 42, and therefore the program prints

the values (spacing may differ)

 0 42

whereas according to Fortran 2008 "fx()" in the association is a

variable, and every reference to Y is a reference to the associated

variable, so the assignment also changes the value of Y and therefore

the program prints the values

 0 0

This apparently conflicts with the statement in clause 1 that Fortran

2008 is an upwards compatible extension to Fortran 2003.

Is this program intended to have altered semantics?

Q4. Consider this program

 Module m200c2_q4

 Integer,Target :: x = 42

 Contains

 Function fx()

 Class(*),Pointer :: fx

 fx => x

 End Function

 End Module

 Program q4

 Use m200c2_q4

 Select Type (q=>fx())

 Type Is (Integer)

 x = 0

 Print *,x,q

 End Select

 End Program

Using the same logic as Q2, this should print the values

 0 42

in Fortran 2003, but the values

 0 0

in Fortran 2008.

Again, this is not upwards compatible with Fortran 2003.

Is this program intended to have altered semantics.

ANSWER:

A1. This program is not intended to be conforming to Fortran 2008.

 An edit is supplied to note the incompatibility between Fortran

 2008 and previous Fortran standards.

A2. This program was intended to have different semantics in Fortran

 2008. An edit is supplied to note the incompatibility.

A3. This program was intended to have different semantics in Fortran

 2008. An edit is supplied to note the incompatibility.

A4. This program was intended to have different semantics in Fortran

 2008. An edit is supplied to note the incompatibility.

EDITS to 10-007r1:

[24:11+] 1.6.2 "Fortran 2003 compatibility",

 insert new paragraphs at the end of the subclause,

 after the paragraphs added by Corrigendum 2:

 "An actual argument that corresponds to a nonpointer dummy argument

 and which is a <function-reference> to a pointer function is

 regarded as a variable by this part of ISO/IEC 1539 but was

 regarded as an expression by Fortran 2003; if the target of the

 pointer result is modified other than through that dummy argument

 during execution of the called procedure, and that dummy argument

 does not have the POINTER or TARGET attribute, the program does not

 conform to this part of ISO/IEC 1539. If that dummy argument does

 have the POINTER or TARGET attribute, any further reference to that

 dummy argument will have the modified value according to this part

 of ISO/IEC 1539 instead of the initial value as specified by

 ISO/IEC 1539-1:2004.

 A <selector> for an ASSOCIATE or SELECT TYPE construct that is a

 <function-reference> to a pointer function is regarded as a

 variable by this part of ISO/IEC 1539; if the target of the pointer

 result is modified during execution of the construct, any further

 references to the <associate-name> will have the modified value

 according to this part of ISO/IEC 1539 instead of the initial value

 as specified by ISO/IEC 1539-1:2004."

[24:14-16] 1.6.3 "Fortran 95 compatibility", paragraph 1, sentence 2,

 Change "Any" to "Except as identified in this subclause, any",

 Delete "The following Fortran 95 features .. 1539."

{We are about to add a non-conformance, so the last sentence will

 become wrong and it is in any case unnecessary.}

[24:17-27] Change all bullet points into separate paragraphs.

{These are no longer a list.}

[24:27+] Insert new paragraph at end of subclause

 "An actual argument that corresponds to a nonpointer dummy argument

 and which is a <function-reference> to a pointer function is

 regarded as a variable by this part of ISO/IEC 1539 but was

 regarded as an expression by Fortran 95; if the target of the

 pointer result is modified other than through that dummy argument

 during execution of the called procedure, the program does not

 conform to this part of ISO/IEC 1539."

[24:30] 1.6.4 "Fortran 90 compatibility", paragraph 1

 Change "Any" to "Except as identified in this subclause, any",

[25:6+] Insert new paragraph at end of subclause.

 "An actual argument that corresponds to a nonpointer dummy argument

 and which is a <function-reference> to a pointer function is

 regarded as a variable by this part of ISO/IEC 1539 but was

 regarded as an expression by Fortran 95; if the target of the

 pointer result is modified other than through that dummy argument

 during execution of the called procedure, the program does not

 conform to this part of ISO/IEC 1539."

SUBMITTED BY: Malcolm Cohen

HISTORY: 13-228 m200 F08/0089 submitted

 13-228r1 m200 Revised - passed by J3 meeting

 13-262 m201 Passed as amended by J3 letter ballot #28

 13-255r1

 N1990 m202 Failed WG5 ballot N1988/n1987

From N1990: F08/0089

Corbett reason for NO vote

Questions Q1 and Q2 assume that if a pointer actual argument

has the form of an expression and the corresponding dummy

argument is a nonpointer dummy argument without the VALUE

attribute, the dummy argument becomes argument associated

with the value of the target of the value of the pointer

actual argument. On the newsgroup comp.lang.fortran, Ian

Harvey pointed out that the Fortran standards do not support

that premise. Paragraph 2 of Clause 12.5.2.3 of the

Fortran 2008 standard states

 If a nonpointer dummy argument without the VALUE

 attribute corresponds to a pointer actual argument

 that is pointer associated with a target, the

 dummy argument becomes argument associated with

 that target.

Paragraph 8 of Clause 12.4.1.2 of the Fortran 2003 standard

states

 Except in references to intrinsic inquiry functions,

 if the dummy argument is not a pointer and the

 corresponding actual argument is a pointer, the

 actual argument shall be associated with a target

 and the dummy argument becomes argument associated

 with that target.

Paragraph 6 of Clause 12.4.1.1 of the Fortran 95 standard

states

 If the dummy argument is not a pointer and the

 corresponding actual argument is a pointer, the

 actual argument shall be currently associated

 with a target and the dummy argument becomes

 argument associated with that target

The paragraph added between paragraphs 3 and 4 of

Clause 12.4.1.1 of the Fortran 90 standard by

Corrigendum 2 states

 If the dummy argument is not a pointer and the

 corresponding actual argument is, the actual

 argument must be currently associated with a

 target and the dummy argument becomes argument

 associated with that target.

That text was added as a result of interpretation

F90/000039.

In the examples given in questions Q1 and Q2, the

actual argument fx() is a pointer actual argument

corresponding to a nonpointer dummy argument.

Therefore, the dummy argument becomes argument

associated with the target of the pointer actual

argument, which is the module variable x. The dummy

argument does not become argument associated with the

value of the target of the pointer. Thus, there is

no semantic difference between Fortran 2008 and the

previous standards in this regard.

The answers and edits given for questions Q1 and Q2 are

based on the same premise as the questions themselves

and should be rejected.

I asked people to compile and run the example programs

given in questions Q1 and Q2 and variations of them

using a variety of compilers. In most, but not all,

cases, the results were consistent with the semantics

stated in the Fortran standards, not with the semantics

assumed by questions Q1 and Q2.

Questions Q3 and Q4 are consistent with the standards,

as are the corresponding answers and edits, but I do not

care for the nature of the changes that will result if

interpretation F08/0075 is passed. I think changing the

language so that the form of a function reference

determines its meaning is a mistake.

Long comment:

Twice in the edits appears "...a <function-reference> to a

pointer function is regarded as a variable...". Should this

be a "data pointer function"?

Snyder comment:

The term "pointer function" is not used as a noun,

although "nonpointer function" is so used at [454:36].

I have a slight preference that "pointer function" in

the edit for [24:11+] be replaced by "function that

returns a pointer result" in both paragraphs. The

same change ought to be made in the edits for [24:27+]

and [25:6+]

A parallel change ought to be made at [454:36], but

that can be done editorially rather than within this

interpretration.

Decision of /INTERP: Failed.

--

NUMBER: F08/0090

TITLE: 	What restrictions apply to initialization and PARAMETER?

KEYWORDS: PARAMETER, initialization, conformable, type conversion

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Consider the programs

 Program m200c3_1

 Integer :: a(10,10)

 Parameter (a = [(i,i=1,100)])

 Print *,a

 End Program

 Program m200c3_2

 Parameter (b = 'ok')

 Print *,b

 End Program

 Program m200c3_3

 Integer :: x(23) = [1]

 Print *,x

 End Program

 Program m200c3_4

 Integer :: y = 'ok'

 Print *,y

 End Program

The PARAMETER statement for the named constant A has an expression

whose shape does not conform with that of A. The PARAMETER statement

for the named constant B has an expression whose type does not conform

to that of B. The <initialization> for X is not conformable in shape.

The <initialization> for Y is not conformable in type.

There appears to be no requirement either for shape or type

conformance, in Fortran 2008 or in previous Fortran standards, except

for initializing data pointers.

Q1. Do any of these programs conform to Fortran 2008?

Q2. If there is meant to be a requirement for the shapes to conform or

 for the types to be convertible, should this not be a constraint?

ANSWER:

A1. No, these programs do not conform to Fortran 2008, as no

 interpretation is established for any of them. Edits are

 provided to clarify this.

A2. This is not a constraint. A future revision of Fortran might

 choose to mandate diagnosis of these errors.

EDIT to 10-007r1:

[88:30+] 5.2.1 Syntax, Insert new paragraph at end of subclause

 "If <initialization> appears for a nonpointer entity,

 - its type and type parameters shall conform as specified for

 intrinsic assignment (7.2.1.2);

 - if the entity has implied shape, the rank of <initialization>

 shall be the same as the rank of the entity;

 - if the entity does not have implied shape, <initialization> shall

 either be scalar or have the same shape as the entity.".

[107:12+] 5.4.11 PARAMETER statement, after p2, Insert new paragraph

 "The constant expression that corresponds to a named constant shall

 have type and type parameters that conform with the named constant

 as specified for intrinsic assignment (7.2.1.2). If the named

 constant has implied shape, the expression shall have the same rank

 as the named constant; otherwise, the expression shall either be

 scalar or have the same rank as the named constant.".

SUBMITTED BY: Malcolm Cohen

HISTORY: 13-229 m200 F08/0090 submitted - passed by J3 meeting

 13-262 m201 Passed J3 letter ballot #28 13-255r1

 N1990 m202 Passed by WG5 ballot 6 N1987/88/90

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0091

TITLE: Derived type with no components

KEYWORD: Derived type

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Q1. Consider

 Program m7_1

 Type empty

 End Type

 Type(empty),Target :: x

 Type(empty),Pointer :: y

 y => x

 Print *,Associated(y,x)

 End

Is this program standard-conforming, and does it print T or F?

According to 16.5.3.2p2,

 item 1 is default integer etc, N/A

 item 2 is double precision etc, N/A

 item 3 is default character, N/A

 item 4 is C character, N/A

 item 5 is SEQUENCE type, N/A

According to item (6),

 "a nonpointer scalar object of any type not specified in items

 (1)-(5) occupies a single unspecified storage unit that is

 different [from everything else]"

If that analysis is correct, X occupies a single unspecified storage

unit, not zero storage units, and therefore T should be printed.

Q2. Consider

 Program m7_2

 Type sempty

 Sequence

 End Type

 Type(sempty),Target :: x

 Type(sempty),Pointer :: y

 y => x

 Print *,Associated(y,x)

 End

Is this program standard-conforming, and does it print T or F?

Now X falls into item 5, which makes it a "sequence of storage

sequences corresponding to the sequence of its ultimate components";

there are no ultimate components, this makes it a zero-sized storage

sequence and therefore F should be printed.

This does not seem to be consistent with the apparent answer to Q1.

Q3. Consider

 Program m7_3

 Type numeric_empty

 Sequence

 End Type

 Type character_empty

 Sequence

 End Type

 Type(numeric_empty) a

 Integer b

 Character c

 Type(character_empty) d

 Equivalence(a,b) ! E1.

 Equivalence(c,d) ! E2.

 End

Is this program conforming?

According to the definitions in 4.5.2.3, NUMERIC_EMPTY is a numeric

sequence type and therefore one might expect to be able to EQUIVALENCE

it to an INTEGER. Similarly, CHARACTER_EMPTY is a character sequence

type and therefore one might expect to be able to EQUIVALENCE it to a

CHARACTER.

However, NUMERIC_EMPTY is clearly also a character sequence type, and

therefore statement E1 violates C592 because B is not character or

character sequence.

Similarly, CHARACTER_EMPTY is clearly also a numeric sequence type,

and therefore statement E2 violates C591.

It seems very strange to have a type that is simultaneously numeric

and character sequence type.

Q4. Consider

 Program m7_4

 Type numeric_empty_2

 Sequence

 Real c(0)

 End Type

 Type character_empty_2

 Sequence

 Character(0) c

 End Type

 Type(numeric_empty_2) a

 Integer b

 Character c

 Type(character_empty_2) d

 Equivalence(a,b) ! E3.

 Equivalence(c,d) ! E4.

 End

Does this program conform?

According to the definitions in 4.5.2.3, NUMERIC_EMPTY_2 is a numeric

sequence type and not a character sequence type, and conversely

CHARACTER_EMPTY_2 is a character sequence type and not a numeric

sequence type, and therefore the constraints for the statements at E3

and E4 are not violated.

Thus this appears to be conforming, in contradiction to the example in

Q3, even though the storage sequence of NUMERIC_EMPTY,

NUMERIC_EMPTY_2, CHARACTER_EMPTY, and CHARACTER_EMPTY_2 are all the

same.

This does not look very consistent with the situation in Q3.

ANSWER:

A1. The program is conforming and prints T.

A2. The program was not intended to conform; SEQUENCE makes no sense

 when there are no components. An edit is needed to correct this.

A3. The program does not conform as a sequence type must have at

 least one component.

A4. The program is conforming. The apparent design inconsistency is

 not an error in the standard.

EDIT to 10-007r1:

[62:19] 4.5.2.3, in constraint C436

 After "appears," insert "the type shall have at least one

 component,".

SUBMITTED BY: Malcolm Cohen

HISTORY: 13-266 m201 F08/0091 submitted

 13-266r1 m201 Revised - passed by J3 meeting

 13-313 m202 Passed as amended by J3 letter ballot 13-297

 N1994 m202 Passed by WG5 ballot 7 N1991/92/94

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0092

TITLE: Derived type parameter requirements

KEYWORD: Derived type parameter

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Consider

 Type t1(a,a)

 Integer,Kind :: a

 Integer,Len :: a

 End Type

 Type t2(a)

 Integer,Kind :: a,a,a

 End Type

These type definition appears to valid, in that

(a) there is no requirement that a type parameter appears only once in

 the <type-param-name-list>;

(b) there is no requirement that a type parameter appears in only one

 <type-param-def-stmt>, and only once.

Were these intended to be valid? What is their meaning?

ANSWER:

These were not intended to be valid, and they are not valid because

the standard does not establish an interpretation for them. Unique

names for type parameters can possibly be deduced from the scoping

rules.

Edits are supplied to make the requirements explicit.

EDITS to 10-007r1:

[61:19+] In 4.5.2.1, after C427 insert new constraint

 "C427a (R426) The same <type-param-name> shall not appear more than

 once in a <derived-type-stmt>."

{Require unique names for type parameters.}

[64:8] In 4.5.3.1, C438, after "shall appear" insert "exactly once".

{Forbid multiple declarations of a type parameter, whether in the same

 <type-param-def-stmt> or more than one.}

SUBMITTED BY: Malcolm Cohen

HISTORY: 13-267 m201 F08/0092 submitted - passed by J3 meeting

 13-313 m202 Passed as amended by J3 letter ballot 13-297

 N1994 m202 Passed by WG5 ballot 7 N1991/92/94

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0093

TITLE: Process exit status and error termination

KEYWORD: ERROR STOP

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Many operating systems today (e.g. Posix-related ones) use a process

exit status of zero to indicate successful execution, whereas nonzero

indicates an error. (Occasionally nonzero values, e.g. 1, also

indicate success.)

Fortran STOP and ERROR STOP with an integer <stop-code> are

recommended to use the <stop-code> as the exit status. The STOP

statement without an integer <stop-code> is recommended to have an

exit status of zero; this conforms to common practice since STOP

initiates normal termination.

The standard is silent on the effect of error termination, except in

the case of an ERROR STOP (sans integer <stop-code>) which is

unexpectedly recommended to also return an exit status of zero.

Q1. Is this intentional? Should the exit code for ERROR STOP not have

 been recommended to be nonzero?

Q2. Should the recommendation for an ERROR STOP not also apply to

 error termination by other causes?

ANSWER:

A1. It was not intended to recommend returning "success" for error

 termination. An edit is supplied to correct this.

A2. Yes, the recommendation for an ERROR STOP without an integer

 <stop-code> should also apply to other means of standard-defined

 error termination. An edit is supplied to correct this omission.

EDIT to 10-007r1:

[33:36+] 2.3.5, before Note 2.7, insert new note

 "NOTE 2.6a

 If the processor supports the concept of a process exit status, it

 is recommended that error termination initiated other than by an

 ERROR STOP statement supplies a processor-dependent nonzero value

 as the process exit status."

{Recommendation for error termination other than by ERROR STOP.}

[188:10+10] In 8.4, Note 8.30,

 Before "is of type character or does not appear"

 Insert "in a STOP statement".

{Limit zero recommendation to STOP, not ERROR STOP.}

[188:10+11+] At the end of Note 8.30, insert a new paragraph

 "If the <stop-code> in an ERROR STOP statement is of type character

 or does not appear, it is recommended that a processor-dependent

 nonzero value be supplied as the process exit status, if the

 processor supports that concept."

{Specify nonzero exit for ERROR STOP.}

[459:17+] After the bullet item “how soon an image terminates if

 another image initiates error termination (2.3.5);”

 Insert new bullet point

 "the recommended process exit status when error termination is

 initiated other than by an ERROR STOP statement with an integer

 <stop-code> (2.3.5);"

{Probably unnecessary, seeing how it is only a recommendation, but

 maybe a good idea anyway.}

SUBMITTED BY: Bill Long/Malcolm Cohen

HISTORY: 13-268 m201 F08/0093 submitted - passed by J3 meeting

 13-313 m202 Passed as amended by J3 letter ballot 13-297

 N1994 m202 Passed as amended by WG5 ballot 7 N1991/92/94

** [460:24+] moved to [459:17+]

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0094

TITLE: Procedure statement and double colon

KEYWORD: PROCEDURE, Interface block

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Fortran 2003 did not permit a double colon in the <procedure-stmt> in

an interface block. Fortran 2008 syntax seems to allow this, but it

is not mentioned in the Introduction as a new F2008 feature.

Is this apparent new feature deliberate?

ANSWER:

Yes, this new feature was intended.

An edit is provided to add mention of it to the Introduction.

EDIT:

[xvi] Introduction, p2, "Programs and procedures:" bullet,

 After "empty CONTAINS section is allowed."

 Insert "A PROCEDURE statement can have a double colon before

 the first procedure name."

SUBMITTED BY: Malcolm Cohen

HISTORY: 13-274 m201 F08/0094 submitted - passed by J3 meeting

 13-313 m202 Passed by J3 letter ballot 13-297

 N1994 m202 Passed by WG5 ballot 7 N1991/92/94

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0095

TITLE: Is PRESENT allowed in specification and constant expressions

KEYWORD: PRESENT, optional dummy argument

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Q1. Consider

 Subroutine s1(a)

 Integer,Optional :: a

 Logical,Parameter :: x = Present(a)

 Print *,x

 End Subroutine

Does this program unit conform to the standard?

7.1.12 item (4) permits

 "a specification inquiry where each designator or function argument

 is ...

 (b) a variable whose properties inquired about are not

 (i) assumed,

 (ii) deferred, or

 (iii) defined by an expression that is not a constant

 expression,"

PRESENT is a specification inquiry (because it is an intrinsic inquiry

function), and the standard does not say that the "presence" of an

optional dummy argument is an assumed or deferred attribute, and it

does not appear to be "defined by an expression" either.

On the other hand, the standard does not say anything about what kind

of property the presence is.

Q2. Consider

 Subroutine s2(a)

 Integer,Optional :: a

 Real x(Merge(2,3,Present(a)))

 If (Present(a)) Then

 x = [1,2,a]

 Else

 x = [1,2]

 End If

 Print *,x

 End Subroutine

Does this program unit conform to the standard? It appears to satisfy

the rules for specification expression, similarly to how it satisfies

the rules for a constant expression, but then the standard is silent

as to what sort of property "presence" is...

Q3. Consider

 Subroutine s3(a)

 Character(*),Optional :: a

 Real x(Len(a))

 Print *,Size(x)

 End Subroutine

Does this program unit conform to the standard? Using the same

reasoning as Q1 and Q2, it appears to conform, but if A is absent,

LEN(A) is not permitted by 12.5.2.12.

ANSWER:

A1. Program unit S1 was not intended to conform to the standard.

 An edit is provided to clarify that this is not valid.

A2. Program unit S2 was intended to conform to the standard.

 An edit is provided to clarify that this is valid.

A3. Program unit S3 was not intended to conform to the standard.

 An edit is provided to clarify that this is not valid.

EDITS to 10-007r1:

[150:24] 7.1.11p2, item (9)(b)

 after "variable" insert ",that is not an optional dummy argument, ".

{Prevent specification enquiries on optional dummy arguments.}

[150:27+] 7.1.11p2, after item (9) entirely,

 insert "(9a) a specification inquiry that is a constant expression,

 (9b) a reference to the intrinsic function PRESENT,"

{Allow inquiries on optional dummy arguments that will not violate the

 rules in 12.5.2.12 when the dummy is absent,

 and allow PRESENT to be used.}

[150:37] 7.1.11p4, item (1)

 after "intrinsic inquiry function" insert "other than PRESENT".

{Remove PRESENT from list of specification inquiries, this fixes

 constant expressions.}

SUBMITTED BY: Malcolm Cohen/Van Snyder

HISTORY: 13-278 m201 F08/0095 submitted

 13-278r1 m201 Passed by J3 meeting

 13-313 m202 Passed by J3 letter ballot 13-297

 N1994 m202 Passed by WG5 ballot 7 N1991/92/94

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0096

TITLE: Is VALUE permitted for an array in a BIND(C) procedure?

KEYWORD: array, BIND(C), VALUE

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Consider

 INTERFACE

 SUBROUTINE s(a) BIND(C)

 USE ISO_C_BINDING

 REAL(C_float),VALUE :: a(100)

 END

 END INTERFACE

Q1. Does this interface conform to the Fortran standard?

Q2. If so, what prototype does it interoperate with?

ANSWER:

A1. C does not have arrays that are passed by value, so this was not

 intended to conform to the Fortran standard. An edit is provided

 to clarify this.

A2. This question is moot.

EDITS to 10-007r1:

[306:31] 12.6.2.2, C1255, after "(15.3.5, 15.3.6)" insert

 "that is not an array with the VALUE attribute,"

{Do not permit BIND(C) to have arrays by value.}

{Note: TS 29113 replaces this same constraint.}

[433:12] 15.3.7p2, item (4), after "any" insert "scalar".

{Do not describe arrays by value in a prototype.}

SUBMITTED BY: Malcolm Cohen

HISTORY: 13-284 m201 F08/0096 submitted - passed by J3 meeting

 13-313 m202 Passed as amended by J3 letter ballot 13-297

 N1994 m202 Passed by WG5 ballot 7 N1991/92/94

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0097

TITLE: Is the optional comma allowed in TYPE(CHARACTER*...)?

KEYWORD: TYPE, CHARACTER

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Consider

 CHARACTER*1, A

 TYPE(CHARACTER*1,) B

The optional comma in the declaration of B looks ugly.

Is this deliberate?

ANSWER:

No, this syntax was inadvertently allowed. An edit is provided to

remove it.

EDITS to 10-007r1:

[51:26+] 4.3.1.1, after C406, insert new constraint

 "C406a (R403) In TYPE(<intrinsic-type-spec>) the

 <intrinsic-type-spec> shall not end with a comma."

SUBMITTED BY: Malcolm Cohen

HISTORY: 13-285 m201 F08/0097 submitted - passed by J3 meeting

 13-313 m202 Passed by J3 letter ballot 13-297

 N1994 m202 Passed by WG5 ballot 7 N1991/92/94

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0098

TITLE: How many ACQUIRED_LOCK= specifiers are allowed in a LOCK stmt?

KEYWORD: LOCK

DEFECT TYPE: Erratum

STATUS: In F2008 Corrigendum 3

QUESTION:

Consider

 LOCK (x, ACQUIRED_LOCK=n1, ACQUIRED_LOCK=n2, STAT=n3, STAT=n4)

Is this conforming?

Multiple STAT= are prohibited from a <sync-stat-list>, but this is a

<lock-stat-list> so that does not apply. There is no constraint

anywhere about how many ACQUIRED_LOCK= specifiers may appear.

ANSWER:

No, this was not intended to be conforming. No specifier was intended

to be allowed to appear more than once.

EDITS to 10-007r1:

[194:2+] 8.5.6, after R864, insert new constraint

 "C852a No specifier shall appear more than once in a given

 <lock-stat-list>."

SUBMITTED BY: Malcolm Cohen

HISTORY: 13-286 m201 F08/0098 submitted - passed by J3 meeting

 13-313 m202 Passed by J3 letter ballot 13-297

 N1994 m202 Passed by WG5 ballot 7 N1991/92/94

 N2002 m203 In F2008 Corrigendum 3

--

NUMBER: F08/0099

TITLE: VOLATILE in specification expressions

KEYWORD: VOLATILE, specification expression

DEFECT TYPE: Interpretation.

STATUS: Passed by J3 meeting

QUESTION:

Is the following subprogram required always to print "T T"?

 subroutine Wobbly (N)

 integer, volatile :: N

 integer :: A (n, n)

 integer :: B (n * n)

 print *, size(a) == size(b), size(a,1) == size(a,2)

 end subroutine Wobbly

ANSWER:

No.

There are three specification expressions in the subroutine, and the

volatile variable N appears in each of them. Since, being volatile,

the variable N might have a different value each time it is

referenced, these three specification expressions might receive

different values for their references to N. If that happens, the

array sizes might well be different.

EDITS:

None.

SUBMITTED BY: Van Snyder

HISTORY: m202 13-298r1 F08/0099 submitted

 m202 13-298r2 Revised answer - passed by J3 meeting

--

NUMBER: F08/0100

TITLE: IMPORT statement and prior explicit declaration

KEYWORD: IMPORT statement, prior explicit declaration

DEFECT TYPE: Erratum

STATUS: Passed by J3 meeting

QUESTION:

Q1. Does the following program fragment conform to the 2008 standard?

 subroutine S (P)

 interface

 subroutine Q (X)

 real, intent(inout) :: X

 end subroutine Q

 end interface

 interface

 subroutine P (A)

 import

 procedure (R) :: A

 end subroutine P

 end interface

 procedure (Q) :: R

 end subroutine S

12.4.3.3p2 says "If an entity that is made accessible by this means is

accessed by host association and is defined in the host scoping unit, it

shall be explicitly declared prior to the interface body."

However, although the procedure R is declared in the host scoping unit

it is not defined in the host scoping unit, so this is ineffective.

Q2. If the IMPORT statement were changed to "IMPORT R", would that be

 conforming?

12.4.3.3p1 says

 "An entity that is imported in this manner and is defined in the

 host scoping unit shall be explicitly declared prior to the

 interface body."

Again, procedure R is declared but not defined in the host scoping

unit, so this requirement is ineffective.

ANSWER:

These examples were not intended to conform to the Fortran standard.

An edit is provided.

EDITS:

[282:7] 12.4.3.3p1, after "imported in this manner and is"

 change "defined" to "declared".

[282:14] p2, after "is accessed by host association and is"

 change "defined" to "declared".

SUBMITTED BY: Van Snyder

HISTORY: m202 13-305 F08/0100 submitted

 m202 13-305r1 Revised answer & edits - passed by J3 meeting

--

NUMBER: F08/0101

TITLE: NAMELIST and multiple occurrences of a variable

KEYWORD: NAMELIST

DEFECT TYPE: Erratum

STATUS: Passed by J3 meeting

QUESTION:

Consider

 Program p1

 Real :: x = 3, y = 4

 Namelist /n/ x, y

 Write (*,n)

 End Program

According to 5.6,

 "The order in which the variables are specified in the NAMELIST

 statement determines the order in which the values appear on

 output."

However, this stops short of saying that the order is the same, merely

that it determines it. Perhaps it might be standard-conforming for a

processor to always produce the values in reverse order, for example.

10.11.4 does not seem to address the issue of what the order is.

Q1: Is the order meant to be the same?

Consider

 Program p2

 Real :: x = 3, y = 4

 Namelist /n/ x, y, x

 Write (*,n)

 End Program

This program did not conform to Fortran 90, but does conform to

Fortran 2003 and later. The Fortran 2008 standard says (5.6p2):

 "The order in which the variables are specified in the NAMELIST

 statement determines the order in which the values appear on

 output."

However, there are only two variables in the NAMELIST statement, X

and Y. Therefore it seems to be ambiguous whether the output should

be something like

 &N X=3 Y=4 /

or

 &N Y=4 X=3 /

Some compilers produce

 &N X=3 Y=4 X=3 /

but this is not an ordering of the variables X and Y.

Q2. Is this program intended to conform to the standard, and if so,

 what is the intended output?

ANSWER:

A1. Yes, the order is meant to be the same. An edit is supplied to

 clarify this.

A2. The program was intended to conform to the standard, and the output

 was intended to be the third option. An edit is supplied to

 correct the text in 5.6.

EDIT:

[111:13-14] 5.6p2, replace entire paragraph with

 "The order in which the values appear on output is the same as the

 order of the <namelist-group-object>s in the namelist group object

 list; if a variable appears more than once as a

 <namelist-group-object> for the same namelist group, its value

 appears once for each occurrence".

SUBMITTED BY: Malcolm Cohen

HISTORY: m202 13-314 F08/0101 submitted, first option selected by

 straw vote - passed by J3 meeting

--

NUMBER: F08/0102

TITLE: MERGE and polymorphism

KEYWORD: MERGE, polymorphic

DEFECT TYPE: Erratum

STATUS: Passed by J3 meeting

QUESTION:

Consider

 Program test

 Type t

 End Type

 Type,Extends(t) :: t2

 End Type

 Class(t),Allocatable :: x,y

 Type(t),Allocatable :: a

 x = t()

 y = t2()

 a = t()

 Do i=1,2

 Select Type (z=>Merge(a,x,i==1)) ! A

 Type Is (t)

 Print *,'ok'

 Type Is (t2)

 Print *,'FAIL'

 End Select

 End Do

 Do i=1,2

 Select Type (z=>Merge(x,a,i==1)) ! B

 Type Is (t)

 Print *,'ok'

 Type Is (t2)

 Print *,'FAIL'

 End Select

 End Do

 Do i=1,2

 Select Type (z=>Merge(a,y,i==1)) ! C

 Type Is (t)

 Print *,'t'

 Type Is (t2)

 Print *,'t2'

 End Select

 End Do

 Do i=1,2

 Select Type (z=>Merge(y,a,i==1)) ! D

 Type Is (t)

 Print *,'t'

 Type Is (t2)

 Print *,'t2'

 End Select

 End Do

 Do i=1,2

 Select Type (z=>Merge(x,y,i==1)) ! E

 Type Is (t)

 Print *,'t'

 Type Is (t2)

 Print *,'t2'

 End Select

 End Do

 End Program

According to the standard, the type of the result of MERGE is the same

as the type of TSOURCE. One might imagine that this means that the

result is polymorphic if and only if TSOURCE is polymorphic. This

would be a slightly unusual and unexpected asymmetry.

Also, the types of FSOURCE and TSOURCE have to be the same. If this

means both the declared and dynamic types, one might imagine that this

means that the result is polymorphic if and only if both FSOURCE and

TSOURCE are polymorphic, since otherwise the non-polymorphic argument

decides the type.

On the other hand, if the type requirements are talking about the

declared type only, one might imagine that the result is polymorphic

if either TSOURCE or FSOURCE is polymorphic.

However, in any case there would seem to be an error in the standard,

since the result is specified to be the same as TSOURCE, rather than

the same as whichever argument is chosen to be the result value; if

this refers to the dynamic type, it is contradictory when FSOURCE is

chosen as the result value. And if it does not refer to the dynamic

type, there appears to be no statement which says what the dynamic

type of the result is.

Q1. Is the apparent asymmetry between the treatment of TSOURCE and

 FSOURCE intended?

Q2. Which of the MERGE invocations A-E are polymorphic?

Q3. When the result of MERGE is polymorphic, are the dynamic types of

 TSOURCE and FSOURCE permitted to be different? And if they are,

 is the dynamic type of the result the same as the chosen argument

 and not necessarily the same as TSOURCE?

ANSWER:

A1. There is no asymmetry between TSOURCE and FSOURCE, because they

 are required to have the same type and type parameters. This

 means that both the declared and dynamic types and type parameters

 must be the same.

A2. Only MERGE invocation E is polymorphic. An edit is provided to

 clarify this.

A3. No, the dynamic types and type parameters are required to be the

 same.

Note that because MERGE is elemental, it needs the type and type

parameters to be the same for both the declared and dynamic types,

otherwise the principle that all elements of an array have the same

(declared and dynamic) type and type parameters would be broken.

EDITS:

[368:26] 13.7.110p4 (Result Characteristics),

 "Same as TSOURCE." ->

 "Same type and type parameters as TSOURCE. Because TSOURCE

 and FSOURCE are required to have the same type and type

 parameters (for both the declared and dynamic types), the

 result is polymorphic if and only if both TSOURCE and

 FSOURCE are polymorphic."

SUBMITTED BY: Malcolm Cohen

HISTORY: m202 13-321 F08/0102 submitted

 m202 13-321r1 Revised example - passed by J3 meeting

--

NUMBER: F08/0103

TITLE: Pointers to internal procedures with different host instances

KEYWORD: internal procedure, procedure pointer, host instance

DEFECT TYPE: Erratum

STATUS: Passed by J3 meeting

QUESTION:

Consider:

 MODULE TYPES

 ABSTRACT INTERFACE

 SUBROUTINE SUBROUTINE()

 END SUBROUTINE SUBROUTINE

 END INTERFACE

 TYPE PPS

 PROCEDURE(SUBROUTINE), POINTER, NOPASS :: SU_PTR

 END TYPE PPS

 END MODULE TYPES

 SUBROUTINE CPPS(PPA)

 USE TYPES

 TYPE(PPS), DIMENSION(:) :: PPA

 INTEGER I, J, N

 N = SIZE(PPA)

 DO I = 1, N

 CALL PPA(I)%SU_PTR()

 END DO

 PRINT *,((ASSOCIATED(PPA(I)%SU_PTR,PPA(J)%SU_PTR),I=1,N),J=1,N)

 END SUBROUTINE CPPS

 RECURSIVE SUBROUTINE OUTER(PPA)

 USE TYPES

 TYPE(PPS), DIMENSION(:) :: PPA

 INTERFACE

 SUBROUTINE CPPS(PPA)

 USE TYPES

 TYPE(PPS), DIMENSION(:) :: PPA

 END SUBROUTINE CPPS

 END INTERFACE

 IF (SIZE(PPA) .EQ. 3) THEN

 CALL CPPS(PPA)

 ELSE

 CALL OUTER((/ PPA, PPS(INNER) /))

 END IF

 CONTAINS

 SUBROUTINE INNER()

 WRITE (*,*) 'SIZE(PPA) =', SIZE(PPA)

 END SUBROUTINE INNER

 END SUBROUTINE OUTER

 PROGRAM MAIN

 USE TYPES

 INTERFACE

 RECURSIVE SUBROUTINE OUTER(PPA)

 USE TYPES

 TYPE(PPS), DIMENSION(:) :: PPA

 END SUBROUTINE OUTER

 END INTERFACE

 TYPE(PPS),DIMENSION(0) :: PPA

 CALL OUTER(PPA)

 END PROGRAM MAIN

Does this program print all true values?

The procedure pointers are all associated with the internal procedure

INNER, which might lead one to believe that the answer is yes (that

is, they are all associated with the same target), but each procedure

pointer at each nesting level has a different host instance, which

might lead one to believe that the answer is no (and that therefore

only one of each of the 3-element sequences printed will be T).

ANSWER:

No, the program does not print all true values; two procedure pointers

to the "same" internal procedure are only associated if the host

instances are also the same. An edit is supplied to the standard to

clarify this.

EDITS:

[330:20] 13.7.16p5 Case (ii), after "with TARGET" insert

 "and, if TARGET is an internal procedure, they have the same host

 instance".

[330:22] Case (iii), after "same procedure" insert

 "and, if the procedure is an internal procedure, they have the same

 host instance".

SUBMITTED BY: Robert Corbett.

HISTORY: m202 13-357 Submitted with four answers

 m202 13-357r1 Selected answer, added edits - passed by J3

 meeting

--

image3.emf
N2003.pdf

N2003.pdf

ISO/IEC/JTC1/SC22/WG5-N2003 !
ISO/IEC 1539-1:2010 - TECHNICAL CORRIGENDUM 3 !

Introduction
In the last item in the main bulleted list (Programs and procedures), after “An empty CONTAINS section is
allowed.”, insert new sentence: “A PROCEDURE statement can have a double colon before the first
procedure name.”. !
Subclause 1.3.77
Following subclause 1.3.77 add new item: !

1.3.77a!
function result!
entity that returns the value of a function !

Subclause 1.3.121
Delete term 1.3.121 result variable. !
Subclause 1.3.147.6
Replace the definition of extensible type with: !

type that may be extended using the EXTENDS clause (4.5.7.1) !
Subclause 1.6.3
In the first paragraph of the subclause, replace “Any” by “Except as identified in this subclause, any”. !
Delete the final sentence of the first paragraph, “The following …1539.” and insert two new paragraphs: !

Fortran 95 permitted defined assignment between character strings of the same rank and different
kinds. This part of ISO/IEC 1539 does not permit that if both of the different kinds are ASCII,
ISO 10646, or default kind. !
The following Fortran 95 features might have different interpretations in this part of ISO/IEC 1539. !

Subclause 1.6.4
Following the third paragraph of the subclause, insert a new paragraph: !

Fortran 90 permitted defined assignment between character strings of the same rank and different
kinds. This part of ISO/IEC 1539 does not permit that if both of the different kinds are ASCII,
ISO 10646, or default kind. !

Subclause 2.2.3
In the second paragraph of the subclause, after “data objects” insert “or procedure pointers”. !
Subclause 2.3.5
In the fifth paragraph of the subclause, before Note 2.7, insert new note: !

NOTE 2.6a
If the processor supports the concept of a process exit status, it is recommended that error
termination initiated other than by an ERROR STOP statement supplies a processor-dependent
nonzero value as the process exit status. !

Subclause 4.3.1.1
Following constraint C406, insert new constraint: !

C406a (R403) In TYPE(intrinsic-type-spec) the intrinsic-type-spec shall not end with a comma. !

Subclause 4.3.1.2
In the second paragraph of the subclause, in the final sentence, change “function result variable” to “function
result”. !
Subclause 4.4.3.2
In the fifth paragraph of the subclause, in the fifth bulleted item in the list change “result variable in the
function” to “function result”. !
Subclause 4.5.2.1
After constraint C427 insert new constraint: !

C427a (R426) The same type-param-name shall not appear more than once in a derived-type-stmt. !
Subclause 4.5.2.3
In constraint C436, after “appears,” insert “the type shall have at least one component,”. !
Subclause 4.5.3.1
In constraint C438, after “shall appear” insert “exactly once”. !
Subclause 4.5.7.1
In the first paragraph of the subclause, after “A derived type” insert “, other than the type C_PTR or
C_FUNPTR from the intrinsic module ISO_C_BINDING,”. !
Subclause 5.1
In the second paragraph of the subclause, change “its result variable” to “the function result”. !
Subclause 5.2.1
In the second paragraph of the subclause, replace constraint C507 by: !

C507 (R501) If the PARAMETER keyword appears, initialization shall appear in each entity-decl. !
Add new constraint: !

C507a An expression that specifies a length type parameter or array bound of a named constant
shall be a constant expression. !

Subclause 5.2.1
Following the final paragraph of the subclause, insert a new paragraph: !

If initialization appears for a nonpointer entity,
• its type and type parameters shall conform as specified for intrinsic assignment (7.2.1.2);
• if the entity has implied shape, the rank of initialization shall be the same as the rank of the entity;
• if the entity does not have implied shape, initialization shall either be scalar or have the same

shape as the entity. !
Subclause 5.3.8.1
In syntax rule R515, change “implied-shape-spec-list” to “implied-shape-spec” and insert new production: !

or implied-shape-or-assumed-size-spec !
Subclause 5.3.8.5
In the first paragraph of the subclause, replace the final sentence “An assumed-size array is declared with an
assumed-size-spec.” with “A dummy argument is declared to be an assumed-size array by an assumed-size-
spec or an implied-shape-or-assumed-size-spec.”. !
Before syntax rule R521 insert new BNF term: !
 R520a assumed-implied-spec is [lower-bound :] *

!
Replace syntax rule R521 with: !
 R521 assumed-size-spec is explicit-shape-spec-list, assumed-implied-spec !
Following constraint C534 insert new syntax rule and constraint: !

R521a implied-shape-or-assumed-size-spec is assumed-implied-spec !
C534a An object whose array bounds are specified by an implied-shape-or-assumed-size-spec shall

be a dummy data object or a named constant. !
Subclause 5.3.8.6
In the first paragraph of the subclause, replace the sentence “An implied-shape array is declared … assumed-
implied-spec-list.” with “A named constant is declared to be an implied-shape array with an array-spec that
is an implied-shape-or-assumed-size-spec or an implied-shape-spec.”. !
Replace syntax rule R522 by:
 R522 implied-shape-spec is assumed-implied-spec, assumed-implied-spec-list !
Replace the second paragraph of the subclause, “The rank … implied-shape-spec-list ”, by: !
 The rank of an implied-shape array is the number of assumed-implied-specs in its array-spec. !
Subclause 5.4.11
In the second paragraph of the subclause, in the final sentence change “shape” to “rank”. !
Following that paragraph, insert a new paragraph: !

The constant expression that corresponds to a named constant shall have type and type parameters
that conform with the named constant as specified for intrinsic assignment (7.2.1.2). If the named
constant has implied shape, the expression shall have the same rank as the named constant;
otherwise, the expression shall either be scalar or have the same rank as the named constant. !

Subclause 5.5
In the fourth paragraph of the subclause, in the final sentence change “name of the result variable of that
function subprogram” to “result of that function”. !
Subclause 5.7.1.1
In the second paragraph of the subclause, in constraint C587 change “result variable” to “function result”. !
Subclause 5.7.2.1
In the second paragraph of the subclause, in constraint C5100 change “result variable” to “function result”. !
Subclause 6.2
In syntax rule R602, change “expr” to “function-reference” and replace constraint C602 by: !

 C602 (R602) function-reference shall have a data pointer result. !
Subclause 6.7.3.2
In the second paragraph of the subclause, after “function result” delete “variable”. !
Subclause 7.1.2.2
Following constraint C702, add new constraint: !

C702a (R701) The expr shall not be a function reference that returns a procedure pointer. !!

Subclause 7.1.11
In the second paragraph of the subclause, in list item (9)(b), after “variable” insert “, that is not an optional
dummy argument,”. !
Before item (10) insert two new list items: !

(9a) a specification inquiry that is a constant expression,
(9b) a reference to the intrinsic function PRESENT, !

In the fourth paragraph of the subclause, in list item (1), after “intrinsic inquiry function” insert “other than
PRESENT”. !
Subclause 7.1.12
In the first paragraph of the subclause, replace item (9) in the list by: !

(9) a previously declared kind type parameter of the type being defined, !
Subclause 7.2.2.2
In syntax rule R737, add new production: !

or expr !
In constraint C724, replace “(R737) A variable” by “A variable that is a pointer target”. !
Following constraint C724, add new constraint: !

C724a (R737) An expr shall be a reference to a function that has a data pointer result. !
Subclause 8.1.3.1
Following constraint C804, add new constraint: !

C804a (R805) The expr shall not be a function reference that returns a procedure pointer. !
Subclause 8.4
In the second paragraph of Note 8.30, before “is of type character or does not appear” insert “in a STOP
statement”. !
At the end of Note 8.30, insert new paragraph: !

If the stop-code in an ERROR STOP statement is of type character or does not appear, it is
recommended that a processor-dependent nonzero value be supplied as the process exit status, if the
processor supports that concept. !

Subclause 8.5.6
After syntax rule R864, insert new constraint: !

C852a No specifier shall appear more than once in a given lock-stat-list. !
Subclause 10.7.2.3.2
In the seventh paragraph of the subclause, replace the final sentence (“If w is … produced.”) by !

“The minimum field width required for output of the form 'Inf' is 3 if no sign is produced, and 4
otherwise. If w is greater than zero but less than the minimum required, the field is filled with
asterisks. The minimum field width for output of the form 'Infinity' is 8 if no sign is produced and 9
otherwise. If w is greater than or equal to the minimum required for the form 'Infinity', the form
'Infinity' is output. If w is zero or w is less than the minimum required for the form 'Infinity' and
greater than or equal to the minimum required for the form 'Inf', the form 'Inf' is output. Otherwise,
the field is filled with asterisks.”.

!
In the eighth paragraph of the subclause, replace the final sentence (“If w is … asterisks.”) by “If w is greater
than zero and less than 3, the field is filled with asterisks. If w is zero, the output field is 'NaN'.". !
Subclause 12.3.1
Change “result value” to “function result”. !
Subclause 12.4.3.6
Append the following new sentence to the second paragraph of the subclause, “The interface specified by
interface-name shall not depend on any characteristic of a procedure identified by a procedure-entity-name in
the proc-decl-list of the same procedure declaration statement.”. !
Subclause 12.6.2.2
In the first paragraph of the subclause, in constraint C1255, after “(15.3.5, 15.3.6)” insert “that is not an array
with the VALUE attribute,”. !
In the third paragraph of the subclause, change the two occurrences of “result variable” to “function result”. !
In the fourth paragraph of the subclause, in the first two sentences, change the three occurrences of “result
variable” to “function result”. Delete the third sentence: “The characteristics … result variable”. In each of
the final four sentences change “result variable” to “function result”. !
Further, in the fifth sentence (before the deletion above) change “If the function result is a pointer” to “If the
function result is a data pointer”. !
In Note 12.41 replace the first sentence with “The function result is similar to any other entity (variable or
procedure pointer) local to the function subprogram.”. Also change “this variable” to “this entity” and
change “that variable” to “that entity”. !
Subclause 12.6.2.5
In the third paragraph of the subclause, replace the two occurrences of “result variable name” by “name of
the function result”. !
Subclause 12.6.2.6
In the third paragraph of the subclause, after “name of its result” delete “variable”, and delete the second
sentence “The characteristics ... the result variable.”. !
In the same paragraph, in the penultimate sentence replace “result variables identify the same variable,
although their names need not be the same” with “result names identify the same entity”. In the final
sentence, replace “scalars” with “scalar variables”. !
Subclause 12.7
In the second paragraph of the subclause, in constraint C1283, after “association” insert “, is a dummy
argument of a pure function”. !
In constraint C1283, in list item (4) delete “or” and insert new list item: !

(4a) as the source-expr in a SOURCE= clause if the designator is of a derived type that has an
ultimate pointer component, or !

Subclause 12.8.1
In constraint C1290, after “The result” delete “variable”. !
Subclause 13.2.1
Following the sixth paragraph of the subclause, add the new paragraph: !

An argument to an intrinsic procedure other than ASSOCIATED, NULL, or PRESENT shall be a
data object.

!
Subclause 14.3
In the first paragraph of the subclause, replace the first two bulleted items in the list by: !

• IEEE_OVERFLOW occurs in an intrinsic real addition, subtraction, multiplication, division, or
conversion by the intrinsic function REAL, as specified by IEC 60559:1989 if
IEEE_SUPPORT_DATATYPE is true for the operands of the operation or conversion, and as
determined by the processor otherwise. It occurs in an intrinsic real exponentiation as determined
by the processor. It occurs in a complex operation, or conversion by the intrinsic function
CMPLX, if it is caused by the calculation of the real or imaginary part of the result. !

• IEEE_DIVIDE_BY_ZERO occurs in a real division as specified by IEC 60559:1989 if
IEEE_SUPPORT_DATATYPE is true for the operands of the division, and as determined by the
processor otherwise. It is processor-dependent whether it occurs in a real exponentiation with a
negative exponent. It occurs in a complex division if it is caused by the calculation of the real or
imaginary part of the result. !

Subclause 15.3.4
In the first paragraph of the subclause, replace the first sentence by: “Interoperability between derived types
in Fortran and struct types in C is provided by the BIND attribute on the Fortran type.”. !
In the first paragraph of the subclause, in Note 5.11 after “is interoperable” insert “with a C struct type”. !
In the second paragraph of the subclause, change the four occurrences of “Fortran derived type” to “derived
type” and change the single occurrence of “Fortran type” to “derived type”. !
Subclause 15.3.7
In the second paragraph of the subclause, in item (2) (a) of the list, replace “result variable is a scalar” by
“result is a scalar variable”. !
In item (4) of the list, after “any” insert “scalar”. !
Subclause 16.3.1
In the fourth paragraph of the subclause, in each of the second and third bulleted items in the list, replace
“result variable” by “function result”. !
Subclause 16.3.3
Replace the three occurrences of “result variable” by “function result”. !
Subclause 16.5.3.1
Replace “result variables” with “function results that are variables”. !
Subclause 16.5.3.4
In the sixth paragraph of the subclause, replace “result variables” by “function results that are variables”. !
Subclause 16.6.6
In item (15)(e) of the list, replace “the result variable of a function” by “a variable that is the function result
of that procedure”. !
Subclause A.2
After the bullet item “how soon an image terminates if another image initiates error termination (2.3.5);”
insert new bullet point: !

• the recommended process exit status when error termination is initiated other than by an ERROR
STOP statement with an integer stop-code (2.3.5); !!!

After the fifth bullet from the end of the clause “the extent to which a processor supports IEEE
arithmetic (14);”, insert new bullet points: !

• the conditions under which IEEE_OVERFLOW is raised in a calculation involving non-
IEC 60559:1989 floating-point data;

• the conditions under which IEEE_OVERFLOW and IEEE_DIVIDE_BY_ZERO are raised in a
floating-point exponentiation operation;

• the conditions under which IEEE_DIVIDE_BY_ZERO is raised in a calculation involving non-
IEC 60559:1989 floating-point data; !

image4.emf
SD 8 on Maintenance.pdf

SD 8 on Maintenance.pdf

ISO/IEC JTC 1
Standing Document
N 8

Maintenance of International
Standards

Second Edition, 2013

© ISO/IEC 2013

2

JTC 1 Standing Document on Advisory and Ad Hoc Groups

ISO/IEC Information Technology Task
Force (ITTF)
1, ch.de la Voie-Creuse
Case postale 56
CH-1211 Geneva 20
Telephone: +41 22 749 0111
Telefax: +41 22 733 3430
E-mail: ittf@iso.org
Web: http://www.iso.org/ittf

ISO/IEC JTC 1 Secretariat
ANSI
25 West 43rd Street
4th Floor
New York, NY 10036 USA
Telephone: +1 212 642 4918
Telefax: +1 212 840 2298
E-mail: jtc1@ansi.org
Web: http://www.jtc1.org

© ISO/IEC 2013

All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the
content for the purpose of preparing ISO and IEC documents only. You may not copy or “mirror” the
file, or any part of it, for any other purpose without permission in writing from the publishers.

mailto:ittf@iso.org

http://www.iso.org/

mailto:jtc1@ansi.org

http://www.jtc1.org/

© ISO/IEC 2013

3

JTC 1 Standing Document on Advisory and Ad Hoc Groups

Contents
Foreword 4
1 General 4
2 Revision 4
3 Correction of Defects 5

3.1 Definitions 5
3.2 General 5
3.3 Defect Correction Procedure 5
3.4 Editing Group 5
3.5 Defect Reports - Submission 6
3.6 Defect Reports - Distribution 6
3.7 Preparation of Response by the Editing Group 6
3.8 Preparation of Response by the Project Editor 6
3.9 Processing of Response - WG and SC levels 7
3.10 Maintenance of Defect Report Index 8
3.11 Special Correction Procedure 8

4 Amendment 8
5 Systematic Review 9
6 Stabilized Standards 10
7 Withdrawal 10

© ISO/IEC 2013

4

JTC 1 Standing Document on Advisory and Ad Hoc Groups

Foreword

The purpose of this Standing Document is to explain the ISO/IEC JTC 1 policies concerning the maintenance of
International Standards. The procedures for revisions, correction of defects, amendments and systematic review
are detailed within this document.

This Standing Document incorporates all elements relevant to the above scope previously covered in the JTC 1
Directives, edition 5.3 and complements the Consolidated JTC 1 Supplement. This Standing Document is to be
used in conjunction with the ISO/IEC Directives and the Consolidated JTC 1 Supplement; and the information
contained within is to be considered part of the operating rules of JTC 1. In case of conflict, the ISO/IEC
Directives and Consolidated JTC 1 Supplement take precedence.

In addition to ISO/IEC Directives, Part 1 2.9, 2.10 and 2.11 and the Consolidated JTC 1 Supplement, the following
clauses apply. For the synchronized maintenance of collaborative work with ITU-T, see the Guide for ITU-T and
ISO/IEC JTC 1 Cooperation.

1 General

In JTC 1, the SC or other top-level group responsible for the development of a document shall also be responsible
for its maintenance after publication so that it is kept up-to-date. Where continuous updating of an International
Standard is required, JTC 1 may request the establishment of a maintenance agency to perform this function (see
ISO/IEC Directives, Part 1 Annex G).

For information regarding the maintenance of International Standards which are approved via the JTC 1 PAS
Transposition Process, please see annex F.3 of the Consolidated JTC 1 Supplement to the ISO/IEC Directives,
Part 1.

Every International Standard published by JTC 1 shall be subject to systematic review in order to determine
whether it should be confirmed, revised/amended, converted to another form of deliverable, or withdrawn, as
further discussed below. In some cases, the standard may be designated "stabilized" and would no longer be
subject to systematic review.

2 Revision

If it is decided that an IS should be revised, the responsible maintenance entity shall inform the ITTF and add an
appropriate project to the entity’s programme of work.

Within JTC 1, the revision process starts with the Preparatory Stage (Stage 2) of the ISO project management
system.

If, however, JTC 1 (or an SC or WG reporting to JTC 1) by a vote of its P-members or at a meeting decides that
the proposed revision is of relatively minor importance, it may direct the JTC 1 or maintenance entity Secretariat
to submit the revised IS directly to ITTF for publication. If ITTF is able to verify that no significant change is made
to the IS by such minor revisions, the revised IS shall be published.

Previous editions of standards (including their amendments and technical corrigenda) may be included in the ISO
and IEC Catalogues on an exception basis as determined by the maintenance entity, noting that these documents
should be used for reference purposes only.

If a maintenance entity plans to revise an IS by issuing an amendment(s), it may additionally incorporate (a) other
draft amendment(s) for this IS which have reached approval at the Committee Stage but not at the Enquiry Stage,
as well as (b) those published IS amendment(s) and corrigendum(da) into the proposed amendment and start the
approval process for this proposed amendment at the Approval (FDIS) stage.

In such a case, the contents of the draft amendment(s) in the state between Enquiry Stage and Approval Stage
should be marked, e.g. underlined, in the FDIS, or otherwise should be included or noted in the FDIS foreword.

© ISO/IEC 2013

5

JTC 1 Standing Document on Advisory and Ad Hoc Groups

3 Correction of Defects

3.1 Definitions

defect

An editorial defect or a technical defect.

editorial defect

An error which can be assumed to have no consequences in the application of the IS, for example a minor
printing error.

technical defect

A technical error or ambiguity in an IS inadvertently introduced either in drafting or in printing which could lead to
incorrect or unsafe application of the IS.

technical addition or change

Alteration or addition to previously agreed technical provisions in an existing IS.

3.2 General

3.2.1 A published IS may subsequently be modified by the publication of a technical corrigendum (or corrected
version of the current edition). Technical corrigenda are normally published as separate documents, the edition of
the IS affected remaining in print. However, the ITTF shall decide, in consultation with the Secretariat of JTC 1 or
SC, and bearing in mind both the financial consequences to the organisation and the interests of users of the IS,
whether to publish a technical corrigendum or a corrected version of the existing edition of the IS.

3.2.2 A technical corrigendum is issued to correct a technical defect. Technical corrigenda are not normally
issued for the correction of a few editorial defects by themselves. In such cases, correction of these defects can
be incorporated in future technical corrigenda. Technical corrigenda are not issued for technical additions, which
shall follow the amendment procedure in 4 below.

3.2.3 Suspected technical defects shall be brought to the attention to the Secretariat of JTC 1 or the SC
concerned. In the case of standards for which proper implementation is dependent on the careful but rapid
promulgation of corrections to defects, the procedures in 3.3 through 3.10 below shall apply. When these
procedures are not required, 3.11 shall apply.

3.2.4 In the case of stabilized standards, where the relevant SC no longer exists, responsibility for the
maintenance of such a standard shall be given to a National body or a JTC 1 Category A Liaison body. In this
instance, the actions placed on an SC Secretariat shall be taken to refer to the Secretariat responsible for
maintenance of the standard.

3.3 Defect Correction Procedure

Detailed procedures for handling defect reports may be developed if necessary by individual SCs. However, the
general procedure is described in the following clauses.

3.4 Editing Group

• To apply the defect correction procedures, an SC shall first agree that the procedures should be applied with
respect to a published IS. The SC may establish an editing group associated with the WG to which the
project is assigned. The editing group shall consist of the Project Editor for the IS or a defect editor appointed
by the SC; and may include:

• The editor of the corresponding ITU-T Recommendation or JTC 1 PAS submission, if applicable, or an
individual designated by the editor;

• Other experts nominated by the NBs of the SC, upon distribution by the SC Secretariat of a call for such
nominations;

© ISO/IEC 2013

6

JTC 1 Standing Document on Advisory and Ad Hoc Groups

• Other experts nominated by the corresponding ITU-T Study Group or PAS Submitter working group, if
applicable.

[Note: In the case of multipart standards, or related standards, it may be appropriate to have one editing group
whose membership includes the editors of all the related standards.]

If an editing group has not yet been established, the WG (or a subgroup, e.g. rapporteur group) to which the
project is assigned shall take the role of editing group in processing defect reports pending formal establishment
of the editing group.

3.5 Defect Reports - Submission

A defect report may be submitted by an NB, an organisation in liaison, a member of the editing group for the
subject document, or a WG of the SC responsible for the document.

The submitter shall complete part 2 of the defect report form (see the Defect Report form in the Templates folder
at the JTC 1 web site) and shall send the form to the Convenor or Secretariat of the WG with which the relevant
editing group is associated.

3.6 Defect Reports - Distribution

Upon receipt of a defect report, the WG Convenor or Secretariat shall complete part 1 of the form. The defect
report number contained in part 1 consists of the IS number followed by a solidus and a sequentially assigned
number (e.g. 8326/006). The WG Convenor or Secretariat shall attach a WG document cover sheet which carries
an assigned WG document number and indicates the status of the report (e.g. “This defect report is forwarded to
the 8326 editing group for review and response; it is sent to WG 6 for information”).

The WG Convenor or Secretariat shall distribute the defect report and attached cover sheet to the WG members
and to the appropriate editing group.

3.7 Preparation of Response by the Editing Group

Upon receipt of a defect report from the WG Convenor or Secretariat, each member of the editing group shall
develop a proposed response and send it to every other member of the editing group within one and one-half
months of the date of transmittal of the defect report by the WG Secretariat. This procedure may be bypassed if
the defect report can be discussed by the members at a convenient meeting falling within the one and one-half
month time period.

3.8 Preparation of Response by the Project Editor

Following consideration of the proposed responses received from the editing group members, the Project Editor
shall prepare a single response and transmit it with a copy of the defect report to the WG Convenor or Secretariat
and the other editing group members. This action shall be taken within two months of the date of transmittal of
the defect report.

With the response the Project Editor shall also send a statement of how the response is to be processed.
Possible responses are:

• No change required;
• Further consideration required;
• Editorial defect;
• Technical defect.

If the response has resulted in the development of proposed material for publication, that material shall be
attached separately to the defect report.

© ISO/IEC 2013

7

JTC 1 Standing Document on Advisory and Ad Hoc Groups

3.9 Processing of Response - WG and SC levels

3.9.1 No Change Required

If the response to a defect report has not resulted in material for publication (e.g. the “defect” was the result of
misinterpretation or misunderstanding on the part of the originator of the defect report), the WG Convenor or
Secretariat shall distribute the defect report and the response to the WG for information attaching a new WG
cover sheet with a new document number, and shall advise the WG that no further action is required.

3.9.2 Further Consideration Required

If consideration of a defect report by an editing group results in the recommendation that further study of the
issues involved will be required at the WG level, the WG Convenor or Secretariat shall distribute the defect report
and this recommendation to the WG with a new cover sheet and document number and shall advise the WG that
it will be an item for consideration at the next WG meeting.

[Note: Reference back to the WG could occur, for example, if resolution of the defect appears to have substantial
impact in existing implementations or a technical solution cannot readily be devised.]

3.9.3 Editorial Defect

If the response to a defect report has resulted in the correction of an editorial defect, the WG Secretariat shall
distribute the defect report, response, and text to the WG for information and shall forward the text to the SC
Secretariat who shall transmit it to the ITTF for incorporation into a future technical corrigendum.

3.9.4 Technical Defect

3.9.4.1 If the response to a defect report has resulted in correction of a technical defect, it shall be processed as a
technical corrigendum. The WG Convenor or Secretariat shall forward the defect report, response and draft
technical corrigendum to the SC Secretariat, requesting a letter ballot on the draft technical corrigendum by the
SC (see the DCOR Ballot form in the Templates folder at the JTC 1 web site). In the case where maintenance of
a standard is not assigned to a specific SC but to a National body or a JTC 1 Category A Liaison body, the
actions placed on an SC Secretariat by this clause shall be taken to refer to the Secretariat responsible for the
maintenance of that standard.

3.9.4.2 The SC Secretariat shall notify the JTC 1 Secretariat of the SC ballot on the draft technical corrigendum.
SC P-members and organizations in liaison are asked to submit their comments (and SC P-members their votes)
by a specified date that should be no less than three months from the date of notification of issue. Consideration
of successive DCORs shall continue until the substantial support of the P-members of the committee has been
obtained or a decision to abandon of defer the project has been reached.

3.9.4.3 Upon completion of the ballot period, the SC Secretariat shall distribute the voting results and any
comments received to the SC and shall forward them to the applicable WG Convenor or Secretariat. The WG
Convenor or Secretariat shall distribute the results to the appropriate editing group. Depending on the outcome of
the ballot, the SC Secretariat shall also take action as set out below.

3.9.4.4 If no comments or disapproval votes were submitted on the material, the SC Secretariat shall forward it to
the ITTF for publication (see the Technical Corrigendum Cover Page form in the Forms folder at the JTC 1 web
site), normally within three months, and send copies of the transmittal letter and the material to the JTC 1
Secretariat for information. For publication considerations, see 3.2.1 above. Each technical corrigendum shall list
the status of all amendments and technical corrigenda to the current edition of the standard.

3.9.4.5 If the general results of the SC ballot were positive, but some comments were received, the SC
Secretariat shall also forward the comments to the Project Editor for review when the voting results are distributed
to the SC in accordance with 3.9.4.3 above. The Project Editor shall prepare responses to the comments and
return them to the SC Secretariat together with a revised text of the draft technical corrigendum if any modification
has resulted from the editing review. The SC Secretariat shall distribute the revised text and disposition of
comments report to the SC for information, and shall proceed with the submittal to ITTF in accordance with

© ISO/IEC 2013

8

JTC 1 Standing Document on Advisory and Ad Hoc Groups

3.9.4.4 above. Each technical corrigendum shall list the status of all amendments and technical corrigenda to the
current edition of the standard.

3.9.4.6 If the results of the SC ballot are not positive, in forwarding the voting results to the WG Convenor or
Secretariat in accordance with 3.9.4.3 above, the SC Secretariat shall instruct the WG Convenor or Secretariat to
distribute the results to the appropriate editing group for consideration and the preparation of a recommendation
on further action to be taken.

3.10 Maintenance of Defect Report Index

The Project Editor shall be responsible for maintaining a defect report index that contains, for each defect report
submitted,

• Full identification of document numbers (including ITU-T References in joint projects);
• Status of the defect report;
• Date when submittal occurred;
• Date when response is required;
• Date when ballot terminates (if appropriate);
• Date of publication of solution to the defect.

The Project Editor shall submit a list of the current membership of the editing group and the up-to-date defect
report index to the SC Secretariat immediately before each SC meeting (and after, if appropriate).

3.11 Special Correction Procedure

The following special accelerated procedure may be used by an SC if prior approval has been granted to the SC
by JTC 1.

After confirmation by the Secretariat, in consultation with the P-members of JTC 1 or SC, the Secretariat shall
submit to ITTF a proposal to correct the error with an explanation of the need to do so. For publication
considerations, see 3.2.1above.

4 Amendment

4.1

A published IS may subsequently be modified by the publication of an amendment (see the Amendment cover
page from the Templates folder on www.jtc1.org). If it is decided that an IS is to be amended, either an NP shall
be balloted or an appropriate project subdivision shall be added to the programme of work. Approval shall be in
accordance with ISO/IEC Directives, Part 1 2.3.5 and 2.1.5.4, respectively, and the Consolidated JTC 1
Supplement. Amendments are published as separate documents, the edition of the IS affected remaining in
publication.

4.2

An amendment is issued to publish a technical addition or change. The procedure for developing and publishing
an amendment shall be as described in ISO/IEC Directives, Part 1 clause 2, Development of International
Standards, and the Consolidated JTC 1 Supplement. Processing is the same as for a standard except for the
terminology. At the Committee stage, the document is called a proposed draft amendment (PDAM). At the
Enquiry Stage, the document is called a draft amendment (DAM). At the Approval Stage, the document is called
a final draft amendment (FDAM).

4.3

Each amendment shall list the status of all amendments and technical corrigenda to the current edition of the
standard.

© ISO/IEC 2013

9

JTC 1 Standing Document on Advisory and Ad Hoc Groups

4.4

At the Publication stage, the ITTF shall decide, in consultation with the Secretariat of JTC 1 or SC, and bearing in
mind both the financial consequences to the organisation and the interests of users of the IS, whether to publish
an amendment or a new edition of the IS, incorporating the amendment.

[Note: Where it is foreseen that there will be frequent additions to the provisions of an IS, the possibility should be
borne in mind at the outset of developing these additions as a series of parts (see 5.5.1 of ISO/IEC Directives,
Part 2)]

5 Systematic Review

On request by an NB or ITTF, and in any case not more than five years after the publication of the most recent
edition of a standard, each IS for which JTC 1 is responsible shall be reviewed by JTC 1 with a view to deciding
(by a majority of the P-members voting in a meeting or by correspondence) whether it should be:

• Confirmed;
• Revised;
• Declared as stabilized; or
• Withdrawn.

Standards which have previously been declared as stabilized (see clause 6, Stabilized Standards, below) are not
subject to the systematic review; however, each SC or maintenance entity shall systematically review a current
list of its own stabilized standards to ensure that they still belong in a stabilized status.

The systematic review of a standard shall include the review of any subsequently approved amendments or
corrigenda. The publication dates of amendments or corrigenda do not affect the timing of any systematic review.
The review shall include an assessment of the degree to which the standard has been applied in practice.

To allow sufficient time to accomplish the systematic review within the targeted five-year period and to provide
JTC 1 NBs with pertinent information on the technical relevance of the standard, SCs and other top-level JTC 1
entities are instructed to review all standards assigned to them for development within the two years prior to the
standard’s scheduled JTC 1 systematic review. They should make a recommendation (by action at a meeting or
by letter ballot) concerning the confirmation, revision or declaration of being stabilized or withdrawal of each
standard, and should provide information on the status of the standard. This recommendation shall be forwarded
to the JTC 1 Secretariat for inclusion with the systematic review ballot when it is circulated to JTC 1 NBs, or for
consideration at a meeting. NBs shall be asked whether they support the recommendations and, if not, to state
their preference and the reasons therefore.

In the absence of a systematic review recommendation (i.e. for those JTC 1 standards not assigned to an existing
SC or other top-level JTC 1 entity), NBs shall be asked to indicate whether they are in favour of confirmation,
revision, stabilization or withdrawal.

If a maintenance entity is preparing a revision or a new edition of a standard, such entity’s Secretariat shall inform
the JTC 1 Secretariat and the systematic review will not be conducted unless requested by an NB or the
Secretaries-General.

If the results of the JTC 1 ballot indicate that the standard should be confirmed, the ITTF confirms the standard
and notifies the JTC 1 and appropriate maintenance entity. If JTC 1 decides to revise an IS, the Revision
provisions shown above shall apply. If JTC 1 decides to withdraw an IS, the Withdrawal provisions shown below
shall apply.

In all cases, the results of the systematic review ballot shall be forwarded to JTC 1 NBs and the appropriate
maintenance entity for information and consideration of comments received on the ballot.

© ISO/IEC 2013

10

JTC 1 Standing Document on Advisory and Ad Hoc Groups

6 Stabilized Standards

A stabilized standard has on-going validity and effectiveness; is mature; and insofar as can be determined will not
require further maintenance of any sort.

While a standard is in stabilized status it will no longer be subject to systematic maintenance but will be retained
to provide for the continued viability of existing products or servicing of equipment that is expected to have a long
working life.

At least one five-year review cycle must pass after the last modification to an existing standard before it can be
recommended for stabilization by the owning SC or other appropriate maintenance entity.

An SC or other maintenance entity may recommend that a standard it owns be put in stabilized status at the time
of any regular review of that standard. In each case, the recommendation shall be accompanied by a statement
of rationale and will result in a JTC 1 letter ballot, as is done in the case of a reaffirmation recommendation.

Once a standard is stabilized, it will be recorded on a master list of stabilized standards kept by the ISO Central
Secretariat and available to the JTC 1 Secretariat and to all SC Secretariats. This record will include the date of
first addition to the list and the rationale provided as above. Stabilized standards will also be indicated as such on
the ISO Catalogue.

Where a SC, National body or other maintenance entity within JTC 1 becomes aware that a stabilized standard is
no longer in use or its use has been superseded or it is now unsafe to continue to use the standard, the SC,
National body or other maintenance entity within JTC 1 may request JTC 1 to issue an immediate 60-day letter
ballot to reclassify the standard as withdrawn.

If a new work proposal is generated and adopted against a stabilized standard, the standard is automatically
removed by the Secretariat from the list of stabilized standards. A new work proposal against a stabilized
standard must explicitly note that the standard is stabilized and that the effect of adoption of the new work
proposal will be to return the standard to active status. To be eligible once again for stabilization, the standard
must go through the same process as it did initially, including no modification for at least one five year
maintenance cycle.

The owning JTC 1 maintenance entity may act to remove a standard from stabilized status at any time by
requesting JTC 1 to issue a 60-day letter ballot to reinstate the standard to an active status.

7 Withdrawal

The procedure for withdrawal of an International Standard is the same as that for preparation and acceptance;
that is, an initial study shall take place in JTC 1 or its top-level entities. On the recommendation of JTC 1, an SC,
or a WG reporting to JTC 1, or of the ITTF, the proposal for withdrawal shall then be submitted to NBs for
approval, using the same voting.

		Foreword

		1 General

		2 Revision

		3 Correction of Defects

		3.1 Definitions

		3.2 General

		3.3 Defect Correction Procedure

		3.4 Editing Group

		3.5 Defect Reports - Submission

		3.6 Defect Reports - Distribution

		3.7 Preparation of Response by the Editing Group

		3.8 Preparation of Response by the Project Editor

		3.9 Processing of Response - WG and SC levels

		3.9.1 No Change Required

		3.9.2 Further Consideration Required

		3.9.3 Editorial Defect

		3.9.4 Technical Defect

		3.10 Maintenance of Defect Report Index

		3.11 Special Correction Procedure

		4 Amendment

		4.1

		4.2

		4.3

		4.4

		5 Systematic Review

		6 Stabilized Standards

		7 Withdrawal

image1.emf
2014-05 Presentation to SC Chairs and Secs re WG participation r2 (1).pdf

