	RM
	Topic
	Effect on SPARK

	2.1(5/3)
	Graphic representation of characters
	N/A

	3.9(4/2)
	Representation of tag for tagged type in generic body with multiple instantiations.
	Ada.Tags not allowed in SPARK, so does it matter if such a tag can never be used or compared with that of another instantiation?

	3.9(12.5/3)
	Ada.Tags.
Interface_Ancestor_Tags
	OK. Ada.Tags not allowed in SPARK

	4.5.2(13)
	Equality of access to subprogram values
	OK. Not allowed in SPARK.

	4.5.2(24.2/1)
	Order of calling “=” on components of composite types.
	OK. No worries since even a user-defined “=” must be free of side-effects in SPARK.

	4.5.5(21)
	Rounding of result of “*” and “/” for ordinary fixed point types
	Asked SPARK Team.
TN [U304-035]. By default, GNATprove assumes both round-up and round-down might be possible. If using GNAT, then package SPARK.Fixed_Point_Arithmetic_Lemmas can be instantiated and used to provide the specific semantics.

	4.6(58.4/4)
	Creation of new object (or not) on value conversion
	Does it ever matter? 

	6.1.1(34/3)
	Evaluation order of precondition checks
	OK since all are free of side-effects.

	6.1.1(35/3)
	Evaluation order of postcondition checks
	OK since all are free of side-effects.

	6.2(11/3)
	Parameter passing mechanism
	OK, since no of aliasing of names etc.

	7.2(5/3)
	Order of implicitly null package bodies
	No semantic effect as far as I can see. Tucker says this can matter when elaboration order policy is not “sequential”, so N/A for SPARK.

	7.6(17.4/3)
	Result of initializing expression built in place or not?
	[bookmark: _GoBack]No semantic effect as far as I can see for SPARK. Can affect number of calls to Adjust and Finalize on Controlled Types, but these are not allowed in SPARK, so N/A.

	9.8(14)
	Order of Abort statement
	OK. Not permitted in SPARK.

	9.10(1/3)
	Definition of “independently addressable” for shared variables.
	OK. Un-protected shared variables are not allowed in SPARK.

	10.2(26)
	Task creating during termination of env. Task
	OK. Not possible in SPARK/Ravenscar.

	11.1(6)
	Amount of storage needed for any construct
	Obviously applies to SPARK, but well mitigated by No_Allocators restriction and use of GNATStack

	11.4.1(10.1/4)
	String returned by Ada.Exceptions.Exception_Message
	OK since only useful in the context of a handler part, which are not allowed in SPARK.

	11.5(27/2)
	Suppression of Range_Check when Overflow_Check is suppressed.
	OK... mandatory type-safety verification in SPARK.

	13.1(18)
	Default value of representation aspect.
	OK – semantics are supposed to be independent of representation, so we assume compiler-chosen default will be OK.

	13.7.2(5/2)
	System.Address_To_Access_Conversions
	OK. This package cannot be used in SPARK because it declares a general access type.

	13.9.1(7)
	Does an object really become abnormal after Unsafe Programming?
	In normal code, SPARK prevents abnormal values ever being generated. See rules for legality of Unchecked_Conversion in SPARK. Abnormal value returned from imported foreign code remains possible.

	13.11(20)
	System.Storage_Pools
	OK. Not allowed in SPARK.

	13.11(21.6/3)
	System.Storage_Pools
	OK. Not allowed in SPARK.

	13.13.2(36/2)
	Order of checks for Stream_IO Read and Input
	OK. Streams and Stream_IO not allowed in SPARK.

	A.1(1/3)
	Body of package Standard
	No semantic effect as far as I can see.

	A.5.1(34)
	Does Constraint_Error get raised by certain functions in Ada.Numerics.Generic_Elementary_Functions when Machine_Overflows = False?
	OK. This package has preconditions on these functions to prevent Constraint_Error, regardless of the value of Machine_Overflows.

	A.5.2(28)
	Default initial value of Discrete_Random.Generator
	RNG function has side-effect, so cannot be called from SPARK. Initial value is of no interest anyway.

	A.5.2(34)
	Action of Discrete_Random.Reset
	As above – no impact on SPARK really.

	A.5.3(41.3/2)
	Result of S’Machine_Rounding (X) when X exactly halfway between two integers.
	Remains unspecified as per the RM. Onus on user to check that their SPARK Analyzer implements same rounding mode as their compiler and target. (GNATprove and GNAT both round away from zero in this case).

	A.7(6)
	Effect of I/O on access types
	OK. How would you even do I/O on an access value without Unsafe Programming (e.g. Unchecked_Conversion??)

	A.10(8)
	Effect of predefined I/O of “Control Characters”
	Generally not applicable to SPARK?

	A.10.7(8/3)
	Value returned from Ada.Text_IO.Look_Ahead at end of line or end of file
	Generally not applicable to SPARK?

	A.10.7(12/3)
	Value returned by Ada.Text_IO.Get_Immediate when no char available.
	Generally not applicable to SPARK?

	A.10.7(17.3/2)
	File’s Column_Number after a failed call to Ada.Text_IO.Get_Line function.
	Generally not applicable to SPARK? SPARK RM 14.10.1 says that Get_Line should not be called in SPARK.

	A.10.7(19)
	Value of unassigned characters in result of Ada.Text_IO.Get_Line procedure.
	Generally not applicable to SPARK?

	A.14(1)
	Effect of shared files
	Generally not applicable to SPARK? Options and effects regarding shared-files are well-documented by GNAT, though...

	A.18.2(231/3)
	Effect of Ada.Containers.Vectors.Generic_Sorting if instantiated with a bad “<” operator
	Ada RM Containers libs are not in SPARK. BUT... does generally apply to the SPARK-specific “formal” container libraries.

	A.18.2(252/2)
	Containers...
	Ada RM Containers libs are not in SPARK.

	A.18.2(83/2)
	Containers...
	As above

	A.18.3(145/3)
	Containers...
	As above

	A.18.3(157/2)
	Containers...
	As above

	A.18.3(55/2)
	Containers...
	As above

	A.18.4(3/2)
	Containers...
	As above

	A.18.4(80/2)
	Containers...
	As above

	A.18.5(43/2)
	Containers...
	As above

	A.18.5(44/2)
	Containers...
	As above

	A.18.5(45/2)
	Containers...
	As above

	A.18.5(46/2)
	Containers...
	As above

	A.18.6(56/3)
	Containers...
	As above

	A.18.6(57/2)
	Containers...
	As above

	A.18.7(3/2)
	Containers...
	As above

	A.18.7(101/2)
	Containers...
	As above

	A.18.7(87/2)
	Containers...
	As above

	A.18.7(88/2)
	Containers...
	As above

	A.18.8(65/2)
	Containers...
	As above

	A.18.8(66.1/3)
	Containers...
	As above

	A.18.8(66/2)
	Containers...
	As above

	A.18.8(67/2)
	Containers...
	As above

	A.18.8(68/2)
	Containers...
	As above

	A.18.8(86/2)
	Containers...
	As above

	A.18.8(87/2)
	Containers...
	As above

	A.18.9(114/2)
	Containers...
	As above

	A.18.9(79.1/3)
	Containers...
	As above

	A.18.9(79/3)
	Containers...
	As above

	A.18.9(80/2)
	Containers...
	As above

	A.18.10(227/3)
	Containers...
	As above

	A.18.10(72/3)
	Containers...
	As above

	A.18.26(5/3)
	Containers...
	As above

	A.18.26(9.4/3)
	Containers...
	As above

	A.18.26(9/3)
	Containers...
	As above

	D.2.2(7.1/2)
	Default task dispatching policy
	Is always set in SPARK to FIFO_Within_Priorities owing to Ravenscar (See RM D.13)

	D.8(19)
	What is the time reference and Epoch for Ada.Real_Time
	OK. No semantic effect?

	E.3(5/1)
	Meaning of “version” of a compilation unit
	OK. Distributed Systems Annex not allowed in SPARK.

	G.1.1(40)
	Exceptions from Generic_Complex_Types when Machine_Overflows = False
	SPARK assumes Machine_Overflows = True, but this package really needs pre-conditions on all functions.

	G.1.2(33)
	Exceptions from Generic_Complex_Elementary_Functions when Machine_Overflows = False
	SPARK assumes Machine_Overflows = True, but this package really needs pre-conditions on all functions.

	G.1.2(48)
	Conditions for overflow from Trig functions in Generic_Complex_Elementary_Functions
	This package needs pre-conditions on all functions. The exact condition under which Overflow occurs may be implementation-defined, though.

	H(4.1)
	Documentation of bounded errors unspecified behaviours for high-integrity systems.
	N/A

	H.2(1)
	Documentation of bounded errors unspecified behaviours for high-integrity systems.
	N/A. Would be nice to have if it were possible.

	K.2(136.4/2)
	Same as A.5.3(41.3/2)
	See above.



