
C++	and	Programming	
Language	Vulnerabilities

Stephen Michell
Convenor	of	ISO/IEC/JTC	1/SC	22/WG	23	Programming	Language	Vulnerabilities

stephen.michell@csagroup.org
stephen.michell@maurya.on.ca



Outline

• History	of	WG	23
• Edition	3	Outlook
• Compare	with	Ada
• Changes	from	Edition	2
• What	are	programming	language	vulnerabilities?
• Vulnerability	examples
• Documenting	C	subset	of	C++
• Working	with	WG	23



History	of	WG	23

• ISO/IEC/SC22/WG23 Programming	Language	Vulnerabilities	
• Formed	in	2006	to	address	mistakes	in	programs	that	can lead	to	attacks	or	faults	
the	can	cause	application	and	system	failures
• Published	first	Technical	Report	TR	24772	Guidance	in	avoiding	programming	
language	vulnerabilities	through	language	selection	and	use	in	2010
• Identified	and	documented	vulnerabilities	in	a	general	way
• WG	23	was	working	on	programming	language	specific	annexes,	but	none	were	ready

• Published	edition	2	in	2013
• Contained annexes	for	

• Ada
• C
• Python
• PHP
• Ruby
• Spark



Edition	3	Outlook

• Slight	name	change
• Dropping “through	language	selection	and	use”

• Move the	language-specific	annexes	from	the	document	
• Put separate	parts	

• too	difficult	to	keep	all	language-specific	annexes	in	sync	for	a	single	publication	cycle
• Base	document			becomes	24772-1
• Ada							guidance	becomes	24772-2
• C											guidance	becomes	24772-3
• Python	guidance	becomes	24772-4
• Fortran	guidance	becomes	24772-8

• Expect	ballot	to	start	in	2018



Edition	3	Outlook	(cont)

• Others	(Spark,	Ruby,	PHP,	etc)	in	1-3	years
• Planning	a	C++	Part,	hopeful
• Rationale
• C++	is	being	increasingly	used	in	places	where	the	safety	and	security	of	the	
application	matter.
• C++,	like	all programming	languages,	provides	capabilities	to	developers	and	
makes	choices	that	leave	applications	open	to	programming	errors	or	attacks	
that	can	be	detrimental	to	systems	or	users	that	depend	on	the	application.
• The	TR	explains	the	vulnerability,	its	possible	consequences,	and	ways	to	
avoid	it.



Compare	with	Ada

• Ada	is	known	as	a	“safe	language”
• Very	strong	type	system
• Robust	compile-time and	runtime	checking

• Yet	TR	24772-2	
• Acknowledges	50	(out	of	63)	vulnerabilities	as	having	applicability	to	Ada.	
• Most	of	the	rest	are	acknowledged	if	an	identified,	small	set	of	unsafe	
features	of	the	language	are	used.	
• The	guidance	to	users	helps	to	avoid	or	mitigate	the	vulnerabilities



Changes	from	edition	2?

• Added	a	few	new	vulnerabilities
• Deep	vs	Shallow	Copying
• Violations	of	the	Liskov Substitution	Principle
• Redispatching
• Polymorphic	Variables
• 3	vulnerabilities	(in	clause	7)	on	time-related	issues

• Moved	some	vulnerabilities	to	clause	7	
• no	language-related	implications	or	mitigations	in	clause	7
• Fault	tolerance	and	failure	strategies
• Distinguished	values	in	data	types

• Added	a	top-N	guidance	in	clause	5
• Not	a	coding	standard,	but	a	collation	of	the	most	common	(and	important)	guidelines	that	
apply	to	many	vulnerabilities	in	clauses	6	&	7



What	are	Programming	Language	
Vulnerabilities?
• Every	application	program	exists	on	a	machine	with	constrained	
resources
• Fixed	word	size	and	formats	mean	that	some	operations	will	always	overflow,	
overflow	or	wrap	around	
• And	sometimes	it	is	not	an	error
• Fixed	memory	size	and	or	long-lived	programs	mean	that	we	must	reuse	
memory	locations.	This	leads	to	reusing	variables,	releasing	and	reallocating	
memory,	sharing	or	reinterpreting	data	in	other	contexts



What	are	Programming	Language	
Vulnerabilities? (cont)
• Every	programming	language	contains	features	that:
• Permit	data	regions	to	be	sized,	resized,	allocated,	destroyed
• Permit	data	to	be	reinterpreted
• Permit	data	to	be	created	in	one	type	and	arbitrarily	changed	to	another
• Permit	algorithms	to	be	prematurely	terminated	or	arbitrarily	extended
• Permit	the	arbitrary	input,	interpretation	and	output	of	data	over	arbitrary	
I/O	channels

• Each	expose	the	application	to	the	risk	that	the	capability	will	be	
misused	in	a	way	that	could	adversely	affect	the	system	that	relies	
upon	the	application.



What	are	Programming	Language	
Vulnerabilities?		(cont)
• Programming	languages	can/have	been	devised	that	minimize	or	
mitigate	the	risks,	but	cannot	eliminate	them.
• Where	an	attacker	has	sufficient	knowledge	of	the	application,	or	the	OS	
environment,	or	the	communications	protocols,	or	the	timing	order	of	
application	components,	or	the	order	of	access	to	external	resources,	then	
attacks	can	be	constructed	that	will	compromise	the	system.



Example	– Buffer	Overflow

• A	classic	vulnerability	in	C	
• C	IO	(old	style)	does	not	enforce	the	buffer	size	of	an	array	(say	an	array	of	
characters)

• very	often,	the	developer	makes	assumptions	about	input	data	and	does	not	check	
dynamically.	

• Unrestricted	input	can	overflow	the	buffer	and	write	new	data	or	instructions	into	
neighbouring	buffers	or	onto	the	stack,	resulting	in	program	failure	or	even	arbitrary	
code	execution.

• C++	provides	mechanisms	to	mitigate	or	eliminate	the	defect.	
• Buffers	can	be	placed	into	classes	and	access	restricted	via	methods	that	can	be	
shown	to	obey	the	size	limitations	of	the	buffer.	

• Guidance	would	be	to	always	encapsulate	data	elements	into	classes	and	restrict	
access	to	the	buffer	to	methods	of	the	class.



Example	– Liskov Substitution	Principle

• Present	in	all	object-oriented	languages.	
• Each	method	at	the	root	of	a	hierarchy	needs	to	specify	

• the	strongest	preconditions	that	are	required	to	call	any	extension	of	the	method,	a
• the	weakest	postcondition that	the	method	or	any	of	its	derivatives	will	deliver.	

• Each	extension	of	a	method	must	
• Weaken	the	preconditions	
• Strengthen	its	delivery	guarantees		the	postconditions

• Failure	is	that	implementors do	not	understand	the	principle	and	override a	
method	with	one	that	has	stronger	preconditions	or	weaker	postconditions
• Guidance	is	to	forbid	such	strentheneing/weakening,	use	static	analysis	
tools,	etc.



About “safe”	languages

• Almost	all	“real”	languages	are	dramatically	“pruned”	when	used	in	
projects	with	stringent	needs	for	security or	safety
• Witness	JSF coding	rules	for	C++	or	MISRA
• Witness	Spark	subset	of	Ada

• Removes	all	access	types	(pointers),	generics,	polymorphism,	generalized	tasking,	
functions with	side	effects,	calendar	clock,	atomic	data

• There	is	no	weakness	in	documenting	the	vulnerabilities in	a	language	
and	recommending	approaches	and	techniques	to	avoid	them



Documenting	C	subset	of	C++	
- a	proposed	approach
• TR	24772-3	already	fully	documents	the	C	subset

• With	a	couple	of	exceptions	where	C++	changed	
• C++	Part	must	recognize	the	subset	and	the	way	that	it	is	used

• C++	Part	should	not	restate	the	C	Part,	but	should	reference	it.
• Make	a	simple	statement	that	the	appropriate	vulnerabilities	as	
documented	in	TR24772-3	clause	6.x	exists	in	C++
• Document	features	that	share	that	vulnerability	(if	applicable)
• Document	C++	features	that	mitigate	or	avoid	the	vulnerability
• Recommend	that	these	be	used	instead

• Where	C++	changes	a	C	language	feature,	
• Document	the	impact	of	the	changes	on	any	related	C	vulnerabilities	
• Document new	or	changed	vulnerabilities



Working	with	WG	23

• WG	23 is	willing	to	
• Let	WG	21	lead	with	the	documentation	of	vulnerabilities	in	C++
• Lead	and	ask	WG	21	for	technical	assistance

• How	can	we	work	together?


