
ISO	IEC	JTC	1	SC	22	WG	23	N0708	
07	April	2017	

Document	posted	for	WG	review	for	consideration	for	subclause	5	
DRAFT:	
	
Proposed	top	Ada	specific	guidance:	[still	needs	priority	order]	

1. Do	not	use	features	explicitly	identified	as	unsafe,	such	as	Unchecked_Deallocation	or	
Unchecked_Conversion,	unless	absolutely	necessary	and	then	with	extreme	caution.		If	
Unchecked_Deallocation	must	be	used,	carefully	check	each	usage	to	ensure	that	there	are	no	
remaining	references	to	the	object	and	avoid	fragmentation.	

2. Handle	all	exceptions	and	use	static	analysis	tools	during	program	development	to	verify	the	
absence	of	implicitly	raised	exceptions.		

3. Protect	all	data	shared	between	tasks	within	a	protected	object	or	mark	the	data	Atomic.	
4. Use	user-defined	types	in	preference	to	predefined	types,	including	range	and	precision	as	

needed.	
5. For	case	statements	and	aggregates,	do	not	use	the	others	choice.	
6. Use	Ada's	support	for	whole-array	operations,	such	as	for	assignment	and	comparison,	plus	

aggregates	for	whole-array	initialization,	to	reduce	the	use	of	indexing.	
7. Do	not	suppress	the	checks	provided	by	the	language	unless	their	failure	has	been	verified	by	

static	analysis	tools.	[modified)	
8. Use	a	for loop	in	preference	to	a	while loop whenever possible.	
9. Whenever	possible,	use	the	'First,	'Last,	and	'Range	attributes	for	loop	control.	If	the	'Length	

attribute	must	be	used,	take	extra	care	to	ensure	that	the	length	expression	considers	the	
starting	index	value	for	the	array.	

10. Include	exception	handlers	for	every	task,	so	that	their	unexpected	termination	can	be	handled	
and	possibly	communicated	to	the	execution	environment.	

11. Use	objects	of	controlled	types	to	ensure	that	resources	are	properly	released	if	a	task	
terminates	unexpectedly.	

12. Use	the	abort	statement	sparingly,	if	at	all.		
13. Exploit	the	type	and	subtype	system	of	Ada	to	express	preconditions	(and	postconditions)	on	

the	values	of	parameters.	Document	all	other	preconditions	and	ensure	by	guidelines	that	either	
callers	or	callees	are	responsible	for	checking	the	preconditions	(and	postconditions).	Wrapper	
subprograms	for	that	purpose	are	particularly	advisable.		

14. Use	pragma	Atomic	and	pragma Atomic_Components	to	ensure	that	all	updates	to	objects	and	
components	happen	atomically.	[too	specific?)		(Maybe	not	part	of	top	N)	

15. Use	pragma	Volatile	and	pragma Volatile_Components	to	notify	the	compiler	that	objects	and	
components	must	be	read	immediately	before	use	as	other	devices	or	systems	may	be	updating	
them	between	accesses	of	the	program.	[too	specific]	(Maybe	not	part	of	top	N)	

	
For	reference,	here	is	all	of	the	Ada	specific	guidance	from	24773:	

• The	predefined	‘Valid	attribute	for	a	given	subtype	may	be	applied	to	any	value	to	ascertain	if	
the	value	is	a	valid	value	of	the	subtype.	This	is	especially	useful	when	interfacing	with	type-less	
systems	or	after	Unchecked_Conversion.	

• A	conceivable	measure	to	prevent	incorrect	unit	conversions	is	to	restrict	explicit	conversions	to	
the	bodies	of	user-provided	conversion	functions	that	are	then	used	as	the	only	means	to	effect	

Microsoft� 2017-4-5 3:10 PM
Deleted: N0621
Stephen Michell� 2017-4-7 1:58 PM
Deleted: xxx
Microsoft� 2017-4-5 3:10 PM
Deleted: 13	January	2016
Stephen Michell� 2017-4-9 6:14 PM
Deleted: 5
Stephen Michell� 2017-4-7 2:19 PM
Formatted: List Paragraph
Stephen Michell� 2017-4-7 1:58 PM

Deleted: E…ceptions	raised	by	type	and	... [1]

Stephen Michell� 2017-4-7 2:19 PM
Formatted: English (UK)
Stephen Michell� 2017-4-7 2:12 PM

Deleted: <#>Use	pragma	Atomic	and	
pragma Atomic_Components	to	ensure	
that	all	updates	to	objects	and	components	
happen	atomically.	[too	specific?) ... [2]

Stephen Michell� 2017-4-7 2:03 PM
Deleted: Rather	than	using	predefined	... [3]

Microsoft� 2017-4-5 2:59 PM
Deleted: <#>Avoid	direct	manipulation	of	... [4]

Stephen Michell� 2017-4-7 2:03 PM
Deleted: ... [5]

Stephen Michell� 2017-4-7 2:19 PM
Deleted: <#>Use	static	analysis	tools	during	... [6]

Stephen Michell� 2017-4-7 2:07 PM
Deleted: Whenever	possible,…se	a	for loop	... [7]

Stephen Michell� 2017-4-7 2:21 PM
Formatted: Font:Not Bold
Stephen Michell� 2017-4-7 2:11 PM

Deleted: should	be	used	…or	loop	 ... [8]

Stephen Michell� 2017-4-7 2:10 PM
Deleted: T

Microsoft� 2017-4-5 3:06 PM
Formatted: Font:+Theme Body, Not Bold
Stephen Michell� 2017-4-7 2:10 PM

Deleted: should	be	used	
Microsoft� 2017-4-5 3:06 PM
Formatted
Stephen Michell� 2017-4-7 2:18 PM

Deleted: ... [9]

Stephen Michell� 2017-4-7 2:12 PM
Formatted: Normal
Stephen Michell� 2017-4-7 2:12 PM
Formatted: Font:(Default) Calibri
Microsoft� 2017-4-5 2:50 PM
Formatted: English (UK)

the	transition	between	unit	systems.	These	bodies	are	to	be	critically	reviewed	for	proper	
conversion	factors.	

• Exceptions	raised	by	type	and	subtype-conversions	shall	be	handled.		
• The	use	of	record	and	array	types	with	the	appropriate	representation	specifications	added	so	

that	the	objects	are	accessed	by	their	logical	structure	rather	than	their	physical	representation.	
These	representation	specifications	may	address:	order,	position,	and	size	of	data	components	
and	fields.		

• The	use	of	pragma	Atomic	and	pragma Atomic_Components	to	ensure	that	all	updates	to	
objects	and	components	happen	atomically.	

• The	use	of	pragma	Volatile	and	pragma Volatile_Components	to	notify	the	compiler	that	
objects	and	components	must	be	read	immediately	before	use	as	other	devices	or	systems	may	
be	updating	them	between	accesses	of	the	program.		

• The	default	object	layout	chosen	by	the	compiler	may	be	queried	by	the	programmer	to	
determine	the	expected	behaviour	of	the	final	representation.	

• Rather	than	using	predefined	types,	such	as	Float	and	Long_Float,	whose	precision	may	vary	
according	to	the	target	system,	declare	floating-point	types	that	specify	the	required	precision	
(for	example,	digits	10).	Additionally,	specifying	ranges	of	a	floating	point	type	enables	
constraint	checks	which	prevents	the	propagation	of	infinities	and	NaNs.	

• Avoid	comparing	floating-point	values	for	equality.	Instead,	use	comparisons	that	account	for	
the	approximate	results	of	computations.	Consult	a	numeric	analyst	when	appropriate.	

• Make	use	of	static	arithmetic	expressions	and	static	constant	declarations	when	possible,	since	
static	expressions	in	Ada	are	computed	at	compile	time	with	exact	precision.	

• Use	Ada's	standardized	numeric	libraries	(for	example,	Generic_Elementary_Functions)	for	
common	mathematical	operations	(trigonometric	operations,	logarithms,	and	others).	

• Use	an	Ada	implementation	that	supports	Annex	G	(Numerics)	of	the	Ada	standard,	and	employ	
the	"strict	mode"	of	that	Annex	in	cases	where	additional	accuracy	requirements	must	be	met	
by	floating-point	arithmetic	and	the	operations	of	predefined	numerics	packages,	as	defined	and	
guaranteed	by	the	Annex.	

• Avoid	direct	manipulation	of	bit	fields	of	floating-point	values,	since	such	operations	are	
generally	target-specific	and	error-prone.	Instead,	make	use	of	Ada's	predefined	floating-point	
attributes	(such	as	'Exponent).		

• In	cases	where	absolute	precision	is	needed,	consider	replacement	of	floating-point	types	and	
operations	with	fixed-point	types	and	operations.	

• For	case	statements	and	aggregates,	do	not	use	the	others	choice.	
• For	case	statements	and	aggregates,	mistrust	subranges	as	choices	after	enumeration	literals	

have	been	added	anywhere	but	the	beginning	or	the	end	of	the	enumeration	type	definition.	
• Use	Ada's	capabilities	for	user-defined	scalar	types	and	subtypes	to	avoid	accidental	mixing	of	

logically	incompatible	value	sets.	
• Use	range	checks	on	conversions	involving	scalar	types	and	subtypes	to	prevent	generation	of	

invalid	data.	
• Use	static	analysis	tools	during	program	development	to	verify	that	conversions	cannot	violate	

the	range	of	their	target.	
• Do	not	suppress	the	checks	provided	by	the	language.	
• Use	Ada's	support	for	whole-array	operations,	such	as	for	assignment	and	comparison,	plus	

aggregates	for	whole-array	initialization,	to	reduce	the	use	of	indexing.	
• Write	explicit	bounds	tests	to	prevent	exceptions	for	indexing	out	of	bounds.	
• This	vulnerability	can	be	avoided	in	Ada	by	not	using	the	features	explicitly	identified	as	unsafe.		

• Use	‘Access	which	is	always	type	safe.	
• Use	local	access	types	where	possible.	
• Do	not	use	Unchecked_Deallocation.	
• Use	Controlled	types	and	reference	counting.	
• Avoid	the	use	of	similar	names	to	denote	different	objects	of	the	same	type.		
• Adopt	a	project	convention	for	dealing	with	similar	names	
• See	the	Ada	Quality	and	Style	Guide.	
• Use	Ada	compilers	that	detect	and	generate	compiler	warnings	for	unused	variables	or	use	static	

analysis	tools	to	detect	such	problems.	
• Do	not	declare	variables	of	the	same	type	with	similar	names.	Use	distinctive	identifiers	and	the	

strong	typing	of	Ada	(for	example	through	declaring	specific	types	such	as	Pig_Counter is range
0 .. 1000;	rather	than	just	Pig: Integer;)	to	reduce	the	number	of	variables	of	the	same	type.	

• Use	Ada	compilers	that	detect	and	generate	compiler	warnings	for	unused	variables.	
• Use	static	analysis	tools	to	detect	dead	stores.		
• Use	expanded	names	whenever	confusion	may	arise.		
• Use	Ada	compilers	that	generate	compile	time	warnings	for	declarations	in	inner	scopes	that	

hide	declarations	in	outer	scopes.	
• Use	static	analysis	tools	that	detect	the	same	problem.	
• If	the	compiler	has	a	mode	that	detects	use	before	initialization,	then	this	mode	should	be	

enabled	and	any	such	warnings	should	be	treated	as	errors.	
• Where	appropriate,	explicit	initializations	or	default	initializations	can	be	specified.	
• The	pragma	Normalize_Scalars	can	be	used	to	cause	out-of-range	default	initializations	for	

scalar	variables.	
• The	‘Valid	attribute	can	be	used	to	identify	out-of-range	values	caused	by	the	use	of	uninitialized	

variables,	without	incurring	the	raising	of	an	exception.	
• Make	use	of	one	or	more	programming	guidelines	which	prohibit	functions	that	modify	global	

state,	and	can	be	enforced	by	static	analysis.	
• Keep	expressions	simple.	Complicated	code	is	prone	to	error	and	difficult	to	maintain.	
• Always	use	brackets	to	indicate	order	of	evaluation	of	operators	of	the	same	precedence	level.		
• Compilers	and	other	static	analysis	tools	can	detect	some	cases	(such	as	the	preceding	

example).	
• Developers	may	also	choose	to	use	short-circuit	forms	by	default	(errors	resulting	from	the	

incorrect	use	of	short-circuit	forms	are	much	less	common),	but	this	makes	it	more	difficult	for	
the	author	to	express	the	distinction	between	the	cases	where	short-circuited	evaluation	is	
known	to	be	needed	(either	for	correctness	or	for	performance)	and	those	where	it	is	not.	

• Compilers	and	other	static	analysis	tools	can	detect	some	cases	(such	as	the	preceding	
example).	

• Developers	may	also	choose	to	use	short-circuit	forms	by	default	(errors	resulting	from	the	
incorrect	use	of	short-circuit	forms	are	much	less	common),	but	this	makes	it	more	difficult	for	
the	author	to	express	the	distinction	between	the	cases	where	short-circuited	evaluation	is	
known	to	be	needed	(either	for	correctness	or	for	performance)	and	those	where	it	is	not.	

• Implementation	specific	mechanisms	may	be	provided	to	support	the	elimination	of	dead	code.	
In	some	cases,	pragmas	such	as	Restrictions,	Suppress,	or	Discard_Names	may	be	used	to	
inform	the	compiler	that	some	code	whose	generation	would	normally	be	required	for	certain	
constructs	would	be	dead	because	of	properties	of	the	overall	system,	and	that	therefore	the	
code	need	not	be	generated.		For	example,	given	the	following:	

package Pkg is
type Enum is (Aaa, Bbb, Ccc);
pragma Discard_Names(Enum);

end Pkg;
If	Pkg.Enum'Image	and	related	attributes	(for	example,	Value, Wide_Image)	of	the	type	are	
never	used,	and	if	the	implementation	normally	builds	a	table,	then	the	pragma	allows	the	
elimination	of	the	table.	
	

• For	case	statements	and	aggregates,	avoid	the	use	of	the	others	choice.	
• For	case	statements	and	aggregates,	mistrust	subranges	as	choices	after	enumeration	literals	

have	been	added	anywhere	but	the	beginning	or	the	end	of	the	enumeration	type	definition.15	
• Whenever	possible,	a	for loop	should	be	used	instead	of	a	while loop.	
• Whenever	possible,	the	'First,	'Last,	and	'Range	attributes	should	be	used	for	loop	termination.	

If	the	'Length	attribute	must	be	used,	then	extra	care	should	be	taken	to	ensure	that	the	length	
expression	considers	the	starting	index	value	for	the	array.	

• Avoid	the	use	of	goto,	loop exit	statements,	return	statements	in	procedures	and	more	than	
one	return	statement	in	a	function		If	not	following	this	guidance	caused	the	function	code	to	
be	clearer	–	short	of	appropriate	restructuring	–	then	multiple	exit	points	should	be	used.	

• Only	use	'Address	attribute	on	static	objects	(for	example,	a	register	address).		
• Do	not	use	'Address	to	provide	indirect	untyped	access	to	an	object.		
• Do	not	use	conversion	between	Address	and	access	types.		
• Use	access	types	in	all	circumstances	when	indirect	access	is	needed.		
• Do	not	suppress	accessibility	checks.		
• Avoid	use	of	the	attribute	Unchecked_Access.	
• Use	‘Access	attribute	in	preference	to	‘Address.	
• Do	not	use	default	expressions	for	formal	parameters.	
• Interfaces	between	Ada	program	units	and	program	units	in	other	languages	can	be	managed	

using	pragma Import	to	specify	subprograms	that	are	defined	externally	and	pragma Export	to	
specify	subprograms	that	are	used	externally.	These	pragmas	specify	the	imported	and	
exported	aspects	of	the	subprograms,	this	includes	the	calling	convention.	Like	subprogram	
calls,	all	parameters	need	to	be	specified	when	using	pragma Import and	pragma Export.	

• The	pragma Convention	may	be	used	to	identify	when	an	Ada	entity	should	use	the	calling	
conventions	of	a	different	programming	language	facilitating	the	correct	usage	of	the	execution	
stack	when	interfacing	with	other	programming	languages.		

• In	addition,	the	Valid	attribute	may	be	used	to	check	if	an	object	that	is	part	of	an	interface	with	
another	language	has	a	valid	value	and	type.	

• If	recursion	is	used,	then	a	Storage_Error	exception	handler	may	be	used	to	handle	insufficient	
storage	due	to	recurring	execution.		

• Alternatively,	the	asynchronous	control	construct	may	be	used	to	time	the	execution	of	a	
recurring	call	and	to	terminate	the	call	if	the	time	limit	is	exceeded.		

• In	Ada,	the	pragma Restrictions	may	be	invoked	with	the	parameter	No_Recursion.	In	this	case,	
the	compiler	will	ensure	that	as	part	of	the	execution	of	a	subprogram	the	same	subprogram	is	
not	invoked.	

• In	addition	to	the	mitigations	defined	in	the	main	text,	values	delivered	to	an	Ada	program	from	
an	external	device	may	be	checked	for	validity	prior	to	being	used.	This	is	achieved	by	testing	
the	Valid	attribute.		

• Include	exception	handlers	for	every	task,	so	that	their	unexpected	termination	can	be	handled	
and	possibly	communicated	to	the	execution	environment.	

• Use	objects	of	controlled	types	to	ensure	that	resources	are	properly	released	if	a	task	
terminates	unexpectedly.	

• The	abort	statement	should	be	used	sparingly,	if	at	all.	
• For	high-integrity	systems,	exception	handling	is	usually	forbidden.	However,	a	top-level	

exception	handler	can	be	used	to	restore	the	overall	system	to	a	coherent	state.			
• Define	interrupt	handlers	to	handle	signals	that	come	from	the	hardware	or	the	operating	

system.	This	mechanism	can	also	be	used	to	add	robustness	to	a	concurrent	program.	
• Annex	C	of	the	Ada	Reference	Manual	(Systems	Programming)	defines	the	package	

Ada.Task_Termination	to	be	used	to	monitor	task	termination	and	its	causes.	
• Annex	H	of	the	Ada	Reference	Manual	(High	Integrity	Systems)	describes	several	pragma,	

restrictions,	and	other	language	features	to	be	used	when	writing	systems	for	high-reliability	
applications.	For	example,	the	pragma Detect_Blocking	forces	an	implementation	to	detect	a	
potentially	blocking	operation	within	a	protected	operation,	and	to	raise	an	exception	in	that	
case.	

• The	fact	that	Unchecked_Conversion	is	a	generic	function	that	must	be	instantiated	explicitly	
(and	given	a	meaningful	name)	hinders	its	undisciplined	use,	and	places	a	loud	marker	in	the	
code	wherever	it	is	used.	Well-written	Ada	code	will	have	a	small	set	of	instantiations	of	
Unchecked_Conversion.		

• Most	implementations	require	the	source	and	target	types	to	have	the	same	size	in	bits,	to	
prevent	accidental	truncation	or	sign	extension.		

• Unchecked_Union	should	only	be	used	in	multi-language	programs	that	need	to	communicate	
data	between	Ada	and	C	or	C++.	Otherwise	the	use	of	discriminated	types	prevents	"punning"	
between	values	of	two	distinct	types	that	happen	to	share	storage.	

• Using	address	clauses	to	obtain	overlays	should	be	avoided.	If	the	types	of	the	objects	are	the	
same,	then	a	renaming	declaration	is	preferable.	Otherwise,	the	pragma Import	should	be	used	
to	inhibit	the	initialization	of	one	of	the	entities	so	that	it	does	not	interfere	with	the	
initialization	of	the	other	one.	

• Use	storage	pools	where	possible.	
• Use	controlled	types	and	reference	counting	to	implement	explicit	storage	management	

systems	that	cannot	have	storage	leaks.		
• Use	a	completely	static	model	where	all	storage	is	allocated	from	global	memory	and	explicitly	

managed	under	program	control.	
• Use	the	overriding	indicators	on	potentially	inherited	subprograms	to	ensure	that	the	intended	

contract	is	obeyed,	thus	preventing	the	accidental	redefinition	or	failure	to	redefine	an	
operation	of	the	parent.		

• Exploit	the	type	and	subtype	system	of	Ada	to	express	preconditions	(and	postconditions)	on	
the	values	of	parameters.	

• Document	all	other	preconditions	and	ensure	by	guidelines	that	either	callers	or	callees	are	
responsible	for	checking	the	preconditions	(and	postconditions).	Wrapper	subprograms	for	that	
purpose	are	particularly	advisable.	

• Library	providers	should	specify	the	response	to	invalid	values.	
• Use	the	inter-language	methods	and	syntax	specified	by	the	Ada	Reference	Manual	when	the	

routines	to	be	called	are	written	in	languages	that	the	ARM	specifies	an	interface	with.	
• Use	interfaces	to	the	C	programming	language	where	the	other	language	system(s)	are	not	

covered	by	the	ARM,	but	the	other	language	systems	have	interfacing	to	C.	

• Make	explicit	checks	on	all	return	values	from	foreign	system	code	artifacts,	for	example	by	
using	the	'Valid	attribute	or	by	performing	explicit	tests	to	ensure	that	values	returned	by	inter-
language	calls	conform	to	the	expected	representation	and	semantics	of	the	Ada	application.	

• Ensure	that	the	interfaces	with	libraries	written	in	other	languages	are	compatible	in	the	naming	
and	generation	of	exceptions.	

• Put	appropriate	exception	handlers	in	all	routines	that	call	library	routines,	including	the	catch-
all	exception	handler	when others =>.	

• Document	any	exceptions	that	may	be	raised	by	any	Ada	units	being	used	as	library	routines.	
• Do	not	suppress	language	defined	checks.	
• If	language-defined	checks	must	be	suppressed,	use	static	analysis	to	prove	that	the	code	is	

correct	for	all	combinations	of	inputs.	
• If	language-defined	checks	must	be	suppressed,	use	explicit	checks	at	appropriate	places	in	the	

code	to	ensure	that	errors	are	detected	before	any	processing	that	relies	on	the	correct	values.	
• The	pragma Restrictions	can	be	used	to	prevent	the	use	of	certain	features	of	the	language.	

Thus,	if	a	program	should	not	use	feature	X,	then	writing	pragma Restrictions (No_X); ensures	
that	any	attempt	to	use	feature	X	prevents	the	program	from	compiling.	
Similarly,	features	in	a	Specialized	Needs	Annex	should	not	be	used	unless	the	application	area	
concerned	is	well-understood	by	the	programmer.	

• For	situations	where	order	of	evaluation	or	number	of	evaluations	is	unspecified,	using	only	
operations	with	no	side-effects,	or	idempotent	behaviour,	will	avoid	the	vulnerability;	

• For	situations	involving	generic	formal	subprograms,	care	should	be	taken	that	the	actual	
subprogram	satisfies	all	of	the	stated	expectations;	

• For	situations	involving	unspecified	values,	care	should	be	taken	not	to	depend	on	equality	
between	potentially	distinct	values;	

• For	situations	involving	bounded	errors,	care	should	be	taken	to	avoid	the	situation	completely,	
by	ensuring	in	other	ways	that	all	requirements	for	correct	operation	are	satisfied	before	
invoking	an	operation	that	might	result	in	a	bounded	error.	See	the	Ada	Annex	section	on	
Initialization	of	Variables	[LAV]	for	a	discussion	of	uninitialized	variables	in	Ada,	a	common	cause	
of	a	bounded	error.	

• All	data	shared	between	tasks	should	be	within	a	protected	object	or	marked	Atomic,	whenever	
practical;	

• Any	use	of	Unchecked_Deallocation	should	be	carefully	checked	to	be	sure	that	there	are	no	
remaining	references	to	the	object;	

• pragma Suppress	should	be	used	sparingly,	and	only	after	the	code	has	undergone	extensive	
verification.		

• The	other	errors	that	can	lead	to	erroneous	execution	are	less	common,	but	clearly	in	any	given	
Ada	application,	care	must	be	taken	when	using	features	such	as:	
• abort;		
• Unchecked_Conversion;		
• Address_To_Access_Conversions;		
• The	results	of	imported	subprograms;		
• Discriminant-changing	assignments	to	global	variables.	

• Many	implementation-defined	limits	have	associated	constants	declared	in	language-defined	
packages,	generally	package System.	In	particular,	the	maximum	range	of	integers	is	given	by	
System.Min_Int .. System.Max_Int,	and	other	limits	are	indicated	by	constants	such	as	
System.Max_Binary_Modulus,	System.Memory_Size,	System.Max_Mantissa,	and	similar.	Other	

implementation-defined	limits	are	implicit	in	normal	‘First	and	‘Last	attributes	of	language-
defined	(sub)	types,	such	as	System.Priority’First	and	System.Priority’Last.	Furthermore,	the	
implementation-defined	representation	aspects	of	types	and	subtypes	can	be	queried	by	
language-defined	attributes.	Thus,	code	can	be	parameterized	to	adjust	to	implementation-
defined	properties	without	modifying	the	code.	
• Programmers	should	be	aware	of	the	contents	of	Annex	M	of	the	Ada	Standard	and	avoid	

implementation-defined	behaviour	whenever	possible.		
• Programmers	should	make	use	of	the	constants	and	subtype	attributes	provided	in	package	

System	and	elsewhere	to	avoid	exceeding	implementation-defined	limits.		
• Programmers	should	minimize	use	of	any	predefined	numeric	types,	as	the	ranges	and	

precisions	of	these	are	all	implementation	defined.	Instead,	they	should	declare	their	own	
numeric	types	to	match	their	particular	application	needs.	

When	there	are	implementation-defined	formats	for	strings,	such	as	Exception_ Information,	
any	necessary	processing	should	be	localized	in	packages	with	implementation-specific	variants.	

• Use	pragma Restrictions (No_Obsolescent_Features)	to	prevent	the	use	of	any	obsolescent	
features.	

• Refer	to	Annex	J	of	the	Ada	reference	manual	to	determine	if	a	feature	is	obsolescent.	
	

	
	

