
Time%Vulnerabilities(updated)% ISO/IEC/JTC1/SC22/WG23%%N0657% 16%May%2016%

%

Deleted:'46
Deleted:'April%

7.XX$Clock$Issues$

7.XX.1$Description$of$application$vulnerability$

All processors and operating systems maintain multiple representations of time internal to the system. In a
typical system there are the following notions of time, and potentially identifiable clocks:%%

•! CPU time
•! Process/task/thread execution time
•! Calendar clock time, local and/or GMT
•! Elapsed time - i.e. time since system inception in seconds, or in fixed portions thereof
•! Network time%

These times have different representations, different scaling, and different semantics. For example, a
time-of-day clock must account for leap years, leap seconds and standard/daylight saving times. A CPU
or processor clock is a monotonic clock that must maintain time used by a task, thread, or process in a
granularity appropriate to CPU speed - possibly sub-nanosecond. A real time clock is a monotonic clock
that manages and represents time to a granularity and representation needed to correctly manage the
algorithms of the system. Both are usually associated with inputs from external devices or systems and
outputs to initiate events in connected systems.

Some of these clocks are manifested in programming languages. For example, most languages have time
of day clock lookup, while real time languages often include monotonic clocks for various purposes.
Alternatively, some languages provide library services to access and manipulate time bases, and to
schedule activity based upon one of the time bases.

Time Conversion

When multiple time bases are supported, there are mechanisms to convert from one time format to
another to support calculations done. Conversion errors, rounding errors or cumulative errors can
develop:

•! If the conversion is not done from the most precise time formats to less precise time formats, %
•! If conversions are done from one format to another and then back for comparison, or %
•! If iterative calculations are done using less than the most precise time base possible.%

This can lead to missed deadlines or wrong calculations that depended on accurate time representation
and can result in catastrophic loss of the application or the parent system. A classic example of this is the
common (wrong) paradigm to use the calendar clock to derive values to be programmed into the
monotonic clock.

Synchronicity

When code is written for an application, the developer usually assumes that there is a common time base
for all portions of the application that are in communication with each other. When the system is spread
over multiple processors, it the time base used by each processor will either drift from each other, or the
time delay in communicating between these partitions will cause apparent drift. %

Deleted:'6

Deleted:'6

Deleted:' /
Deleted:'/

Deleted:'.

Deleted:'o

Deleted:',

Formatted:!Font:Bold

Formatted:!Font:(Default)!Times!New!Roman,!12!pt

Time%Vulnerabilities(updated)% ISO/IEC/JTC1/SC22/WG23%%N0657% 16%May%2016%

%

Deleted:'46
Deleted:'April%

Time Roll-over

Because each clock has a fixed internal representation of time which is updated periodically by some
amount, eventually, if the system is long-enough lived, the time representation will completely fill the
storage and will roll-over and return to zero, or the initial time.%This%can%also%happen%if%the%time%base%is%

external,%such%as%the%global%positioning%satellite%time%base.%Code that relies upon the time-base constantly
increasing will fail if/when a rollover occurs, leading to failure of the computational system and possible
catastrophic loss of the parent system, unless the application is programmed to account for this rollover.%

Most systems create a real-time time base such that the system will never roll over within the expected
operational time of the system. Modifications to the system, however, such as speeding up the clock that
feeds the time base or dramatically increasing the expected operational lifetime of the system can make
such errors happen, with potential catastrophic loss of the system and any systems that depend upon it.

%

7.XX.3$Mechanism$of$failure$$
$

The%time%of%day%clock%is%adjusted%internally%to%jump%or%to%be%set%backwards%when%going%to%or%leaving%

summer%time,%inserting%leap%seconds,%switching%time%zones%or%correcting%time%to%synchronize%the%clock%

with%a%time%base%or%another%clock.%Using%the%wrong%clock,%especially%the%timeVofVday%clock,%to%schedule%

events%can%result%in%jitter%in%the%system,%events%being%scheduled%early,%or%the%event%being%late.%The%misV

scheduling%of%events%can%have%real%world%applications%up%to%and%including%catastrophic%loss%of%the%parent%

system.%

Converting%from%one%timeVbase%to%another%timeVbase%can%result%in%loss%of%precision,%rounding%errors,%and%

conversion%errors%which%can%lead%to%complete%jitter%in%the%application%behavior%or%complete%failure%of%the%

application%%

RollVover%of%a%clock%can%cause%failure%of%applications%that%are%expecting%uniformly%increasing%time,%which%

can%lead%to%transient%failure%of%the%application%and%possibly%the%parent%system.%

7.XX.4$Avoiding$the$vulnerability$or$mitigating$its$effect$

Software developers can avoid the vulnerability or mitigate its effects in the following ways:%

•! Always convert time from the most precise and stable time base to less precise time bases.
•! Avoid conversions from calendar clocks or network clocks to real time clocks.%
•! Avoid using the time of day clock to schedule events, unless the event is demonstrably connect

with real world time of day, such as setting an alarm for 7 am. %
•! Avoid resetting or reprogramming the real-time clock or execution timers, unless the complete

application is being reset. Allow%some%variability%or%error%margin%in%the%reading%of%time%and%the%

scheduling%of%time%based%on%the%read.
•! Use%only%clocks%that%have%known%synchronization%properties.

Formatted:!Font:(Default)!Times!New!Roman

Formatted:!Font:11!pt

Deleted:'6

Deleted:'ToD%

Deleted:'6.XX.4$Applicable$language$characteristics ...![1]
Deleted:'5

Formatted:!Indent:!Left:!!0.63!cm,!Hanging:!!0.63!cm,!Space
After:!!0!pt

Time%Vulnerabilities(updated)% ISO/IEC/JTC1/SC22/WG23%%N0657% 16%May%2016%

%

Deleted:'46
Deleted:'April%

•! Protect any code that uses real-time time bases with any potential of roll-over from going from a
large value to a zero or a negative value. This is done by assuming that a rollover can occur and if
it is expected that always T1<T2, but is found that T1 is nearing Time_Base'Last, then
T2<<T1 will be accepted.

%

7.YY%Time%Consumption%Measurement%%

$
7.YY.1$Description$of$application$vulnerability$

All%applications%consume%resources%as%they%execute,%in%particular%Time.%Each%thread,%event,%interrupt%and%

OS%service%consume%CPU%time%that%may%be%separately%measurable%by%the%system.%

A%common%paradigm%in%managing%applications%is%to%monitor%such%resource%usage%by%thread%and%take%

action%to%cease%the%calculation%for%that%thread,%such%as%abort,%raise%exception,%lower%priority%or%

suspending%the%thread.%If%the%calculation%cannot%be%completed%in%time%or%within%the%resource%constraints%

imposed%upon%it,%then%the%application%may%fail.%

The%consumption%of%CPU%resources%(execution%time)%can%be%affected%by%changes%in%the%CPU%itself:%for%

example,%CPU’s%may%slow%down%to%manage%heat,%resulting%in%more%execution%time%to%achieve%a%result.%

Similarly,%cache%misses%due%to%the%way%a%program%is%organized%and%executed,%due%to%multiprocessor%

effects,%can%increase%the%execution%time%needed%to%complete%a%calculation.%%

7.YY.2$Cross$references$

TBD%

7.YY.3$Mechanism$of$failure$$

Many%applications%measure%resource%consumption%to%detect%failures%of%portions%of%portions%of%the%

algorithm%and%to%make%decisions%about%alternative%actions.%For%example,%excessive%consumption%of%CPU%

may%indicate%that%a%thread%is%executing%erroneously;%or%that%other%needed%threads%may%not%be%able%to%

execute%due%to%excessive%resource%consumption.%%

Other%factors,%such%a%CPU%speed%changes%and%cache%misses%can%cause%a%thread%to%consume%significantly%

more%CPU%resources%than%expected%to%perform%the%same%calculations.%%

A%thread%consuming%more%CPU%resources%than%planned%can%result%in%missed%deadlines%for%itself,%or%can%

take%CPU%resources%needed%by%other%threads,%causing%incorrect%processing%or%missed%deadlines%for%other%

threads.%Missed%deadlines%are%catastrophic%for%hard%realVtime%systems,%and%cover%the%range%of%causing%

wrong%results%through%to%complete%failure%of%the%application.%

Deleted:'r

Deleted:'6.XX.6$Implications$for$standardization$
76
6

Formatted:!Normal
Deleted:'6
Deleted:'Resource

Deleted:'
Formatted:!English!(US)

Deleted:'<<<$wrong$title:$should$be$“Time$Consumption$
Measurement”$(since$space/memory$consumption$isnoteven$
mentioned,butisamajor$issue$as$well.)>>>

Deleted:'6

Deleted:'

Deleted:'6

Formatted:!Normal

Deleted:'6

Deleted:'executing%

Time%Vulnerabilities(updated)% ISO/IEC/JTC1/SC22/WG23%%N0657% 16%May%2016%

%

Deleted:'46
Deleted:'April%

7.YY.5$Avoiding$the$vulnerability$or$mitigating$its$effect$

Software developers can avoid the vulnerability or mitigate its effects in the following ways:
•! THINK%ABOUT%THIS.%Scenarios%exist%where%success%at%the%slow%speed%/=>%success%at%normal%

speed.%

•! Where%cache%misses%provide%a%significant%potential%hindrance,%execute%the%application%with%

cache%disabled%

%

%

%

7.ZZ$Missed$EventsorDeadlines$(Clock$Issues)$
AlternativeVTime$Drift$and$Jitter$
$
7.ZZ.1$Description$of$application$vulnerability$

Many real time systems are characterized by collections of jobs waiting for a start-time for a time-based
iteration, or an event for sporadic activities. A common mistake in programming such systems is to base
the start time of the next iteration upon either a non-monotonic or a non-real time clock, or to base it upon
an offset from the start time or completion time of the last iteration. In the first case, conversion errors
and possible drift of the real time clock can cause the next iteration to be wrongly programmed. In the
second case, higher priority work may have delayed the actual start or completion of the task in an
individual iteration, resulting again in time drift.

With enough drift, an iterative task will begin missing its deadlines, and will either produce the wrong
results, or will fail completely, resulting in arbitrary failures up to catastrophic loss of the enclosing
system.

Many systems have moved to a virtualization approach to fielding systems. Sometimes the virtual system
is only an OS change, such as running Windows and Linux on the same hardware. Sometimes the virtual
system is hardware and software. Sometimes hardware is dedicated, such as 2 cores from an 8 core
system, while in others the virtual system under consideration only executes when needed. The discussion
of virtualization includes the common notions, such as hypervisors, but also include systems as diverse as
satisfying ARINC 653[ARINC 653], which uses a time-based partition approach to schedule mixed
criticality systems on a single CPU.

In any case, when a system is virtual, its connection with the real world (i.e. hardware and virtualizer)
clocks is indirect. Clocks for the virtualized system are updated when the system resumes, and time may
“jump” or may advance much faster than normal until the clocks are synchronized with the real world.
This can result in processes being mis-synchronized or missing deadlines if time jumps or progresses too
quickly for the task to get its work completed.

If an attacker is aware that an application is virtualized, or that it is depending upon a non-realtime clock,
and can determine what other applications share the same resource, they may be able to generate load for

Deleted:'6.YY.4$Applicable$language$characteristics ...![2]
Deleted:'6

Deleted:'Verify%or%test%the%application%on%systems%that%are%

executing%in%%the%slowest%system%configuration

Deleted:'6

Deleted:'e

Deleted:'6

Deleted:' VMWare™,

Deleted:'H
Deleted:'r™

Comment'[SGM1]:'Problems%with%hypervisors%–%processVhosted%

hypervisor%can%have%choppy%behavior.%Needs%rework.%

Deleted:'virtualized

Time%Vulnerabilities(updated)% ISO/IEC/JTC1/SC22/WG23%%N0657% 16%May%2016%

%

Deleted:'46
Deleted:'April%

the other virtualized applications so that the one in question can not retain enough resources to function
correctly.

7.ZZ.2$Cross$references$
7.ZZ.3$Mechanism$of$failure$$

Any%change%in%the%progression%of%time%can%result%in%a%disconnect%between%the%spacing%of%the%delivery%of%

time%events%to%the%application,%and%can%make%jobs%within%the%application%run%past%their%deadlines%(as%

viewed%by%the%timing%events).%

Deadline%overrun%is%a%serious%flaw%in%the%application,%and%usually%results%in%failure%of%portions%of%the%

application%up%to%catastrophic%failure%of%the%application,%and%may%result%in%loss%of%the%parent%system.%

When%a%system%is%virtualized,%an%attacker%can%use%influence%over%other%applications%to%consume%

resources%needed%by%the%critical%system%that%could%trigger%such%systems.%%

Programming%mistakes,%such%as%failure%to%use%monotonic%clocks%to%schedule%iterations,%or%incorrectly%

programming%the%next%iteration%calculations%(such%as%setting%the%next%wake%time%based%on%the%the%start%

of%the%current%wake%time%vs%a%fixed%offset%from%the%previous%scheduled%start%time)%result%in%drift%or%jitter%

which%may%result%in%missed%real%world%inputs%or%loss%of%synchronization%with%external%systems.%

7.ZZ.5$Avoiding$the$vulnerability$or$mitigating$its$effect$

Software developers can avoid the vulnerability or mitigate its effects in the following ways:

•! Always set the next (absolute) start time for the iteration from the the start time of the previous
programmed iteration.

•! Only use the real-time clock in scheduling tasks or events.
•! Create management jobs that can monitor and detect
•! Ensure that the behaviour of a virtualized application cannot be compromised by changes to the

environment of the virtualized system.
%

Deleted:'6

Deleted:'6

Deleted:'6.ZZ.4$Applicable$language$characteristics ...![3]

Page%2:%[1]%Deleted% Stephen%Michell% 2016805816%4:36%PM%

6.XX.4%Applicable%language%characteristics%

The$vulnerability$is$intended$tobeapplicabletolanguages$with$the$following$characteristics:$

Languages$that$supportamodeloftime.$

6%

%

Page%4:%[2]%Deleted% Stephen%Michell% 2016805816%4:37%PM%

6.YY.4%Applicable%language%characteristics%

$

%

Page%5:%[3]%Deleted% Stephen%Michell% 2016805816%4:59%PM%

6.ZZ.4%Applicable%language%characteristics%
6%

%

$

