
4/27/2012 WG 23 N0397

Balloted document: PDTR 24772
Vote: Approve, Disapprove, Abstain

NB No. Category Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text

JWM 1 TL 6.30.3 EOJ This sentence doesn't parse: "Testing of the software may
not reveal that statements thought to be included in an if-
then, if-then-else, or loops that are not in reality a part of
the if statement."

Testing of the software may not reveal that statements that appear
to be included in a construct actually lay outside of it, or vice
versa, because of an incorrect placement of a terminator.

JWM 2 E D.30.1 EOJ-C Wording of this sentence can be improved: "C is a block-
structured language, while languages such as Ada and
Pascal are comb-structured languages."

C is a block-structured language (as contrasted to comb-structured
languages like Ada and Pascal).

JWM 3 TL F.30 EOJ-Ruby The claim is made that "This vulnerability is not
applicable to Ruby since control constructs require an
explicit termination symbol."

Isn't this situation, the same as C? Hence, shouldn't the description
be similar? Alternatively, maybe it's similar to Ada and deserves a
similar description (C.30).

JWM 4 TH 6.7 and
annexes

FLC This is a general comment on FLC. The general
description and the annexes all neglect the problem of a
numeric value falling outside the range that is
semantically treated by the program. Strongly typed
languages have mechanisms that can be used to raise
exceptions but weakly typed languages require explicit
checking.

I'm not sure if FLC should be extended to deal with this situation
or if a new vulnerability should be written. The argument for
extending FLC is that, for many languages, the remedy of both
FLC and the extended problem are the same--write explicit range
checks.

JWM 5 TL C.7 FLC-Ada The sheer length of the explanation leads the casual
reader to believe that Ada has a big problem here.

Insert a new first paragraph: "Ada has mechanisms to mitigate
most forms of numeric conversion errors as explained by the
following text."

JWM 6 TL D.37 GDL-C Too many words. They add little, if anything, to the
general guidance.

Replace D.37.1 with: "C permits recursion, hence is subject to the
problems described in 6.37." Replace D.37.2 with: "Apply the
guidance in 6.37.5."

JWM 7 TL E.37.2 GDL-Python Neglects the general guidance. Replace the first bullet with: "Apply the guidance in 6.37.5."

JWM 8 TL F.37 GDL-Ruby Says nothing that is not in the general guidance. Replace F.37.1 with: "Ruby permits recursion, hence is subject to
the problems described in 6.37." Replace D.37.2 with: "Apply the
guidance in 6.37.5."

1

4/27/2012 WG 23 N0397

NB No. Category Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text

JWM 9 TH 6.24.5 LAV The description neglects to describe the ill effects of
junk initialization.

Add to second bullet: "However, the initial value must be a
sensible value for the logic of the program. So-called "junk
initialization", for example, setting every variable to zero, simply
defeats the use of static analysis without providing any benefit."

JWM 10 E 6.36.3 OTR 4th line: "Commensurable" does not mean "consistent". Change "commensurable" to "consistent".
JWM 11 E D.36.1 OTR-C At top of page 215, there is an appropriate line feed after

the second line of text.
Remove line feed.

JWM 12 E D.36.2 OTR-C The second sentence of the first bullet is unneeded and
serves only to teach the language syntax.

Remove it.

JWM 13 TL E.36.2 OTR-Python Incomplete guidance Add this bullet (paraphrased from the language-independent
description): "Intensively review subprogram calls to/from non-
Python modules."

JWM 14 TH F.36.1 OTR-Ruby This description neglects the case of inter-language calls. Add a paragraph (paraphrased from the Python annex) to F.36.1:
"Signature mismatches in calls to/from non-Ruby modules could
cause a call stack problem." Replace the two bullets of F.36.2 with
the following :" - Intensively review subprogram calls to/from non-
Ruby modules. // - Analyze any error messages from the Ruby
interpreter indicating an incorrect number of parameters."

JWM 15 E 6.52 SKL Third paragraph, first line. Change "functionally" to "functionality".
JWM 16 TH D.52 SKL-C For inherently unsafe operations, the claim is made,

"Does not apply to C". This is incorrect. In some sense,
all of C is unsafe.

Change to: "C is intended as a language for implementing systems
programs where unsafe operations are inherent and common."

JWM 17 TL 6.31 TEX Consider the loop control statement, "For I = J to K"
This description treats J and K as loop control variables,
but not I. (For example, 6.31.3 says, "a common
assumption is that a loop control variable is a constant".
That obviously does not apply to I.) Is that intended?

Consider generalizing the vulnerability to deal with the case where
code inside the loop makes changes (or attempts to change) I.

JWM 18 TL D.31 TEX-C The only case treated here is when I is changed inside
the loop. That does not agree with the general
description, which doesn't treat I as a loop control
variable.

Make TEX and TEX-C consistent.

2

4/27/2012 WG 23 N0397

NB No. Category Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text

JWM 19 TL F.31.1 TEX-Ruby "This is usually not performed, as the exact results are
not clear." The passive construction causes confusion of
whether the actions of the processor or the human are
described.

Change to "This practice should be avoided as the exact results are
not always clear."

JWM 20 TL 6.45.5 TRJ Do bullet one and bullet two say the same thing? Delete bullet one.
JWM 21 TL 6.45.6 TRJ As worded, bullet one seems to be unrelated to the

problem.
Rewrite bullet one as follows: "Languages that define a support
library should ensure that unvalidated parameters cannot lead to
undefined behaviour."

JWM 22 TL C.45.2 TRJ-Ada The third bullet is puzzling. Does "specify" mean
"document" or "code"?

Delete bullet three.

JWM 23 TH E.45 TRJ-Python The python annex equates TRJ (checking parameter
values) with OTR (checking parameter types). This is an
incorrect equation and the guidance given is appropriate.

Change E.45 to be similar to C.45 (the C annex).

JWM 24 TL F.45 TRJ-Ruby One bullet of the guidance states "Use only libraries
known to have consistent and and validated interface
requirements." Of what relevance are the
"requirements"?

Change to "Use only libraries known to validate parameters."

JWM 25 TL C.41.1 XYL-Ada This final sentence mentions the issues of garbage
collection. However, those issues are not described in the
general description.

Make XYL and XYL-Ada consistent.

JWM 26 TL D.42 XYM-C D.42 reads: "Does not apply to C." This is correct but
leaves the reader wondering why.

Replace with text adapted from E.42. "This vulnerability is not
applicable to C because C does not implement these mechanisms."
Make a similar change to D.43 and D.44.

JWM 27 E 6.28.1 XYQ 1st line says, in part: "(the distinction is addressed in
[XYQ])". But this *is* [XYQ].

Delete the phrase.

JWM 28 E 6.28.1 XYQ Final sentence contains multiple errors. Replace final sentence with "Dead and Deactivated Code is
considered separately from Unused Variable, which is covered in
[YZS]."

JWM 29 E 6.28.3 XYQ The paragraph beginning "The presence of dead code"
seems to contain cut-and-paste errors.

Rewrite as intended.

JWM 30 TL 6.28.5 XYQ The second and fourth bullets make no sense to me. Remove them.

3

4/27/2012 WG 23 N0397

NB No. Category Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text

JWM 31 TL 6.28.5 XYQ Bullets are overlapping, redundant, and lack parallelism Replace with: "- The developer should identify any dead code in
the module and analyze its purpose. Code lacking purpose should
be removed. - The developer should apply branch coverage tools
and ensure that all branches are neither dead nor deactivated."

JWM 32 TL D.28 XYQ-C The description doesn't add much to the LI description. Rewrite (similarly to the Ada description) as follows: D.28.1 "C
allows the usual sources of dead code (described in 6.28) that are
common to most conventional progamming languages. // [Keep
the paragraph beginning 'C Uses some operators'.]" D.28.2 "-
Apply the guidance provided in 6.28.5. - Use the "//" comment
syntax instead of the "/*...*/" comment syntax to avoid inadvertent
syntactic inclusion of code segments within comments."

JWM 33 TL E.28 XYQ-Python The description doesn't add much to the LI description. Replace first paragraph of E.28.1 with the following: "Python
allows the usual sources of dead code (described in 6.28) that are
common to most conventional progamming languages." Insert a
new first bullet in E.28.2 "Apply the guidance provided in 6.28.5."

JWM 34 TL F.28 XYQ-Ruby The description doesn't add much to the LI description. Replace first paragraph of F.28.1 with the following: "Python
allows the usual sources of dead code (described in 6.28) that are
common to most conventional progamming languages." Replace
the bullet in F.28.2 with "Apply the guidance provided in 6.28.5."

JWM 35 E Contents The editor did a great job of generating PDF bookmarks.
It really helps a lot in navigating the document.

The editor should consider adding a bookmark for the Table of
Contents.

CA-1 36 GE While we appreciate the work that SC 22/WG 23 has
gone to to develop language-specific Annexes for the
document, we believe that the document is incomplete
without annexes for the major languages, such as C++,
COBOL, Fortran, Java and PHP

Add Annexes for the suggested languages. Retard the publication
schedule of the TR, or publish a 3rd edition as soon as these
annexes become available.

CA-2 37 GE Annex numbering

4

4/27/2012 WG 23 N0397

NB No. Category Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text

CA-3 38 TL 6.39.3 This section relating to termination should address only
sequential termination. Termination of multiple threads
or of concurrent programs is addressed in section 8.6
[CGY] and 8.4 [CGT]

Add to section 6.39.1 (at the end): For termination issues
associated with multiple threads, multiple processors or interrupts
see 8.4 Concurrency - Directed Termination [CGT] and 8.6
Concurrency - Premature Termination [CGT]. Situations that
cause an application to terminate unexpectedly or that cause an
application to not terminate because of other vulnerabilities are
covered in those vulnerabilities.

CA-4 39 TL G.3 Paragraph 2 Do not compare Spark to Ada.
It is acceptable to be informative , but not to be critical of another
language. Change the sentence “SPARK’s type system is a
simplification of that of Ada” to Spark's type system derives from
Ada's type system but is simplified to remove dynamic properties
and undefined and implementation dependent properties.

CA-5 40 TL G.12 This section refers to Ada's sliding and subrange
capabilities as vulnerabilities. These are not identified in
C.11.

Either add a discussion of vulnerabilities associated with “slicing
and sliding” in C.11 or remove the discussion from G.11.

CA-6 41 TL G.27 Be explicit when referencing Ada or comparing to Ada Indicate which “likely incorrect” expressions are not possible, eg.
conditional entry calls and timed entry calls.

CA-7 42 TL G.34 The writeup says that Spark “mitigates” but is not clear
why it does not “prevent”.

Document what steps a user must take in addition to ensure that
the mitigation is successful.

CA-8 43 E G.36 Last Reference to “Annex Ada” is wrong. Replace with “C.36”
CA-9 44 TL C.39, D.39 The writeup for this section must change if the CA

comment for 6.39 is adopted.
CA-10 45 TL D.39 The writeup for this section must change if the CA

comment for 6.39 is adopted.
CA-11 46 TL E.39 The writeup for this section must change if the CA

comment for 6.39 is adopted.
CA-12 47 TL F.39 The writeup for this section must change if the CA

comment for 6.39 is adopted.
CA-13 48 TL G.39 The writeup for this section must change if the CA

comment for 6.39 is adopted.

5

4/27/2012 WG 23 N0397

NB No. Category Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text

CA-14 49 TL G.43 The writeup says that Spark “mitigates” but is not clear
why it does not “prevent”.

Document what steps a user must take in addition to ensure that
the mitigation is successful (such as is done for G.56).

CA-15 50 TL G.45 Last Remove comparative references to Ada. Document the “expressive power” and show what it provides.

CA-16 51 TL G.45 The writeup says that Spark “mitigates” but is not clear
why it does not “prevent”. In this case, it is likely that a
correct formal statement of the preconditions and
postconditions will permit formal verification of the
subprogram body, but to weak conditions will show a
“correct” proof that is meaningless (I.e TRUE => TRUE)

Document what steps a user must take in addition to ensure that
the mitigation is successful (such as is done for G.56).

CA-17 52 TL G.53 The writeup says that Spark “mitigates” but is not clear
why it does not “prevent”.

Document what steps a user must take in addition to ensure that
the mitigation is successful (such as is done for G.56).

CA-18 53 TL G.1 The section does not address partial proof of correctness
vs total proof of correctness.

Add a paragraph to explain that the Spark tools generate partial
proof of correctness, and it is also incumbent upon the verification
team to show that constructs complete or terminate to make the
partial proof of correctness complete.

CA-19 54 TL G.1-G.58 The Annex uses a different layout than all other language
specific annexes. In particular, there is no G.x.2
Guidance to Language User sections anywhere in the
section. In places where the language “prevents” the
vulnerability or where the vulnerability and mitigations
are the same as Ada, the section sub-subsection is not
needed, but in the other places, it is needed.

Explicitly identify and label in G.x.2 the steps that users need to
take to achieve the mitigations claimed.

6

4/27/2012 WG 23 N0397

NB No. Category Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text

CA-20 55 TL D.3.2 The section has ignored the use of static analysis tools,
some of which are quite good, to help users identify
problematic breakages of the type system in code. This
is true for many other sections, such as D.15.2(6.15.).

Since the main section already has specific recommendations on
tool usage, it is sufficient to say, as a lead in to D.3.2, “in addition
to the mitigations identified in section 6.3.2, ...”. Add the general
recommendation in other sections as appropriate. In fact, we
would like to see the general statement made almost everywhere,
and explicit statements made where the general recommendations
do not apply. If the general statement is not accepted, then put
explicit recommendations to use analysis tools wherever they
make sense.

CA-21 56 TL D.6.2 Final Bullet Add a recommendation to never iterate over enums with
gaps or that repeat.

CA-22 57 TL 6.18 None of the languages that currently have an annex
admit to having a sign extension error problem. This
means that either the vulnerability does not exist as
written, or thee Annex authors do not understand the
problem.

Remove the vulnerability [XZI] or modify it to be meaningful.

CA-23 58 TL D.23 (Namespace issues) – statement that this does not apply
to C should be explained, perhaps with an additional
sentence.

The fact that C has a separate space for macro names should be
explained somewhere, or explained why it is not a “namespace
issue”.

CA-24 59 TL D.25 We are troubled that this section provides so little
guidance to users. The number of operator precedences
is well defined, but there are so many, and they not
match the normal mathematics that humans learn in
school, so humans had difficulty remembering the order,
and correctly applying the logic.

Be more up front with the acknowledgement of the problem.
Make recommendations such as the following: Only use 2 or 3
operators together in a single statement, i.e. break up complex
expressions to simplify the logic, and Add to the existing bullet in
D.25.2 to include mixed arithmetic/logical operators, mixed
arithmentic/shift operators.

CA-25 60 TL D.27.2 (likely incorrect). The adoption of a coding style that
forbids the use of the assignment operator except as the
singular ultimate result of the expression would permit
analysis to identify all mistaken uses of “=” for “==”.

Add a bullet that says: - consider the adoption of a coditng
standard that forbids the use of the assignment statement within an
expression, except as the ultimate result of that expression.

7

4/27/2012 WG 23 N0397

NB No. Category Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text

CA-26 61 E D.45.2 The ".2" is missing in D.45.2

CA-27 62 TL D.45.2 The discussion of efficiency in this bullet is misguided
and should be removed. This document is only
concerned about avoiding vulnerabilities, and in this
case, to avoid vulnerabilities due to input into a library
routine one must check for variable ranges, variable
format (if a struct) and number of variables, or must be
able to show that all cases are handled.

CA-28 63 TL E.3.1 We dispute the statement that Python is strongly typed.
By the common definitions of strong typing, such as
strong guarantees about the runtime behaviour of a
program, fixed and invariable typing of data objects, or
the absence of unchecked run-time type errors, Python
fails these tests and cannot be considered to be strongly
typed.

Remove the statemant.

CA-29 64 E E.8 Be consistent in language stating that the language does
have a vulnerability.

Begin the clause with “This vulnerability is not applicable to
Python since...”

JP-1 65 E 8.5.2 CWE: There are two CWE 821’s. 821. Missing
Synchronization and 821. Incorrect Synchronization.
The original CWE Version 2.1 assigns 820 to Missing
synchronization. Therefore, the first 821 should be
changed to 820.

Correct as follows: 820. Missing Synchronization and 821.
Incorrect Synchronization

JP-2 66 E C.20.1 1st Paragraph The line break in the last sentence of the first paragraph,
between "thread" and "communication" should be
removed.

JP-3 67 E C.33.1 1st Paragraph We cannot understand what the term "parent report"
means.

JP-4 68 E C.38.1 1st Paragraph The section reference "6.OYB" is not consistent with
other similar references. "6.38" is the usual style.

JP-5 69 GE F.1 1st Paragraph The Annex F is currently written based on the old WG
draft of the Ruby specification. The Annex F should be
updated based on the latest specification (FDIS 30170).

8

4/27/2012 WG 23 N0397

NB No. Category Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text

JP-6 70 TL F.54.1 2nd
Paragraph, 1st
example

The first example can be misleading - as if the standard
does not specify the behaviour for a use of break-
expression even in a do-clause. Only the case the
standard does not specify is the behaviour for
/expression/ in a for-expression, which ordinarily
represents a collection object, is terminated by those
jump expressions. (see 11.5.2.3.4 of FDIS 30170). We
recommend that you remove this esample or replace it
with a better example.

JP-7 71 GE Annex F Annex F The technical report has only the standard Ruby
specification as a reference documents while it mentions
the behaviours and the programming entities which are
not specified in the standard Ruby specification. All the
referenced materials besides the standard Ruby
specification should be listed.

DN 72 TL Introductio
n

1st Paragraph Include simulation in motives Add at the end of the paragraph: "Where a program is a
simulation, correct results may not be known. Thus, erroneous
results may be difficult to detect."

DN 73 TL Introductio
n

1st Paragraph Mention concurrency and/or parallelism Add a bullet to the bullet list. - Concurrency and parallel
execution.

DN 74 TL 4.1 1st Paragraph Mention scientific and engineering computation At the end of the first sentence, change '.' to ", or the
consequences of misleading results."

DN 75 TL 4.2 5th bullet Simulation results lead to actions At the end of the sentence, change '.' to ", or the consequences of
misleading results."

DN 76 TL 4.3 bullet list at
mid page

Not all programmes are software engineers Add a bullet at the end of the list. "Scientists, engineers,
economists, statisticians, or others who write computer programs
as tools of their chosen craft can read this document to become
more familiar with the issues that may affect their work."

9

4/27/2012 WG 23 N0397

NB No. Category Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text

DN 77 TL 6.3.3 3rd Paragraph Correctly characterize real -> integer Change "... the inverse conversion risks the loss of any fractional
value ..." to "... the inverse conversion imposes the loss of any
fractional value ..." {at best, the fraction is all zeros} {if the float
is so large that there is no mathematical fraction, the low order
portion of the integer is likely gibberish}

DN 78 TL 6.5.1 1st Paragraph 2nd and 3rd sentences contradict each other Change "The bit representation for a floating point number can
vary from compiler to compiler and on different platforms." to
"The bit representation for a floating point number actually used
in arithmetic operations can vary when different instruction
sequences are used to implement the same operations." {for
example, MMX vector versus x87 stack}

DN 79 TL 6.5.1 1st Paragraph Correctly state the issue Change "... using a binary representation would require ..." to "...
using a binary representation may well require ..." {some floats
can be represented exactly in few bits}

DN 80 TL 6.5.1 2nd Paragraph Correctly state the issue Change "Algorithms that use ..." to "Many algorithms that use ..."
at the end of the paragraph add "Those without training or
experience in numerical analysis may not be aware of which
algorithms, or, for a particular algorithm, of which domain values,
should be the focus of attention."

DN 81 TL 6.5.3 2nd Paragraph Correctly state the issue Change "..., particularly relatively small values, ..." to "...,
whenever the ratio of two addends or the ratio of an addend to the
sum is very large or very small, ..."

DN 82 TL 6.5.3 Page 32 1st
paragraph

Correctly state the issue Change "... due to propagation or conversion errors." to "... due to
rounding or truncation errors, which may propagate far from the
operation of origin. Even comparisons of constants may fail when
a different rounding mode was employed by the compiler and by
the application."

DN 83 TL 6.5.3 Page 32 2nd
paragraph

The sign bit is not part of the mantissa Change "... (including the sign bit) ..." to "... (including a hidden
bit) ..."

10

4/27/2012 WG 23 N0397

NB No. Category Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text

DN 84 TL 6.9.5 Page 40,
paragraph
after the bullet
list

Include more langauges Add two sentences to the end of the paragraph. "Some languages
support arbitrary bounds of arrays, so a priori categoric assertions
of bounds values cannot be made. Some languages support zero-
sized arrays, so any reference to a location within such an array is
invalid."

DN 85 TL 6.15.3 Page 47, 3rd
paragraph 1st
bullet

What consequence causes the problem Change "... circumstances" to "circumstance unexpectedly causes
an object to become undefined"

DN 86 TL 6.21.3 Page 55, 2nd
paragraph

Treat a common case After the paragraph add "If the unused variable is present due to
anticipated development, it may be commented out now to reduce
unnecessary compiler warnings."

DN 87 TL 6.27.1 Page 65, 1st
paragraph

Clarify wrong Change "... not wrong, but is unlikely to be right" to "... not
contrary to the language standard, but is unlikely to be intended."

DN 88 TL 6.28.3 Page 68, 3rd
paragraph

Clarify sentence Replace the first sentence with "The presence of dead code is not
in itself an error but its presence may be an indication that the
programmer believed it to be necessary. This possibility may lead
a code reviewer to question whether it should be present, or
executed, or removed." Remove "also" from the next sentence.
{or I don't understand this}

DN 89 Te 6.29.1 Page 69, 1st
paragraph

Which switch Change "... such as a switch statement," to "... such as a C-
language switch statement," {It might be desirable to repeat the
identification of the switch statement at several more places in
6.29.3 and 6.29.4 (or not)}

DN 90 TL 6.36.3 Page 80, 1st
paragraph

May be language-dependent Change "..., then the push and the pop will not be commensurable
and the stack will be corrupted." to "..., then, depending upon the
calling mechanism used by the language translator, the push and
the pop may not be commensurable and, if so, the stack will be
corrupted."

11

4/27/2012 WG 23 N0397

NB No. Category Clause,
Sub-
clause

Paragraph,
Figure,
Table

Comment and rationale Proposed new text

DN 91 TL 6.37.3 Page 82, 2nd
paragraph

Clarify what is not true Change "... not true in the general case." to "... not true when
considering computer operations generally, especially when
processing error conditions." {further on in the same paragraph-
remove jargon} change '... attempting to "clean up" by closing ...'
to '... attempting to recover resources by closing ...'

12

