

ISO/IEC JTC 1/SC 22/OWGV N 0245 1
Revised draft language-specific annex for C 2
 3

Date 23 March 2010
Contributed by Larry Wagoner
Original file
name

C_language_annex_030810.docx

Notes Replaces N0233

 4
Language Specific Vulnerability Outline 5
 6
C. Skeleton template for use in proposing language specific information for 7
vulnerabilities 8
Every vulnerability description of Clause 6 of the main document should be addressed in the annex in the same 9
order even if there is simply a notation that it is not relevant to the language in question. 10
 11
C.1 Identification of standards 12
ISO/IEC. Programming Languages---C, 2nd ed (ISO/IEC 9899:1999). Geneva, Switzerland: 13
International Organization for Standardization, 1999. 14
 15
C.2 General Terminology 16
 17
None 18
 19
C.3.1 Obscure Language Features [BRS] 20
 21
C.3.1.0 Status and history 22
 23
C.3.1.1 Terminology and features 24
 25
C.3.1.2 Description of vulnerability 26
C is a relatively small language with a limited syntax set lacking many of the complex features of some other 27
languages. Many of the complex features in C are not implemented as part of the language syntax, but rather 28
implemented as library routines. As such, most of the available features in C are used relatively frequently. 29
 30
Common use across a variety of languages may make some features less obscure. Because of the unstructured 31
code that is frequently the result of using goto’s, the goto statement is frequently restricted, or even outright 32
banned, in some C development environments. Even though the goto is encountered infrequently and the use of 33
it considered obscure, because it is fairly obvious as to its purpose and since its use is common to many other 34
languages, the functionality of it is easily understood by even the most junior of programmers. 35
 36
The use of a combination of features adds yet another dimension. Particular combinations of features in C may be 37
used rarely together or fraught with issues if not used correctly in combination. This can cause unexpected results 38
and potential vulnerabilities. 39
 40

C.3.1.3 Avoiding the vulnerability or mitigating its effects 41
 42

• Organizations should specify coding standards that restrict or ban the use of features or combinations of 43
features that have been observed to lead to vulnerabilities in the operational environment for which the 44
software is intended. 45

 46
C.3.1.4 Implications for standardization 47
 48
Future standardization efforts should consider: 49
None 50
 51
C.3.1.5 Bibliography 52
 53
 54
C.3.2 Unspecified Behaviour [BQF] 55
 56
C.3.2.0 Status and history 57
 58
C.3.2.1 Terminology and features 59
 60
Unspecified behaviour occurs where the C standard provides two or more possibilities but does not dictate which 61
one is chosen. Unspecified behaviour also occurs when an unspecified value is used. 62
 63
An unspecified value is a value that is valid for its type and where the C standard does not impose a choice on the 64
value chosen. Many aspects of the C language result in unspecified behaviour. 65
 66
C.3.2.2 Description of vulnerability 67
 68
The C standard has documented, in Annex J.1, 54 instances of unspecified behaviour. Examples of unspecified 69
behaviour are: 70
 71

• The order in which the operands of an assignment operator are evaluated 72
• The order in which any side effects occur among the initialization list expressions in an initializer 73
• The layout of storage for function parameters 74

 75
Reliance on a particular behaviour that is unspecified leads to portability problems because the expected 76
behaviour may be different for any given instance. Many cases of unspecified behaviour have to do with the order 77
of evaluation of subexpressions and side effects. For example, in the function call 78
 79
 f1(f2(x), f3(x)); 80
 81
 the functions f2 and f3 may be called in any order possibly yielding different results depending on the order in 82
which the functions are called. 83
 84
C.3.2.3 Avoiding the vulnerability or mitigating its effects 85
 86

• Do not rely on unspecified behaviour because the behaviour can change at each instance. Thus, any code 87
that makes assumptions about the behaviour of something that is unspecified should be replaced to make 88
it less reliant on a particular installation and more portable. 89

 90
C.3.2.4 Implications for standardization 91
 92

Future standardization efforts should consider: 93
None 94
 95
C.3.2.5 Bibliography 96
 97
 98
C.3.3 Undefined Behaviour [EWF] 99
 100
C.3.3.0 Status and history 101
 102
C.3.3.1 Terminology and features 103
 104
Undefined behaviour is behaviour that results from using erroneous constructs and data. 105
 106
C.3.3.2 Description of vulnerability 107
 108
The C standard does not impose any requirements on undefined behaviour. Typical undefined behaviours include 109
doing nothing, producing unexpected results, and terminating the program. 110
 111
The C standard has documented, in Annex J.2, 191 instances of undefined behaviour known to exist in C. One 112
example of undefined behaviour occurs when the value of the second operand of the / or % operator is zero. This 113
is generally not detectable through static analysis of the code, but could easily be prevented by a check for a zero 114
divisor before the operation is performed. Leaving this behaviour as undefined lessens the burden on the 115
implementation of the division and modulo operators. 116
 117
Other examples of undefined behaviour are: 118
 119

• Referring to an object outside of its lifetime 120
• The conversion to or from an integer type that produces a value outside of the range that can be 121

represented 122
• The use of two identifiers that differ only in non-significant characters 123

 124
Relying on undefined behaviour makes a program unstable and non-portable. While some cases of undefined 125
behaviour may be consistent across multiple implementations, it is still dangerous to rely on them. Relying on 126
undefined behaviour can result in errors that are difficult to locate and only present themselves under special 127
circumstances. For example, accessing memory deallocated by free or realloc results in undefined behaviour, but it 128
may work most of the time. 129
 130
C.3.3.3 Avoiding the vulnerability or mitigating its effects 131

 132
• Eliminate to the extent possible all cases of undefined behaviour from a program 133

 134
C.3.3.4 Implications for standardization 135
 136
Future standardization efforts should consider: 137
Making the declarations of undefined behaviour more definitive. The collection of undefined behaviour in Annex 138
J.2 is well done with cross references to sections in the standard. Most of the entries are well defined, but the few 139
that use words such as “proper” or “inappropriately” should be better defined. 140
 141
C.3.3.5 Bibliography 142
 143
 144

C.3.4 Implementation-defined Behaviour [FAB] 145
 146
C.3.4.0 Status and history 147
 148
C.3.4.1 Terminology and features 149
 150
Implementation-defined behaviour is unspecified behaviour where the resulting behaviour is chosen by the 151
implementation. Implementation-defined behaviours are typically related to the environment, representation of 152
types, architecture, locale, and library functions. 153
 154
C.3.4.2 Description of vulnerability 155
 156
The C standard has documented, in Annex J.3, 112 instances of implementation-defined behaviour. Examples of 157
implementation-defined behaviour are: 158
 159

• The number of bits in a byte 160
• The direction of rounding when a floating-point number is converted to a narrower floating-point 161

number 162
• The rules for composing valid file names 163

 164
Relying on implementation-defined behaviour can make a program less portable across implementations. 165
However, this is less true than for unspecified and undefined behaviour. 166
 167
The following code shows an example of reliance upon implementation-defined behaviour: 168
 169
 unsigned int x = 50; 170
 x += (x << 2) + 1; // x = 5x + 1 171
 172
Since the bitwise representation of integers is implementation-defined, the computation on x will be incorrect for 173
implementations where integers are not represented in two’s complement form. 174
 175
C.3.4.3 Avoiding the vulnerability or mitigating its effects 176
 177

• Eliminate to the extent possible any reliance on implementation-defined behaviour from programs in 178
order to increase portability. Even programs that are specifically intended for a particular implementation 179
may in the future be ported to another environment or sections reused for future implementations. 180

 181
C.3.4.4 Implications for standardization 182
 183
Future standardization efforts should consider: 184
None 185
 186
C.3.4.5 Bibliography 187
 188
 189
C.3.5 Deprecated Language Features [MEM] 190
 191
C.3.5.0 Status and history 192
 193
C.3.5.1 Terminology and features 194
 195
C.3.5.2 Description of vulnerability 196

 197
C has deprecated one function, the function gets. The gets function copies a string from standard input into a 198
fixed-size array. There is no safe way to use gets because it performs an unbounded copy of user input. Thus, 199
every use of gets constitutes a buffer overflow vulnerability. 200
 201
C has deprecated several language features primarily by tightening the requirements for the feature: 202

• Implicit declarations are no longer allowed. 203
• Functions cannot be implicitly declared. They must be defined before use or have a prototype. 204
• The use of the function ungetc at the beginning of a binary file is deprecated. 205
• The deprecation of aliased array parameters has been removed. 206
• A return without expression is not permitted in a function that returns a value (and vice versa). 207

 208
Violating these new tighter features will generate an error. 209
 210
C.3.5.3 Avoiding the vulnerability or mitigating its effects 211
 212

• Do not use the function gets as there isn't a safe and secure way to use it. 213
• Although backward compatibility is sometimes offered as an option for compilers so one can avoid 214

changes to code to be compliant with current language specifications, updating the legacy software to the 215
current standard is a better option. 216

 217
C.3.5.4 Implications for standardization 218
 219
Future standardization efforts should consider: 220

• Creating an Annex that lists deprecated features. 221
 222
C.3.5.5 Bibliography 223
 224
 225
C.3.6 Pre-processor Directives [NMP] 226
 227
C.3.6.0 Status and history 228
 229
C.3.6.1 Terminology and features 230
 231
A preprocessing directive of the form 232
 233
 # define identifier lparen identifier-listopt) replacement-list new-line 234
 # define identifier lparen ...) replacement-list new-line 235
 # define identifier lparen identifier-list , ...) replacement-list new-line 236
 237
defines a function-like macro with parameters, whose use is similar syntactically to a function call. For example, 238
the following function-like macro calculates the cube of its argument by replacing all occurrences of the argument 239
X in the body of the macro. 240
 241

#define CUBE(X) ((X) * (X) * (X)) 242
/* ... */ 243
int a = CUBE(2); 244
 245

The above example expands to: 246
 247

int a = ((2) * (2) * (2)); 248

 249
which evaluates to 8. 250
 251
C.3.6.2 Description of vulnerability 252
 253
The C pre-processor allows the use of macros that are text-replaced before compilation. 254
 255
Function-like macros look similar to functions but have different semantics. Because the arguments are text-256
replaced, expressions passed to a function-like macro may be evaluated multiple times. This can result in 257
unintended and undefined behaviour if the arguments have side effects or are pre-processor directives as 258
described by C99 §6.10 [1]. Additionally, the arguments and body of function-like macros should be fully 259
parenthesized to avoid unintended and undefined behaviour [2]. 260
 261
The following code example demonstrates undefined behaviour when a function-like macro is called with 262
arguments that have side-effects (in this case, the increment operator) [2]: 263
 264

#define CUBE(X) ((X) * (X) * (X)) 265
/* ... */ 266
int i = 2; 267
int a = 81 / CUBE(++i); 268
 269

The above example expands into: 270
 271
 int a = 81 / ((++i) * (++i) * (++i)); 272
 273
which is undefined behaviour and is probably not the intended result. 274
 275
Another mechanism of failure can occur when the arguments within the body of a function-like macro are not fully 276
parenthesized. The following example shows the CUBE macro without parenthesized arguments [2]: 277
 278

#define CUBE(X) (X * X * X) 279
/* ... */ 280
int a = CUBE(2 + 1); 281

 282
This example expands to: 283
 284

int a = (2 + 1 * 2 + 1 * 2 + 1) 285
 286

which evaluates to 7 instead of the intended 27. 287
 288
C.3.6.3 Avoiding the vulnerability or mitigating its effects 289
 290
This vulnerability can be avoided or mitigated in C in the following ways: 291

• Replace macro-like functions with inline functions where possible. Although making a function inline only 292
suggests to the compiler that the calls to the function be as fast as possible, the extent to which this is 293
done is implementation-defined. Inline functions do offer consistent semantics and allow for better 294
analysis by static analysis tools. 295

• Ensure that if a function-like macro must be used, that its arguments and body are parenthesized. 296
• Do not embed pre-processor directives or side-effects such as an assignment, increment/decrement, 297

volatile access, or function call in a function-like macro. 298
 299
C.3.6.4 Implications for standardization 300
 301

Future standardization efforts should consider: 302
None 303
 304
C.3.6.5 Bibliography 305
 306
[1] Seacord, Robert C. The CERT C Secure Coding Standard. Boston: Addison-Wesley, 2008. 307
[2] GNU Project. GCC Bugs “Non-bugs” http://gcc.gnu.org/bugs.html#nonbugs_c (2009). 308
 309
 310
C.3.7 Choice of Clear Names [NAI] 311
 312
C.3.7.0 Status and history 313
 314
C.3.7.1 Terminology and features 315
 316
C.3.7.2 Description of vulnerability 317
 318
C is somewhat susceptible to errors resulting from the use of similarly appearing names. C does require the 319
declaration of variables before they are used. However, C does allow scoping so that a variable which is not 320
declared locally may be resolved to some outer block and that resolution may not be noticed by a human reviewer. 321
Variable name length is implementation specific and so one implementation may resolve names to one length 322
whereas another implementation may resolve names to another length resulting in unintended behaviour. 323
 324
As with the general case, calls to the wrong subprogram or references to the wrong data element (when missed by 325
human review) can result in unintended behaviour. 326
 327
C.3.7.3 Avoiding the vulnerability or mitigating its effects 328
 329

• Use names which are clear and non-confusing. 330
• Use consistency in choosing names. 331
• Keep names short and consise in order to make the code easier to understand. 332
• Choose names that are rich in meaning. 333
• Keep in mind that code will be reused and combined in ways that the original developers never imagined. 334
• Make names distinguishable within the first few characters due to scoping in C. This will also assist in 335

averting problems with compilers resolving to a shorter name than was intended. 336
• Do not differentiate names through only a mixture of case or the presence/absence of an underscore 337

character. 338
• Avoid differentiating through characters that are commonly confused visually such as ‘O’ and ‘0’, ‘I’ (lower 339

case ‘L’), ‘l’ (capital ‘I’) and ‘1’, ‘S’ and ‘5’, ‘Z’ and ‘2’, and ‘n’ and ‘h’. 340
• Coding guidelines should be developed to define a common coding style and to avoid the above 341

dangerous practices. 342
 343
C.3.7.4 Implications for standardization 344
 345
Future standardization efforts should consider: 346
None 347
 348
C.3.7.5 Bibliography 349
 350
 351
C.3.8 Choice of Filenames and other External Identifiers [AJN] 352

http://gcc.gnu.org/bugs.html�

 353
C.3.8.0 Status and history 354
 355
C.3.8.1 Terminology and features 356
 357
C.3.8.2 Description of vulnerability 358
 359
 360
C allows filenames and external identifiers to contain what could be unsafe characters or characters in unsafe 361
positions. For example, in C, a string can be used to name a file by calling fopen() or rename(). Control 362
characters, spaces, and leading dashes can be used in filenames which can cause unintended results when these 363
characters are processed by the operating system. The letters “A” through “Z” and “a” through “z”, digits “0” 364
through “9”, period, hyphen and underscore are considered portable. 365
 366
Filenames may be interpreted unexpectedly if certain sequences of characters are used. For example, the 367
filename: 368
 369
 char *file_name ="»£???«"; 370
 371
will result in the file name “??????” when used on a Red Hat Linux distribution. 372
 373
C.3.8.3 Avoiding the vulnerability or mitigating its effects 374
 375

• Restrict filenames and external identifier names to the portable set mentioned in the previous section. 376
 377
C.3.8.4 Implications for standardization 378
 379
Future standardization efforts should consider: 380

• Language APIs for interfacing with external identifiers should be compliant with ISO/IEC 9945:2003 (IEEE 381
Std 1003.1-2001). 382

 383
C.3.8.5 Bibliography 384
 385
 386
C.3.9 Unused Variable [XYR] 387
 388
C.3.9.0 Status and history 389
 390
C.3.9.1 Terminology and features 391
 392
C.3.9.2 Description of vulnerability 393
Variables may be declared, but never used when writing code or the need for a variable may be eliminated in the 394
code, but the declaration may remain. Most compilers will report this as a warning and the warning can be easily 395
resolved by removing the unused variable. 396
 397
C.3.9.3 Avoiding the vulnerability or mitigating its effects 398

 399
• Resolve all compiler warnings for unused variables. This is trivial in C as one simply needs to remove the 400

declaration of the variable. Having an unused variable in code indicates that either warnings were turned 401
off during compilation or were ignored by the developer. The compiler gcc allows the use of an attribute 402
“((unused))” to indicate that a variable is intentionally left in the code and unused: 403

 404

 int var1 __attribute__ ((unused)); 405
 406

This will signify to the compiler not to flag a warning for this variable being unused. However, this is not 407
part of the C standard and thus is not portable. 408

 409
C.3.9.4 Implications for standardization 410
 411
Future standardization efforts should consider: 412

• Defining a standard way of declaring an attribute such as “__attribute__ ((unused))” to indicate 413
that a variable is intentionally unused. 414

 415
C.3.9.5 Bibliography 416
 417
 418
C.3.10 Identifier Name Reuse [YOW] 419
 420
C.3.10.0 Status and history 421
 422
C.3.10.1 Terminology and features 423
 424
C.3.10.2 Description of vulnerability 425
C allows scoping so that a variable which is not declared locally may be resolved to some outer block and that 426
resolution may cause the variable to operate on an entity other than the one intended. 427
 428
Because the variable name var1 was reused in the following example, the printed value of var1 may be 429
unexpected. 430
 431

int var1; /* declaration in outer scope */ 432
var1 = 10; 433
{ 434

int var2; 435
int var1; /* declaration in nested (inner) scope */ 436
var2 = 5; 437
var1 = 1; /* var1 in inner scope is 1*/ 438

} 439
print (“var1=%d\n”, var1); /* will print “var1=10” as var1 refers */ 440

/* to var1 in the outer scope */ 441
 442
Removing the declaration of var2 will result in a compiler error of an undeclared variable. However, removing the 443
declaration of var1 in the inner block will not result in an error as var1 will be resolved to the declaration in the 444
outer block. That resolution will result in the printing of “var1=1” instead of “var1=10”. 445
 446
C.3.10.3 Avoiding the vulnerability or mitigating its effects 447
 448

• Ensure that a definition of an entity does not occur in a scope where a different entity with the same 449
name is accessible and can be used in the same context. A language-specific project coding convention can 450
be used to ensure that such errors are detectable with static analysis. 451

• Ensure that a definition of an entity does not occur in a scope where a different entity with the same 452
name is accessible and has a type that permits it to occur in at least one context where the first entity can 453
occur. 454

• Ensure that all identifiers differ within the number of characters considered to be significant by the 455
implementations that are likely to be used, and document all assumptions. 456

 457

C.3.10.4 Implications for standardization 458
 459
Future standardization efforts should consider: 460

• A common warning in Annex I should be added for variables with the same name in nested scopes. 461
 462
C.3.10.5 Bibliography 463
 464
 465
C.3.11 Type System [IHN] 466
 467
C.3.11.0 Status and history 468
 469
C.3.11.1 Terminology and features 470
 471
C.3.11.2 Description of vulnerability 472
 473
C is a statically typed language. In some ways C is both strongly and weakly typed as it requires all variables to be 474
typed, but sometimes allows implicit or automatic conversion between types. For example, C will implicitly convert 475
a long int to an int and potentially discard many significant digits. Note that integer sizes are 476
implementation defined so that in some implementations, the conversion from a long int to an int cannot 477
discard any digits since they are the same size. In some implementations, all integer types could be implemented 478
as the same size. 479
 480
C allows implicit conversions as in the following example: 481
 482
 short a = 1023; 483
 int b; 484
 b = a; 485
 486
If an implicit conversion could result in a loss of precision such as in a conversion from a 16 bit int to an 8 bit 487
short int: 488
 489
 int a = 1023; 490
 short b; 491
 a = b; 492
 493
most compilers will issue a warning. 494
 495
C has a set of rules to determine how conversion between data types will occur. In C, for instance, every integer 496
type has an integer conversion rank that determines how conversions are performed. The ranking is based on the 497
concept that each integer type contains at least as many bits as the types ranked below it. The following rules for 498
determining integer conversion rank are defined in C99: 499
 500

• No two different signed integer types have the same rank, even if they have the same representation. 501
• The rank of a signed integer type is greater than the rank of any signed integer type with less precision. 502
• The rank of long long int is greater than the rank of long int, which is greater than the rank of 503

int, which is greater than the rank of short int, which is greater than the rank of signed char. 504
• The rank of any unsigned integer type is equal to the rank of the corresponding signed integer type, if any. 505
• The rank of any standard integer type is greater than the rank of any extended integer type with the same 506

width. 507
• The rank of char is equal to the rank of signed char and unsigned char. 508
• The rank of any extended signed integer type relative to another extended signed integer type with the 509

same precision is implementation defined but still subject to the other rules for determining the integer 510
conversion rank. 511

• The rank of _Bool shall be less than the rank of all other standard integer types. 512
• The rank of any enumerated type shall equal the rank of the compatible integer type 513
• The rank of any extended signed integer type relative to another extended signed integer type with the 514

same precision is implementation-defined, but still subject to the other rules for determining the integer 515
conversion rank. 516

• For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank than T3, 517
then T1 has greater rank than T3. 518

The integer conversion rank is used in the usual arithmetic conversions to determine what conversions need to take 519
place to support an operation on mixed integer types. 520
 521

• If both operands have the same type, no further conversion is needed. 522
• If both operands are of the same integer type (signed or unsigned), the operand with the type of lesser 523

integer conversion rank is converted to the type of the operand with greater rank. 524
• If the operand that has unsigned integer type has rank greater than or equal to the rank of the type of the 525

other operand, the operand with signed integer type is converted to the type of the operand with 526
unsigned integer type. 527

• If the type of the operand with signed integer type can represent all of the values of the type of the 528
operand with unsigned integer type, the operand with unsigned integer type is converted to the type of 529
the operand with signed integer type. 530

• Otherwise, both operands are converted to the unsigned integer type corresponding to the type of the 531
operand with signed integer type. Specific operations can add to or modify the semantics of the usual 532
arithmetic operations. 533

 534
Other conversion rules exist for other data type conversions. So even though there are rules in place and the rules 535
are rather straightforward, the variety and complexity of the rules can cause unexpected results and potential 536
vulnerabilities. For example, though there is a prescribed order which conversions will take place, determining how 537
the conversions will affect the final result can be difficult as in the following example: 538
 539
 long foo (short a, int b, int c, long d, long e, long f) { 540
 return (((b + f) * d – a + e) / c); 541
 } 542
 543
The implicit conversions performed in the return statement can be nontrivial to discern, but can greatly impact 544
whether any of the variables wrap around during the computation. 545
 546
C.3.11.3 Avoiding the vulnerability or mitigating its effects 547
 548

• Consideration of the rules for typing and conversions will assist in avoiding vulnerabilities. However, a lack 549
of full understanding by the programmer of the implications of the rules may cause unexpected results 550
even though the rules may be clear. Complex expressions and intricacies of the rules can cause a 551
difference between what a programmer expects and what actually happens. 552

• Make casts explicit to give the programmer a clearer vision and expectations of conversions. 553
 554
C.3.11.4 Implications for standardization 555
 556
Future standardization efforts should consider: 557

• Moving in the direction over time to being a more strongly typed language. Much of the use of weak 558
typing is simply convenience to the developer in not having to fully consider the types and uses of 559
variables. Stronger typing forces good programming discipline and clarity about variables while at the 560
same time removing many unexpected run time errors due to implicit conversions. This is not to say that 561

C should be strictly a strongly typed language – some advantages of C are due to the flexibility that weaker 562
typing provides. It is suggested that when enforcement of strong typing does not detract from the good 563
flexibility that C offers (e.g. adding an integer to a character to step through a sequence of characters) and 564
is only a convenience for programmers (e.g. adding an integer to a floating-point), then the standard 565
should specify the stronger typed solution. 566

 567
C.3.11.5 Bibliography 568
 569
 570
C.3.12 Bit Representations [STR] 571
 572
C.3.12.0 Status and history 573
 574
C.3.12.1 Terminology and features 575
 576
C.3.12.2 Description of vulnerability 577
 578
C supports a variety of sizes for integers such as short int, int, long int and long long int. Each may 579
either be signed or unsigned. C also supports a variety of bitwise operators that make bit manipulations easy such 580
as left and right shifts and bitwise operators. These bit manipulations can cause unexpected results or 581
vulnerabilities through miscalculated shifts or platform dependent variations. 582
 583
Bit manipulations are necessary for some applications and may be one of the reasons that a particular application 584
was written in C. Although many bit manipulations can be rather simple in C, such as masking off the bottom three 585
bits in an integer, more complex manipulations can cause unexpected results. For instance, right shifting a signed 586
integer is implementation defined in C, as is shifting by an amount greater than or equal to the size of the data 587
type. For instance, on a host where an int is of size 32 bits, 588
 589
 unsigned int foo(const int k) { 590
 unsigned int i = 1; 591
 return i << k; 592
 } 593
 594
is undefined for values of k greater than or equal to 32. 595
 596
The storage representation for interfacing with external constructs can cause unexpected results. Byte orders may 597
be in little endian or big endian format and unknowingly switching between the two can unexpectedly alter values. 598
 599
C.3.12.3 Avoiding the vulnerability or mitigating its effects 600
 601

• Only use bitwise operators on unsigned integer operators as the results of some bitwise operations on 602
signed integers are implementation defined. 603

• Use commonly available functions such as htonl(), htons(), ntohl() and ntohs()to convert 604
from host byte order to network byte order and vice versa. This would be needed to interface between an 605
i80x86 architecture where the Least Significant Byte is first with the network byte order, as used on the 606
Internet, where the Most Significant Byte is first. Note: functions such as these are not part of the C 607
standard and can vary somewhat among different platforms. 608

• In cases where there is a possibility that the shift is greater than the size of the variable, perform a check 609
or, as the following example shows, a modulo reduction before the shift: 610

 611
unsigned int i; 612
unsigned int k; 613

unsigned int shifted_i 614
… 615

 if (k < sizeof(unsigned int)*CHAR_BIT) 616
 shifted_i = i << k; 617
else 618
 // handle error condition 619

 … 620
 621
C.3.12.4 Implications for standardization 622
 623
Future standardization efforts should consider: 624
None 625
 626
C.3.12.5 Bibliography 627
 628
 629
C.3.13 Floating-point Arithmetic [PLF] 630
 631
C.3.13.0 Status and history 632
 633
C.3.13.1 Terminology and features 634
 635
C.3.13.2 Description of vulnerability 636
 637
C permits the floating-point data types float, double and long double. Due to the approximate nature of floating-638
point representations, the use of float and double data types in situations where equality is needed or where 639
rounding could accumulate over multiple iterations could lead to unexpected results and potential vulnerabilities in 640
some situations. 641
 642
As with most data types, C is very flexible in how float, double and long double can be used. For instance, 643
C allows the use of floating-point types to be used as loop counters and in equality statements. Even though a loop 644
may be expected to only iterate a fixed number of times, depending on the values contained in the floating-point 645
type and on the loop counter and termination condition, the loop could execute forever. For instance iterating a 646
time sequence using 10 nanoseconds as the increment: 647
 648
 float f; 649
 for (f=0.0; f!=1.0; f+=0.00000001) 650
 … 651
 652
may or may not terminate after 10,000,000 iterations. The representations used for f and the accumulated effect 653
of many iterations may cause f to not be identical to 1.0 causing the loop to continue to iterate forever. 654
 655
Similarly, the Boolean test 656
 657
 float f=1.336; 658

float g=2.672; 659
 if (f == (g/2)) 660
 … 661
 662
may or may not evaluate to true. Given that f and g are constant values, it is expected that consistent results will 663
be achieved on the same platform. However, it is questionable whether the logic performs as expected when a 664
float that is twice that of another is tested for equality when divided by 2 as above. This can depend on the values 665
selected due to the quirks of floating-point arithmetic. 666

 667
C.3.13.3 Avoiding the vulnerability or mitigating its effects 668
 669

• Do not use a floating-point expression in a Boolean test for equality. In C, implicit casts may make an 670
expression floating-point even though the programmer did not expect it. 671

• Check for an acceptable closeness in value instead of a test for equality when using floats and doubles to 672
avoid rounding and truncation problems. 673

• Do not convert a floating-point number to an integer unless the conversion is a specified algorithmic 674
requirement or is required for a hardware interface. 675

 676
C.3.13.4 Implications for standardization 677
 678
Future standardization efforts should consider: 679

• A common warning in Annex I should be added for floating-point expressions being used in a Boolean test 680
for equality. 681

 682
C.3.13.5 Bibliography 683
 684
 685
C.3.14 Enumerator Issues [CCB] 686
 687
C.3.14.0 Status and history 688
 689
C.3.14.1 Terminology and features 690
 691
C.3.14.2 Description of vulnerability 692
 693
The enum type in C comprises a set of named integer constant values as in the example: 694
 695
 enum abc {A,B,C,D,E,F,G,H} var_abc; 696
 697
The values of the contents of abc would be A=0, B=1, C=2, etc. C allows values to be assigned to the enumerated 698
type as follows: 699
 700
 enum abc {A,B,C=6,D,E,F=7,G,H} var_abc; 701
 702
This would result in: 703
 704
 A=0, B=1, C=6, D=7, E=8, F=7, G=8, H=9 705
 706
yielding both gaps in the sequence of values and repeated values. 707
 708
If a poorly constructed enum type is used in loops, problems can arise. Consider the enumerated type var_abc 709
defined above used in a loop: 710
 711
 int x[8]; 712
 … 713

for (i=A; i<=H; i++) 714
{ 715
 t = x[i]; 716
… 717
} 718

 719
Because the enumerated type abc has been renumbered and because some numbers have been skipped, the 720
array will go out of bounds and there is potential for unintentional gaps in the use of x. 721
 722
C.3.14.3 Avoiding the vulnerability or mitigating its effects 723
 724

• Use enumerated types in the default form starting at 0 and incrementing by 1 for each member if possible. 725
The use of an enumerated type is not a problem if it is well understood what values are assigned to the 726
members. 727

• Use an enumerated type to select from a limited set of choices to make possible the use of tools to detect 728
omissions of possible values such as in switch statements. 729

• Use the following format if the need is to start from a value other than 0 and have the rest of the values 730
be sequential: 731

 732
 enum abc {A=5,B,C,D,E,F,G,H} var_abc; 733

 734
• Use the following format if gaps are needed or repeated values are desired and so as to be explicit as to 735

the values in the enum, then: 736
 737

 enum abc { 738
A=0, 739
B=1, 740
C=6, 741
D=7, 742
E=8, 743
F=7, 744
G=8, 745
H=9 746

} var_abc; 747
 748
C.3.14.4 Implications for standardization 749
 750
Future standardization efforts should consider: 751
None 752
 753
C.3.14.5 Bibliography 754
 755
 756
C.3.15 Numeric Conversion Errors [FLC] 757
 758
C.3.15.0 Status and history 759
 760
C.3.15.1 Terminology and features 761
 762
C.3.15.2 Description of vulnerability 763
 764
C permits implicit conversions. That is, C will automatically perform a conversion without an explicit cast. For 765
instance, C allows 766
 767
 int i; 768
 float f=1.25; 769
 i = f; 770
 771

This implicit conversion will discard the fractional part of f and set i to 1. If the value of f is greater than 772
INT_MAX, then the assignment of f to i would be undefined. 773
 774
The rules for implicit conversions in C are defined in the C standard. For instance, integer types smaller than int 775
are promoted when an operation is performed on them. If all values of Boolean, character or integer type can be 776
represented as an int, the value of the smaller type is converted to an int; otherwise, it is converted to an 777
unsigned int. 778
 779
Integer promotions are applied as part of the usual arithmetic conversions to certain argument expressions; 780
operands of the unary +, -, and ~ operators, and operands of the shift operators. The following code fragment 781
shows the application of integer promotions: 782
 783
 char c1, c2; 784
 c1 = c1 + c2; 785
 786
Integer promotions require the promotion of each variable (c1 and c2) to int size. The two int values are added 787
and the sum is truncated to fit into the char type. 788
 789
Integer promotions are performed to avoid arithmetic errors resulting from the overflow of intermediate values. 790
For example: 791
 792
 signed char cresult, c1, c2, c3; 793
 c1 = 100; 794
 c2 = 3; 795
 c3 = 4; 796
 cresult = c1 * c2 / c3; 797
 798
In this example, the value of c1 is multiplied by c2. The product of these values is then divided by the value of c3 799
(according to operator precedence rules). Assuming that signed char is represented as an 8-bit value, the product 800
of c1 and c2 (300) cannot be represented. Because of integer promotions, however, c1, c2, and c3 are each 801
converted to int, and the overall expression is successfully evaluated. The resulting value is truncated and stored 802
in cresult. Because the final result (75) is in the range of the signed char type, the conversion from int back 803
to signed char does not result in lost data. It is possible that the conversion could result in a loss of data 804
should the data be larger than the storage location. 805
 806
A loss of data (truncation) can occur when converting from a signed type to a signed type with less precision. For 807
example, the following code can result in truncation: 808
 809
 signed long int sl = LONG_MAX; 810
 signed char sc = (signed char)sl; 811
 812
The C standard defines rules for integer promotions, integer conversion rank, and the usual arithmetic conversions. 813
The intent of the rules is to ensure that the conversions result in the same numerical values, and that these values 814
minimize surprises in the rest of the computation. 815
 816
C.3.15.3 Avoiding the vulnerability or mitigating its effects 817
 818

• Check the value of a larger type before converting it to a smaller type to see if the value in the larger type 819
is within the range of the smaller type. Any conversion from a type with larger precision to a smaller 820
precision type could potentially result in a loss of data. In some instances, this loss of precision is desired. 821
Such cases should be explicitly acknowledged in comments. For example, the following code could be 822
used to check whether a conversion from an unsigned integer to an unsigned character will result in a loss 823
of precision: 824

 825
 unsigned int i; 826
 unsigned char c; 827
 … 828
 if (i <= UCHAR_MAX) { // check against the maximum value for an 829

object of type unsigned char 830
 c = (unsigned char) i; 831
 } 832
 else 833
 { 834
 // handle error condition 835
 } 836
 … 837
 838
• Close attention should be given to all warning messages issued by the compiler regarding multiple casts. 839

Making a cast in C explicit will both remove the warning and acknowledge that the change in precision is 840
on purpose. 841

 842
C.3.15.4 Implications for standardization 843
 844
Future standardization efforts should consider: 845
None 846
 847
C.3.15.5 Bibliography 848
 849
 850
C.3.16 String Termination [CJM] 851
 852
C.3.16.0 Status and history 853
 854
C.3.16.1 Terminology and features 855
 856
C.3.16.2 Description of vulnerability 857
 858
A string in C is composed of a contiguous sequence of characters terminated by and including a null character (a 859
byte with all bits set to 0). Therefore strings in C cannot contain the null character except as the terminating 860
character. Inserting a null character in a string either through a bug or through malicious action can truncate a 861
string unexpectedly. Alternatively, not putting a null character terminator in a string can cause actions such as 862
string copies to continue well beyond the end of the expected string. Overflowing a string buffer through the 863
intentional lack of a null terminating character can be used to expose information or to execute malicious code. 864
 865
C.3.16.3 Avoiding the vulnerability or mitigating its effects 866
 867

• Use safer and more secure functions for string handling from the ISO TR24731-1, Extensions to the C 868
library–- Part 1: Bounds-checking interfaces. These are alternative string handling library functions to the 869
existing Standard C Library. The functions verify that receiving buffers are large enough for the resulting 870
strings being placed in them and ensure that resulting strings are null terminated. One implementation of 871
these functions has been released as the Safe C Library. 872

 873
C.3.16.4 Implications for standardization 874
 875
Future standardization efforts should consider: 876

• Adopting the two TRs on safer C library functions, Extensions to the C Library (TR 24731-1: Part I: Bounds-877

checking interfaces and TR 24731-2: Part II: Dynamic allocation functions, that are currently under 878
consideration by ISO SC22 WG14). 879

• Modifying or deprecating many of the C standard library functions that make assumptions about the 880
occurrence of a string termination character. 881

• Define a string construct that does not rely on the null termination character. 882
 883
C.3.16.5 Bibliography 884
 885
 886
C.3.17 Boundary Beginning Violation [XYX] 887
 888
C.3.17.0 Status and history 889
 890
C.3.17.1 Terminology and features 891
 892
C.3.17.2 Description of vulnerability 893
 894
A buffer underwrite condition occurs when an array is indexed outside its lower bounds, or pointer arithmetic 895
results in an access to storage that occurs before the beginning of the intended object. 896
 897
In C, the subscript operator [] is defined such that E1[E2] is identical to (*((E1)+(E2))), so that in either 898
representation, the value in location (E1+E2) is returned. Because C does not perform bounds checking on 899
arrays, the following code: 900
 901
 int foo(const int i) { 902
 int x[] = {0,0,0,0,0,0,0,0,0,0}; 903
 return x[i]; 904
 } 905
 906
would return whatever is in location x[i] even if, say, i were equal to -5 (assuming that x[-5] was still within 907
the address space of the program). This could be sensitive information or even a return address, which if altered 908
by changing the value of x[-5], could change the program flow. 909
 910
C.3.17.3 Avoiding the vulnerability or mitigating its effects 911
 912

• Perform range checking before accessing an array since C does not perform bounds checking 913
automatically. In the interest of speed and efficiency, range checking only needs to be done when it 914
cannot be statically shown that an access outside of the array cannot occur. 915

• Use safer and more secure functions for string handling from the ISO TR24731-1, Extensions to the C 916
library–- Part 1: Bounds-checking interfaces. These are alternative string handling library functions to the 917
existing Standard C Library. The functions verify that receiving buffers are large enough for the resulting 918
strings being placed in them and ensure that resulting strings are null terminated. One implementation of 919
these functions has been released as the Safe C Library. 920

 921
 922
C.3.17.4 Implications for standardization 923
 924
Future standardization efforts should consider: 925

• Defining an array type that does automatic bounds checking. 926
 927
C.3.17.5 Bibliography 928
 929

 930
C.3.18 Unchecked Array Indexing [XYZ] 931
 932
C.3.18.0 Status and history 933
 934
C.3.18.1 Terminology and features 935
 936
C.3.18.2 Description of vulnerability 937
 938
 939
C does not perform bounds checking on arrays, so though arrays may be accessed outside of their bounds, the 940
value returned is undefined and in some cases may result in a program termination. For example, in C the 941
following code is valid, though, for example, if i has the value 10, the result is undefined: 942
 943
 int foo(const int i) { 944

int t; 945
int x[] = {0,0,0,0,0}; 946

 t = x[i]; 947
return t; 948

 } 949
 950
The variable t will likely be assigned whatever is in the location pointed to by x[10] (assuming that x[10] is 951
still within the address space of the program). 952
 953
 954
C.3.18.3 Avoiding the vulnerability or mitigating its effects 955
 956

• Perform range checking before accessing an array since C does not perform bounds checking 957
automatically. In the interest of speed and efficiency, range checking only needs to be done when it 958
cannot be statically shown that an access outside of the array cannot occur. 959

• Use safer and more secure functions for string handling from the ISO TR24731-1, Extensions to the C 960
library–- Part 1: Bounds-checking interfaces. These are alternative string handling library functions to the 961
existing Standard C Library. The functions verify that receiving buffers are large enough for the resulting 962
strings being placed in them and ensure that resulting strings are null terminated. One implementation of 963
these functions has been released as the Safe C Library. 964

 965
C.3.18.4 Implications for standardization 966
 967
Future standardization efforts should consider: 968

• Defining an array type that does automatic bounds checking. 969
 970
C.3.18.5 Bibliography 971
 972
 973
C.3.19 Unchecked Array Copying [XYW] 974
 975
C.3.19.0 Status and history 976
 977
C.3.19.1 Terminology and features 978
 979
C.3.19.2 Description of vulnerability 980
 981

A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to 982
another and the amount being copied is greater than is allocated for the destination buffer. 983
In the interest of ease and efficiency, C library functions such as memcpy(void * restrict s1, 984
const void * restrict s2, size_t n) and memmove(void *s1, const void *s2, 985
size_t n) are used to copy the contents from one area to another. Memcpy() and memmove() simply copy 986
memory and no checks are made as to whether the destination area is large enough to accommodate the n units 987
of data being copied. It is assumed that the calling routine has ensured that adequate space has been provided in 988
the destination. Problems can arise when the destination buffer is too small to receive the amount of data being 989
copied or if the indices being used for either the source or destination are not the intended indices. 990
 991
C.3.19.3 Avoiding the vulnerability or mitigating its effects 992
 993

• Perform range checking before calling a memory copying function such as memcpy() and memmove(). 994
These functions do not perform bounds checking automatically. In the interest of speed and efficiency, 995
range checking only needs to be done when it cannot be statically shown that an access outside of the 996
array cannot occur. 997

 998
C.3.19.4 Implications for standardization 999
 1000
Future standardization efforts should consider: 1001

• Defining functions that contain an extra parameter in memcpy and memmove for the maximum number 1002
of bytes to copy. In the past, some have suggested that the size of the destination buffer be used as an 1003
additional parameter. Some critics state that this solution is very easy to circumvent by simply repeating 1004
the parameter that was used for the number of bytes to copy as the parameter for the size of the 1005
destination buffer. This analysis and criticism is correct. What is needed is a failsafe check as to the 1006
maximum number of bytes to copy. There are several reasons for creating new functions with an 1007
additional parameter. This would make it easier for static analysis to eliminate those cases where the 1008
memory copy could not be a problem (such as when the maximum number of bytes is demonstrably less 1009
than the capacity of the receiving buffer). Manual analysis or more involved static analysis could then be 1010
used for the remaining situations where the size of the destination buffer may not be sufficient for the 1011
maximum number of bytes to copy. This extra parameter may also help in determining which copies could 1012
take place among objects that overlap. Such copying is undefined according to the C standard. It is 1013
suggested that safer versions of functions that include a restriction max_n on the number of bytes n to 1014
copy (e.g. void *memncpy(void * restrict s1,const void * restrict s2,size_t 1015
n), const size_t max_n) be added to the standard in addition to retaining the current 1016
corresponding functions (e.g. memcpy(void * restrict s1,const void * restrict 1017
s2,size_t n))). The additional parameter would be consistent with the copying function pairs that 1018
have already been created such as strcpy/strncpy and strcat/strncat. This would allow a safer 1019
version of memory copying functions for those applications that want to use them in to facilitate both 1020
safer and more secure code and more efficient and accurate static code reviews. 1021

 1022
C.3.19.5 Bibliography 1023
 1024
 1025
C.3.20 Buffer Overflow [XZB] 1026
 1027
C.3.20.0 Status and history 1028
 1029
C.3.20.1 Terminology and features 1030
 1031
C.3.20.2 Description of vulnerability 1032
 1033

C is a very flexible and efficient language due to its rather lax restrictions on memory manipulations. Writing 1034
outside of a buffer can occur very easily in C due to a miscalculation of the size of the buffer, a mistake in a loop 1035
termination condition or any of dozens of other ways. Egregious violations of a buffer size are often found during 1036
testing as crashes of the program occur. However, more subtle or input dependent overflows may go undetected in 1037
testing and later be exploited by attackers. 1038
 1039
As with other languages, it is very easy to overflow a buffer in C. The main difference is that C does not prevent or 1040
detect the occurrence automatically as is done in many other languages. For instance, consider: 1041
 1042
 int foo(const int n) { 1043
 char buf[10]; 1044
 for (i=1; i++; i<=n) 1045
 buf[i] = i + 0x40; 1046
 return buf[n]; 1047
 } 1048
 1049
 1050
A value of 10 for n will write 0x50 to buf[10] which is one beyond the end of the array buf which starts at 1051
buf[0] and ends at buf[9]. Overflows where the amount of the overflow and the content can be manipulated 1052
by an attacker can cause the program to crash or execute logic that gives the attacker host access. For instance, the 1053
gets() function has been deprecated since there isn’t a way stop a user from typing in a longer string than 1054
expected and overrunning a buffer. Consider: 1055
 1056

int main() 1057
{ 1058
 char buf[500]; 1059
 printf "Type something.\"); 1060
 gets(buf); 1061
 printf "You typed: %s\", buf); 1062
 1063
 return 0; 1064
} 1065

 1066
Typing in a string longer than 499 characters (1 less than the buffer length to account for the string null termination 1067
character) will cause the buffer to overflow. A well crafted string used as input to this program can cause execution 1068
of an attacker’s malicious code. 1069
 1070
 1071
C.3.20.3 Avoiding the vulnerability or mitigating its effects 1072
 1073

• Validate all input values. 1074
• Check any array index before use if there is a possibility the value could be outside the bounds of the 1075

array. 1076
• Use length restrictive functions such as strncpy()instead of strcpy(). 1077
• Use stack guarding add-ons to prevent overflows of stack buffers. 1078
• Do not use the deprecated functions or other language features such as gets(). 1079
• Be aware that the use of all of these preventive measures may still not be able to stop all buffer overflows 1080

from happening. However, the use of them can make it much rarer for a buffer overflow to occur and 1081
much harder to exploit it. 1082

• Use alternative functions as specified in ISO/IEC TR 24731-1:2007. This TR provides alternative 1083
functions for the C Library (as defined in ISO/IEC 9899:1999) that promote safer, more secure 1084
programming. The functions verify that output buffers are large enough for the intended result 1085
and return a failure indicator if they are not. Optionally, failing functions call a“"runtime-constraint 1086

handle"” to report the error. Data is never written past the end of an array. All string results are 1087
null terminated. In addition, the functions in ISO/IEC TR 24731-1:2007 are re-entrant: they never 1088
return pointers to static objects owned by the function. ISO/IEC TR 24731-1:2007 also contains 1089
functions that address insecurities with the C input-output facilities. 1090

 1091
C.3.20.4 Implications for standardization 1092
 1093
Future standardization efforts should consider: 1094

• Deprecating less safe functions such as strcpy() and strcat() where a more secure alternative is 1095
available. 1096

• Defining safer and more secure replacement functions such as memncpy() and memncat() to 1097
complement the memcpy() and memcat() functions (see in Implications for standardization.XYW). 1098

• Adopting the two TRs on safer C library functions, Extensions to the C Library (TR 24731-1: Part I: Bounds-1099
checking interfaces and TR 24731-2: Part II: Dynamic allocation functions, that are currently under 1100
consideration by ISO SC22 WG14. 1101

 1102
C.3.20.5 Bibliography 1103
 1104
 1105
C.3.21 Pointer Casting and Pointer Type Changes [HFC] 1106
 1107
C.3.21.0 Status and history 1108
 1109
C.3.21.1 Terminology and features 1110
 1111
C.3.21.2 Description of vulnerability 1112
 1113
C allows the value of a pointer to and from another data type. These conversions can cause unexpected changes to 1114
pointer values. 1115
 1116
Pointers in C refer to a specific type, such as integer. If sizeof(int) is 4 bytes, and ptr is a pointer to integers 1117
that contains the value 0x5000, then ptr++ would make ptr equal to 0x5004. However, if ptr were a pointer to 1118
char, then ptr++ would make ptr equal to 0x5001. It is the difference due to data sizes coupled with conversions 1119
between pointer data types that cause unexpected results and potential vulnerabilities. Due to arithmetic 1120
operations, pointers may not maintain correct memory alignment or may operate upon the wrong memory 1121
addresses. 1122
 1123
C.3.21.3 Avoiding the vulnerability or mitigating its effects 1124
 1125

• Maintain the same type to avoid errors introduced through conversions. 1126
• Heed compiler warnings that are issued for pointer conversion instances. The decision may be made to 1127

avoid all conversions so any warnings must be addressed. Note that casting into and out of “void *” 1128
pointers will most likely not generate a compiler warning as this is valid in both C99 and C90. 1129

 1130
C.3.21.4 Implications for standardization 1131
 1132
Future standardization efforts should consider: 1133
None 1134
 1135
C.3.21.5 Bibliography 1136
 1137
 1138

C.3.22 Pointer Arithmetic [RVG] 1139
 1140
C.3.22.0 Status and history 1141
 1142
C.3.22.1 Terminology and features 1143
 1144
C.3.22.2 Description of vulnerability 1145
 1146
When performing pointer arithmetic in C, the size of the value to add to a pointer is automatically scaled to the size 1147
of the type of the pointed-to object. For instance, when adding a value to the byte address of a 4-byte integer, the 1148
value is scaled by a factor 4 and then added to the pointer. The effect of this scaling is that if a pointer P points to 1149
the i-th element of an array object, then (P) + N will point to the i+n-th element of the array. Failing to 1150
understand how pointer arithmetic works can lead to miscalculations that result in serious errors, such as buffer 1151
overflows. 1152
 1153
The following example will illustrate arithmetic in C involving a pointer and how the operation is done relative to 1154
the size of the pointer's target. Consider the following code snippet: 1155
 1156
 int buf[5]; 1157
 int *buf_ptr = buf; 1158
 1159
where the address of buf is 0x1234. Adding 1 to buf_ptr will result in buf_ptr being equal to 0x1238 on a 1160
host where an int is 4 bytes. Buf_ptr will then contain the address of buf[1]. Not realizing that address 1161
operations will be in terms of the size of the object being pointed to can lead to address miscalculations and 1162
undefined behaviour. 1163
 1164
C.3.22.3 Avoiding the vulnerability or mitigating its effects 1165
 1166

• Consider an outright ban on pointer arithmetic due to the error prone nature of pointer arithmetic. 1167
• Avoid the common pitfalls of pointer arithmetic. For instance, in checking the end of an array, the 1168

following method can be used: 1169
 1170

int buf[INTBUFSIZE]; 1171
int *buf_ptr = buf; 1172
 1173
while (havedata() && (buf_ptr < &buf[INTBUFSIZE])) /* buf[INTBUFSIZE] 1174
 is the address of the element 1175
 following the buf array */ 1176
{ 1177
 *buf_ptr++ = parseint(getdata()); 1178
} 1179

 1180
C.3.22.4 Implications for standardization in 1181
 1182
Future standardization efforts should consider: 1183

• Restrictions on pointer arithmetic that could eliminate common pitfalls. Pointer arithmetic is error prone 1184
and the flexibility that it offers is very useful, but some of the flexibility is simply a shortcut that if 1185
restricted could lessen the chance of a pointer arithmetic based error. 1186

 1187
C.3.22.5 Bibliography 1188
 1189
 1190

C.3.23 Null Pointer Dereference [XYH] 1191
 1192
C.3.23.0 Status and history 1193
 1194
C.3.23.1 Terminology and features 1195
 1196
C.3.23.2 Description of vulnerability 1197
 1198
C allows memory to be dynamically allocated primarily through the use of malloc(), calloc(), and 1199
realloc(). Each will return the address to the allocated memory. Due to a variety of situations, the memory 1200
allocation may not occur as expected and a null pointer will be returned. Other operations or faults in logic can 1201
result in a memory pointer being set to null. Using the null pointer as though it pointed to a valid memory location 1202
can cause a segmentation fault and other unanticipated situations. 1203
 1204
Space for 10000 integers can be dynamically allocated in C in the following way: 1205
 1206
 int *ptr = malloc(10000*sizeof(int)); /*allocate space for 10000 ints*/ 1207
 1208
Malloc() will return the address of the memory allocation or a null pointer if insufficient memory is available for 1209
the allocation. It is good practice after the attempted allocation to check whether the memory has been allocated 1210
via an if test against NULL: 1211
 1212
 if (ptr != NULL) /* check to see that the memory could be allocated */ 1213
 1214
Memory allocations usually succeed, so neglecting this test and using the memory will usually work which is why 1215
neglecting the null test will frequently go unnoticed. An attacker can intentionally create a situation where the 1216
memory allocation will fail leading to a segmentation fault. 1217
 1218
Faults in logic can cause a code path that will use a memory pointer that was not dynamically allocated or after 1219
memory has been deallocated and the pointer was set to null as good practice would indicate. 1220
 1221
C.3.23.3 Avoiding the vulnerability or mitigating its effects 1222
 1223

• Check whether a pointer is null before dereferencing it. As this can be overly extreme in many cases (such 1224
as in a for loop that performs operations on each element of a large segment of memory), judicious 1225
checking of the value of the pointer at key strategic points in the code is recommended. 1226

 1227
C.3.23.4 Implications for standardization 1228
 1229
Future standardization efforts should consider: 1230
None 1231
 1232
C.3.23.5 Bibliography 1233
 1234
 1235
C.3.24 Dangling Reference to Heap [XYK] 1236
 1237
C.3.24.0 Status and history 1238
 1239
C.3.24.1 Terminology and features 1240
 1241
C.3.24.2 Description of vulnerability 1242

 1243
C allows memory to be dynamically allocated primarily through the use of malloc(), calloc(), and 1244
realloc(). C allows a considerable amount of freedom in accessing the dynamic memory. Pointers to the 1245
dynamic memory can be created to perform operations on the memory. Once the memory is no longer needed, it 1246
can be released through the use of free(). However, freeing the memory does not prevent the use of the 1247
pointers to the memory and issues can arise if operations are performed after memory has been freed. 1248
 1249
Consider the following segment of code: 1250
 1251
 int foo() { 1252
 int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers*/ 1253
 if (ptr != NULL) /* check to see that the memory could be allocated */ 1254
 { 1255
 … /* perform some operations on the dynamic memory */ 1256
 free (ptr); /* memory is no longer needed, so free it */ 1257
 … /* program continues performing other operations */ 1258
 ptr[0] = 10;/* ERROR – memory is being used after it has been 1259
released */ 1260
 … 1261
 } 1262
 … 1263
 } 1264
 1265
The use of memory in C after it has been freed is undefined. Depending on the execution path taken in the 1266
program, freed memory may still be free or may have been allocated via another malloc() or other dynamic 1267
memory allocation. If the memory that is used is still free, use of the memory may be unnoticed. However, if the 1268
memory has been reallocated, altering of the data contained in the memory can result in data corruption. 1269
Determining that a dangling memory reference is the cause of a problem and locating it can be very difficult. 1270
 1271
Setting and using another pointer to the same section of dynamically allocated memory can also lead to undefined 1272
behaviour. Consider the following section of code: 1273
 1274
 int foo() { 1275
 int *ptr = malloc (100*sizeof(int));/* allocate space for 100 integers*/ 1276
 if (ptr != NULL) /* check to see that the memory could be allocated */ 1277
 { 1278

 int ptr2 = &ptr[10]; /* set ptr2 to point to the 10th element of the 1279
allocated memory */ 1280

… /* perform some operations on the dynamic memory */ 1281
 free (ptr); /* memory is no longer needed, so free it */ 1282
 ptr = NULL; /* set ptr to NULL to prevent ptr from being used again */ 1283
 … /* program continues performing other operations */ 1284
 ptr2[0] = 10; /* ERROR – memory is being used after it has been released 1285
via ptr2*/ 1286
 … 1287
 } 1288
 return (0); 1289
 } 1290
 1291
Dynamic memory was allocated via a malloc and then later in the code, ptr2 was used to point to an address in 1292
the dynamically allocated memory. After the memory was freed using free(ptr) and the good practice of 1293
setting ptr to NULL was followed to avoid a dangling reference by ptr later in the code, a dangling reference still 1294
existed using ptr2. 1295
 1296

C.3.24.3 Avoiding the vulnerability or mitigating its effects 1297
 1298

• Set a freed pointer to null immediately after a free() call, as illustrated in the following code: 1299
 free (ptr); 1300

 ptr = NULL; 1301
• Do not create and use additional pointers to dynamically allocated memory. 1302
• Only reference dynamically allocated memory using the pointer that was used to allocate the memory. 1303

 1304
C.3.24.4 Implications for standardization 1305
 1306
Future standardization efforts should consider: 1307

• Modifying the library free(void *ptr) so that it sets ptr to NULL to prevent reuse of ptr. 1308
 1309
C.3.24.5 Bibliography 1310
 1311
 1312
C.3.25 Templates and Generics [SYM] 1313
 1314
Does not apply to C. 1315
 1316
C.3.25.0 Status and history 1317
 1318
C.3.25.1 Terminology and features 1319
 1320
C.3.25.2 Description of vulnerability 1321
 1322
C.3.25.3 Avoiding the vulnerability or mitigating its effects 1323
 1324
C.3.25.4 Implications for standardization 1325
 1326
Future standardization efforts should consider: 1327
None 1328
 1329
C.3.25.5 Bibliography 1330
 1331
 1332
C.3.26 Inheritance [RIP] 1333
 1334
Does not apply to C. 1335
 1336
C.3.26.0 Status and history 1337
 1338
C.3.26.1 Terminology and features 1339
 1340
C.3.26.2 Description of vulnerability 1341
 1342
C.3.26.3 Avoiding the vulnerability or mitigating its effects 1343
 1344
C.3.26.4 Implications for standardization 1345
 1346
Future standardization efforts should consider: 1347

None 1348
 1349
C.3.26.5 Bibliography 1350
 1351
 1352
C.3.27 Initialization of Variables [LAV] 1353
 1354
C.3.27.0 Status and history 1355
 1356
C.3.27.1 Terminology and features 1357
 1358
C.3.27.2 Description of vulnerability 1359
 1360
Local, automatic variables can assume unexpected values if they are used before they are initialized. C99 specifies, 1361
"If an object that has automatic storage duration is not initialized explicitly, its value is indeterminate" [ISO/IEC 1362
9899:1999]. In the common case, on architectures that make use of a program stack, this value defaults to 1363
whichever values are currently stored in stack memory. While uninitialized memory often contains zeros, this is not 1364
guaranteed. Consequently, uninitialized memory can cause a program to behave in an unpredictable or unplanned 1365
manner and may provide an avenue for attack. 1366
 1367
Assuming that an uninitialized variable is 0 can lead to unpredictable program behaviour when the variable is 1368
initialized to a value other than 0. 1369
 1370
C.3.27.3 Avoiding the vulnerability or mitigating its effects 1371
 1372

• Heed compiler warnings about uninitialized variables. These warnings should be resolved as 1373
recommended to achieve a clean compile at high warning levels. 1374

• Do not use memory allocated by functions such as malloc() before the memory is initialized as the 1375
memory contents are indeterminate. 1376

 1377
C.3.27.4 Implications for standardization 1378
 1379
Future standardization efforts should consider: 1380
None 1381
 1382
C.3.27.5 Bibliography 1383
 1384
 1385
C.3.28 Wrap-around Error [XYY] 1386
 1387
C.3.28.0 Status and history 1388
 1389
C.3.28.1 Terminology and features 1390
 1391
C.3.28.2 Description of vulnerability 1392
 1393
Given the limited size of any computer data type, continuously adding one to the data type eventually will cause 1394
the value to go from a the maximum possible value to a very small value. C permits this to happen without any 1395
detection or notification mechanism. 1396
 1397
C is often used for bit manipulation. Part of this is due to the capabilities in C to mask bits and shift them. Another 1398

part is due to the relative closeness C has to assembly instructions. Manipulating bits on a signed value can 1399
inadvertently change the sign bit resulting in a number potentially going from a large positive value to a large 1400
negative value. 1401
 1402
For example, consider the following code for a short int containing 16 bits: 1403
 1404
 int foo(short int i) { 1405
 i++; 1406
 return i; 1407
 } 1408
 1409
Calling foo with the value of 65535 would return -65536. Manipulating a value in this way can result in 1410
unexpected results such as overflowing a buffer. 1411
 1412
In C, bit shifting by a value that is greater than the size of the data type or by a negative number is undefined. The 1413
following code, where a short int is 16 bits, would be undefined when j is greater than or equal to 16 or 1414
negative: 1415
 1416
 int foo(short int i, const short int j) { 1417
 return i>>j; 1418
 } 1419
 1420
C.3.28.3 Avoiding the vulnerability or mitigating its effects 1421
 1422

• Be aware that any of the following operators have the potential to wrap in C: 1423
 1424

 a + b a – b a * b a++ a-- a += b 1425
 a -= b a *= b a << b a >> b -a 1426

 1427
• Use defensive programming techniques to check whether an operation will overflow or underflow the 1428

receiving data type. These techniques can be omitted if it can be shown at compile time that overflow or 1429
underflow is not possible. 1430

• Only conduct bit manipulations on unsigned data types. The number of bits to be shifted by a shift 1431
operator should lie between 1 and (n-1), where n is the size of the data type. 1432

 1433
C.3.28.4 Implications for standardization 1434
 1435
Future standardization efforts should consider: 1436
None 1437
 1438
C.3.28.5 Bibliography 1439
 1440
 1441
C.3.29 Sign Extension Error [XZI] 1442
 1443
C.3.29.0 Status and history 1444
 1445
C.3.29.1 Terminology and features 1446
 1447
C.3.29.2 Description of vulnerability 1448
 1449
C contains a variety of integer sizes: short, int, long int and long long int. Converting from a smaller 1450

to a larger size signed integer will cause the sign bit to extend which could lead to unexpected results. 1451
 1452
The number of bits in a short, int, long int and long long int have been left vague by the C standard 1453
in order to avoid constraints on the hardware architecture. Therefore it is quite possible that the a short, int, 1454
long int and long long int could be contain the identical number of bits. On an architecture where all are 1455
the same size, there would not be a conversion issue. 1456
 1457
When going from a smaller signed integer data type to a larger one, all of the lower order bits are copied to the 1458
larger data type. In order to transfer the signedness of the smaller integer to the larger one in a 2’s complement 1459
architecture, the sign bit must be extended. That is, if the sign bit of the smaller data type is 0, then the additional 1460
bits are set to 0. If the sign bit is 1, the additional bits are set to 1. Not modifying the bits (i.e. extending the sign 1461
bit) in this manner can cause a negative number to become a relatively large positive number upon conversion. 1462
 1463
C.3.29.3 Avoiding the vulnerability or mitigating its effects 1464
 1465

• Use appropriate conversion routines when converting from one data type to another. For example, do not 1466
use an unsigned conversion routine to convert a signed integer type to a larger integer data type as doing 1467
so can yield unexpected results. 1468

 1469
C.3.29.4 Implications for standardization 1470
 1471
Future standardization efforts should consider: 1472
None 1473
 1474
C.3.29.5 Bibliography 1475
 1476
 1477
C.3.30 Operator Precedence/Order of Evaluation [JCW] 1478
 1479
C.3.30.0 Status and history 1480
 1481
C.3.30.1 Terminology and features 1482
 1483
C.3.30.2 Description of vulnerability 1484
 1485
The order in which an expression is evaluated can drastically alter the result of the expression. The order of 1486
evaluation of the operands in C is clearly defined, but misinterpretations by programmers can lead to unexpected 1487
results. 1488
 1489
Consider the following: 1490
 1491
 int foo(short int a, short int b) { 1492
 if (a | 0x7 = b) 1493
 ... 1494
 } 1495
 1496
designed to mask off and test the lower three bits of “a” for equality to “b”. However, due to the precedence rules 1497
in C, the effect of this expression is to perform the “0x7 == b” and then bitwise OR that with “a” which may or 1498
may not be the expected answer. 1499
 1500
C.3.30.3 Avoiding the vulnerability or mitigating its effects 1501
 1502

• Use parentheses generously to avoid any uncertainty or lack of portability in the order of evaluation of an 1503
expression. If parenthesis were used in the previous example, as in: 1504

 1505
 int foo(short int a, short int b) { 1506
 if ((a | 0x7) = b) 1507
 ... 1508
 } 1509
 1510

the order of the evaluation would be clear. 1511
 1512
 1513
C.3.30.4 Implications for standardization 1514
 1515
Future standardization efforts should consider: 1516

• Creating a few standardized precedence orders. Standardizing on a few precedence orders will help to 1517
eliminate the confusing intricacies that exist between languages. This would not affect current languages 1518
as altering precedence orders in existing languages is too onerous. However, this would set a basis for the 1519
future as new languages are created and adopted. Stating that a language uses “ISO precedence order A” 1520
would be very useful rather than having to spell out the entire precedence order that differs in a 1521
conceptually minor way from some other languages, but in a major way when programmers attempt to 1522
switch between languages. 1523

 1524
C.3.30.5 Bibliography 1525
 1526
 1527
C.3.31 Side-effects and Order of Evaluation [SAM] 1528
 1529
C.3.31.0 Status and history 1530
 1531
C.3.31.1 Terminology and features 1532
 1533
C.3.31.2 Description of vulnerability 1534
 1535
C allows expressions to have side effects. If two or more side effects modify the same expression as in: 1536
 1537

int v[10]; 1538
int i; 1539
/* … */ 1540
i = v[i++]; 1541

 1542
the behaviour is undefined and this can lead to unexpected results. Either the “i++” is performed first or the 1543
assignment “i=v[i]” is performed first. Because the order of evaluation can have drastic effects on the 1544
functionality of the code, this can greatly impact portability. 1545
There are several situations in C where the order of evaluation of subexpressions or the order in which side effects 1546
take place is unspecified including: 1547

• The order in which the arguments to a function are evaluated (C99, Section 6.5.2.2,"Function calls"). 1548
• The order of evaluation of the operands in an assignment statement (C99, Section 6.5.16,"Assignment 1549

operators"). 1550
• The order in which any side effects occur among the initialization list expressions is unspecified. In 1551

particular, the evaluation order need not be the same as the order of subobject initialization (C99, Section 1552
6.7.8, “Initialization"). 1553

Because these are unspecified behaviours, testing may give the false impression that the code is working and 1554

portable, when it could just be that the values provided cause evaluations to be performed in a particular order 1555
that causes side effects to occur as expected. 1556
 1557
C.3.31.3 Avoiding the vulnerability or mitigating its effects 1558
 1559

• Expressions should be written so that the same effects will occur under any order of evaluation that the C 1560
standard permits since side effects can be dependent on an implementation specific order of evaluation. 1561

 1562
C.3.31.4 Implications for standardization 1563
 1564
Future standardization efforts should consider: 1565
None 1566
 1567
C.3.31.5 Bibliography 1568
 1569
 1570
C.3.32 Likely Incorrect Expression [KOA] 1571
 1572
C.3.32.0 Status and history 1573
 1574
C.3.32.1 Terminology and features 1575
 1576
C.3.32.2 Description of vulnerability 1577
 1578
C has several instances of operators which are similar in structure, but vastly different in meaning. This is so 1579
common that the C example of confusing the Boolean operator “==” with the assignment “=” is frequently cited as 1580
an example among programming languages. Using an expression that is technically correct, but which may just be 1581
a null statement can lead to unexpected results. 1582
 1583
C is also provides a lot of freedom in constructing statements. This freedom, if misused, can result in unexpected 1584
results and potential vulnerabilities. 1585
 1586
The flexibility of C can obscure the intent of a programmer. Consider: 1587
 1588

int x,y; 1589
/* … */ 1590
if (x = y) 1591
 { 1592
 /* … */ 1593
 } 1594

 1595
A fair amount of analysis may need to be done to determine whether the programmer intended to do an 1596
assignment as part of the if statement (perfectly valid in C) or whether the programmer made the common 1597
mistake of using an “=” instead of a “==”. In order to prevent this confusion, it is suggested that any assignments 1598
in contexts that are easily misunderstood be moved outside of the Boolean expression. This would change the 1599
example code to: 1600
 1601

int x,y; 1602
/* … */ 1603
x = y; 1604

 if (x == 0) 1605
 { 1606
 /* … */ 1607

 } 1608
 1609
This would clearly state what the programmer meant and that the assignment of y to x was intended. 1610
 1611
Programmers can easily get in the habit of inserting the “;” statement terminator at the end of statements. 1612
However, inadvertently doing this can drastically alter the meaning of code, even though the code is valid as in the 1613
following example: 1614
 1615
 int a,b; 1616
 /* … */ 1617
 if (a == b); /* the semi-colon will make this a null statement */ 1618
 { 1619
 /* … */ 1620
 } 1621
 1622
Because of the misplaced semi-colon, the code block following the if will always be executed. In this case, it is 1623
extremely likely that the programmer did not intend to put the semi-colon there. 1624
 1625
C.3.32.3 Avoiding the vulnerability or mitigating its effects 1626
 1627

• Simplify statements with interspersed comments to aid in accurately programming functionality and help 1628
future maintainers understand the intent and nuances of the code. The flexibility of C permits a 1629
programmer to create extremely complex expressions. For example, the following sub-expression, though 1630
valid, would be a nightmare to understand: 1631

 1632
 int d,h,i,k; 1633
 /* … */ 1634
 (h+=*d++-h)&&(‘'’'^(h-’'’'))&&(i<<=4 & i||!++i--&&(h--||(k|=i))- 1635
 i/=2); 1636
 1637
• Do not embed assignments inside of expressions. Assignments embedded within other statements can be 1638

potentially problematic. Each of the following would be clearer and have less potential for problems if the 1639
embedded assignments were conducted outside of the expressions: 1640

 1641
 int a,b,c,d; 1642
 /* … */ 1643
 if ((a == b) || (c = (d-1))) /* the assignment to c may not occur */ 1644
 /* if a is equal to b */ 1645

 1646
or: 1647

 1648
 int a,b,c; 1649
 /* … */ 1650
 foo (a=b, c); 1651

 1652
Each is a valid C statement, but each may have unintended results. 1653

• Null statements should have a source line of their own. This, combined with enforcement by static 1654
analysis, would make clearer the intention that the statement was meant to be a null statement. 1655

 1656
C.3.32.4 Implications for standardization 1657
 1658
Future standardization efforts should consider: 1659
None 1660
 1661

C.3.32.5 Bibliography 1662
 1663
 1664
C.3.33 Dead and Deactivated Code [XYQ] 1665
 1666
C.3.33.0 Status and history 1667
 1668
C.3.33.1 Terminology and features 1669
 1670
C.3.33.2 Description of vulnerability 1671
 1672
As with any programming language that contains branching statements, C programs can potentially contain dead 1673
code. It is of concern primarily since dead code may reveal a logic flaw or an unintentional mistake on the part of 1674
the programmer. Sometimes statements can be inserted in C programs as defensive programming such as adding a 1675
default case to a switch statement even though the expectation is that the default can never be reached – until 1676
through some twist of logic or through modifications to the code the notifying error message reveals the surprising 1677
event. These types of defensive statements may be able to be shown to be computationally impossible and thus 1678
are dead code. Those are not the focus. The focus is on those statements which are not defensive and which are 1679
unreachable. It is impossible to identify all such cases and therefore only those which are blatant and that indicate 1680
deeper issues of flawed logic may be able to be identified and removed. 1681
 1682
C uses some operators that are easily confused with other operators. For instance, the common mistake of using 1683
an assignment operator in a Boolean test as in: 1684
 1685
 int a,b; 1686
 /* … */ 1687

if (a = b) 1688
 … 1689
 1690
can cause portions of code to become dead code since unless b can contain the value 0, the else portion of the 1691
if statement cannot be reached. 1692
 1693
C.3.33.3 Avoiding the vulnerability or mitigating its effects 1694
 1695

• Eliminate dead code to the extent possible from C programs. 1696
• Use compilers and analysis tools to assist in identifying unreachable code. 1697
• Use “//” comment syntax instead of “/*…*/” comment syntax to avoid the inadvertent commenting out 1698

of sections of code. 1699
• Delete deactivated code from programs due to the possibility of accidentally activating it. 1700

 1701
C.3.33.4 Implications for standardization 1702
 1703
Future standardization efforts should consider: 1704
None 1705
 1706
C.3.33.5 Bibliography 1707
 1708
 1709
C.3.34 Switch Statements and Static Analysis [CLL] 1710
 1711
C.3.34.0 Status and history 1712
 1713

C.3.34.1 Terminology and features 1714
 1715
C.3.34.2 Description of vulnerability 1716
 1717
Because of the way in which the switch-case statement in C is structured, it is relatively easy to unintentionally omit 1718
the break statement between cases causing unintended execution of statements for some cases. 1719
 1720
C contains a switch statement of the form: 1721
 1722
 char abc; 1723
 /* … */ 1724
 switch (abc) 1725
 { 1726
 case 1: 1727

sval = “a”; 1728
 break; 1729
 case 2: 1730
 sval = “b”; 1731
 break; 1732
 case 3: 1733
 sval = “c”; 1734
 break; 1735
 default: 1736
 printf (“Invalid selection\n”); 1737
 1738
If there isn’t a default case and the switched expression doesn’t match any of the cases, then control simply shifts 1739
to the next statement after the switch statement block. Unintentionally omitting a break statement between two 1740
cases will cause subsequent cases to be executed until a break or the end of the switch block is reached. This 1741
could cause unexpected results. 1742
 1743
C.3.34.3 Avoiding the vulnerability or mitigating its effects 1744
 1745

• Only a direct fall through should be allowed from one case to another. That is, every nonempty case 1746
statement should be terminated with a break statement as illustrated in the following example: 1747

 1748
int i; 1749
/* … */ 1750
switch (i) 1751

 { 1752
 case 1: 1753
 case 2: 1754
 i++; /* fall through from case 1 to 2 is permitted */ 1755
 break; 1756
 case 3: 1757
 j++; 1758

case 4: /* fall through from case 3 to 4 is not permitted */ 1759
/* as it is not a direct fall through due to the */ 1760
/* j++ statement */ 1761

 } 1762
• All switch statements should have a default value if only to indicate that there could exist a case that 1763

was unanticipated and thought impossible by the developers. The only exception is for switches on an 1764
enumerated type where all possible values can be exhausted. Even in the case of enumerated types, it is 1765
suggested that a default be inserted in anticipation of possible code changes to the enumerated type. 1766

 1767

C.3.34.4 Implications for standardization 1768
 1769
Future standardization efforts should consider: 1770

• Defining a “fallthru” construct that will explicitly bind multiple switch cases together and eliminate the 1771
need for the break statement. The default would be for a case to break instead of falling through to the 1772
next case. Granted this is a major shift in concept, but if it could be accomplished, less unintentional 1773
errors would occur. 1774

 1775
C.3.34.5 Bibliography 1776
 1777
 1778
C.3.35 Demarcation of Control Flow [EOJ] 1779
 1780
C.3.35.0 Status and history 1781
 1782
C.3.35.1 Terminology and features 1783
 1784
A block-structured language is a language that has a syntax for enclosing structures between bracketed keywords, 1785
such as an if statement bracketed by if and endif, as in FORTRAN, or a code section bracketed by BEGIN and 1786
END, as in PL/1. 1787
 1788
A comb-structured language is a language that has an ordered set of keywords to define separate sections within a 1789
block, analogous to the multiple teeth or prongs in a comb separating sections of the comb. For example, in Ada, a 1790
block is a 4-pronged comb with keywords declare, begin, exception, end, and the if statement in Ada is a 1791
4-pronged comb with keywords if, then, else, end if. 1792
 1793
C.3.35.2 Description of vulnerability 1794
 1795
C is a block-structured language, while languages such as Ada and Pascal are comb-structured languages. 1796
Therefore, it may not be readily apparent which statements are part of a loop construct or an if statement. 1797
 1798
Consider the following section of code: 1799
 1800
 int foo(int a, const int *b) { 1801
 int i=0; 1802
 1803
 /* … */ 1804

a = 0; 1805
 for (i=0; i<10; i++); 1806
 { 1807
 a = a + b[i]; 1808
 } 1809
 1810
 } 1811
 1812
At first it may appear that a will be a sum of the numbers b[0] to b[9]. However, even though the code is 1813
structured so that the “a = a + b[i]” code is structured to appear within the for loop, the “;” at the end of 1814
the for statement causes the loop to be on a null statement (the “;”) and the “a = a + b[i];” statement to 1815
only be executed once. In this case, this mistake may be readily apparent during development or testing. More 1816
subtle cases may not be as readily apparent leading to unexpected results. 1817
 1818
If statements in C are also susceptible to control flow problems since there isn’t a requirement in C for there to be 1819
an else statement for every if statement. An else statement in C always belong to the most recent if 1820

statement without an else. However, the situation could occur where it is not readily apparent to which if 1821
statement an else due to the way the code is indented or aligned. 1822
 1823
C.3.35.3 Avoiding the vulnerability or mitigating its effects 1824
 1825

• Enclose the bodies of if, else, while, for, etc. in braces. This will reduce confusion and potential 1826
problems when modifying the software. For example: 1827

 1828
int a,b,i; 1829
 1830
/* … */ 1831
 1832
if (i = 10) 1833

 { 1834
 a = 5; /* this is correct */ 1835
 b = 10; 1836
 } 1837
 else 1838
 a = 10; /* this is incorrect -- the assignments to b */ 1839
 /* were added later and were expected to */ 1840
 b = 5; /* be part of the if and else and indented */ 1841
 /* as such, but did not become part of the else*/ 1842
 1843

• Use a final else statement or a comment stating why the final else isn’t necessary in all if and else 1844
if statements. 1845

 1846
C.3.35.4 Implications for standardization 1847
 1848
Future standardization efforts should consider: 1849
None 1850
 1851
C.3.35.5 Bibliography 1852
 1853
 1854
C.3.36 Loop Control Variables [TEX] 1855
 1856
C.3.36.0 Status and history 1857
 1858
C.3.36.1 Terminology and features 1859
 1860
C.3.36.2 Description of vulnerability 1861
 1862
C allows the modification of loop control variables within a loop. Though this is usually not considered good 1863
programming practice as it can cause unexpected problems, the flexibility of C expects the programmer to use this 1864
capability responsibly. 1865
 1866
Since the modification of a loop control variable within a loop is infrequently encountered, reviewers of C code may 1867
not expect it and hence miss noticing the modification. Modifying the loop control variable can cause unexpected 1868
results if not carefully done. In C, the following is valid: 1869
 1870

int a,i; 1871
 1872

for (i=1; i<10; i++) 1873

 { 1874
 … 1875
 if (a > 7) 1876
 i = 10; 1877
 … 1878
} 1879

 1880
which would cause the for loop to exit once a is greater than 7 regardless of the number of loops that have 1881
occurred. 1882
 1883
C.3.36.3 Avoiding the vulnerability or mitigating its effects 1884
 1885

• Do not modify a loop control variable within a loop. Even though the capability exists in C, it is still 1886
considered to be a poor programming practice. 1887

 1888
C.3.36.4 Implications for standardization 1889
 1890
Future standardization efforts should consider: 1891

• Defining an identifier type for loop control that cannot be modified by anything other than the loop 1892
control construct would be a relatively minor addition to C that could make C code safer and encourage 1893
better structured programming. 1894

 1895
C.3.36.5 Bibliography 1896
 1897
 1898
C.3.37 Off-by-one Error [XZH] 1899
 1900
C.3.37.0 Status and history 1901
 1902
C.3.37.1 Terminology and features 1903
 1904
C.3.37.2 Description of vulnerability 1905
 1906
Arrays are a common place for off by one errors to manifest. In C, arrays are indexed starting at 0, causing the 1907
common mistake of looping from 0 to the size of the array as in: 1908
 1909
 int foo() { 1910

int a[10]; 1911
int i; 1912
for (i=0, i<=10, i++) 1913
… 1914
return (0); 1915
} 1916

 1917
Strings in C are also another common source of errors in C due to the need to allocate space for and account for 1918
the string sentinel value. A common mistake is to expect to store an n length string in an n length array instead of 1919
length n+1 to account for the sentinel ‘\0’. Interfacing with other languages that do not use sentinel values in 1920
strings can also lead to an off by one error. 1921
 1922
C does not flag accesses outside of array bounds, so an off by one error may not be as detectable in C as in some 1923
other languages. Several very good and freely available tools for C can be used to help detect accesses beyond the 1924
bounds of arrays that are caused by an off by one error. However, such tools will not help in the case where only a 1925
portion of the array is used and the access is still within the bounds of the array. 1926

 1927
Looping one more or one less is usually detectable by good testing. Due to the structure of the C language, this 1928
may be the main way to avoid this vulnerability. Unfortunately some cases may still slip through the development 1929
and test phase and manifest themselves during operational use. 1930
 1931
C.3.37.3 Avoiding the vulnerability or mitigating its effects 1932
 1933

• Use careful programming, testing of border conditions and static analysis tools to detect off by one errors 1934
in C. 1935

 1936
C.3.37.4 Implications for standardization 1937
 1938
Future standardization efforts should consider: 1939
None 1940
 1941
C.3.37.5 Bibliography 1942
 1943
 1944
C.3.38 Structured Programming [EWD] 1945
 1946
C.3.38.0 Status and history 1947
 1948
C.3.38.1 Terminology and features 1949
 1950
C.3.38.2 Description of vulnerability 1951
 1952
It is as easy to write structured programs in C as it is not to. C contains the goto statement, which can create 1953
unstructured code. Also, C has continue, break, and return that can create a complicated control flow, 1954
when used in an undisciplined manner. Spaghetti code can be more difficult for C static analyzers to analyze and is 1955
sometimes used on purpose to intentionally obfuscate the functionality of software. Code that has been modified 1956
multiple times by an assortment of programmers to add or remove functionality or to fix problems can be prone to 1957
become very unstructured. 1958
 1959
Because unstructured code in C can cause problems for analyzers (both automated and human) of code, problems 1960
with the code may not be detected as readily or at all as would be the case if the software was written in a 1961
structured manner. 1962
 1963
C.3.38.3 Avoiding the vulnerability or mitigating its effects 1964
 1965

• Write clear and concise structured code to make code as understandable as possible. 1966
• Restrict the use of goto, continue, break and return to encourage more structured programming. 1967
• Encourage the use of a single exit point from a function. At times, this guidance can have the opposite 1968

effect, such as in the case of an if check of parameters at the start of a function that requires the 1969
remainder of the function to be encased in the if statement in order to reach the single exit point. If, for 1970
example, the use of multiple exit points can arguably make a piece of code clearer, then they should be 1971
used. However, the code should be able to withstand a critique that a restructuring of the code would 1972
have made the need for multiple exit points unnecessary. 1973

 1974
C.3.38.4 Implications for standardization 1975
 1976
Future standardization efforts should consider: 1977

• Deprecating the goto statement. The use of the goto construct is very often spotlighted as the 1978

antithesis of good structured programming. Though its deprecation will not instantly make all C code 1979
structured, deprecating the goto and leaving in place the restricted goto variations (e.g. break and 1980
continue) and possibly adding other restricted goto’s could assist in encouraging safer and more 1981
secure C programming in general. 1982

 1983
C.3.38.5 Bibliography 1984
 1985
 1986
C.3.39 Passing Parameters and Return Values [CSJ] 1987
 1988
C.3.39.0 Status and history 1989
 1990
C.3.39.1 Terminology and features 1991
 1992
C.3.39.2 Description of vulnerability 1993
 1994
At times, it is useful to interface a C program with routines written in other languages. Other languages may have 1995
different data types, storage orders or parameter passing semantics. These differences in interfacing with other 1996
languages can lead to unexpected interpretations or manipulations of data. 1997
 1998
C only passes parameters by value. That is, the receiving function will get the value of the parameter. Call by 1999
reference can be achieved by passing a reference as a value. Interfacing with another language, such as Fortran, 2000
that uses call by reference can yield some surprising results. Therefore, the addresses of the arguments must be 2001
passed when calling a Fortran subroutine from C. There are many other major and minor issues in interfacing to 2002
other languages all of which can lead to unexpected results and even potential vulnerabilities. For example, arrays 2003
in C are stored in row major order (last index varies fastest) whereas Fortran stores arrays in column major order 2004
(first index varies fastest). Other issues are minor annoyances, such as the inability of C to be able to pass a 2005
constant as a parameter to a Fortran subroutine since there isn’t an address to pass (that is, &7) to satisfy the call 2006
by reference expectation. 2007
 2008
C.3.39.3 Avoiding the vulnerability or mitigating its effects 2009
 2010

• Use caution when interfacing with other languages as this can be error prone. 2011
• Use interface packages that are available for many language combinations which can assist in avoiding 2012

some problems in interfacing. Even with an interface package, there will likely still be some issues that 2013
need to be addressed for a successful interface. 2014

• Conduct additional rigorous testing on sections of code that interface with other languages. 2015
 2016
C.3.39.4 Implications for standardization 2017
 2018
Future standardization efforts should consider: 2019

• Defining a standardized interface package for interfacing C with many of the top programming languages 2020
and a reciprocal package should be developed of the other top languages to interface with C. 2021

 2022
C.3.39.5 Bibliography 2023
 2024
 2025
C.3.40 Dangling References to Stack Frames [DCM] 2026
 2027
C.3.40.0 Status and history 2028
 2029

C.3.40.1 Terminology and features 2030
 2031
C.3.40.2 Description of vulnerability 2032
 2033
C allows the address of a variable to be stored in a variable. Should this variable’s address be, for example, the 2034
address of a local variable that was part of a stack frame, then using the address after the local variable has been 2035
deallocated can yield unexpected behaviour as the memory will have been made available for further allocation 2036
and may indeed been allocated for some other use. Any use of perishable memory after it has been deallocated 2037
can lead to unexpected results. 2038
 2039
C.3.40.3 Avoiding the vulnerability or mitigating its effects 2040
 2041

• Do not assign the address of an object to any entity which persists after the object has ceased to exist. 2042
This is done in order to avoid the possibility of a dangling reference. Once the object ceases to exist, then 2043
so will the stored address of the object preventing accidental dangling references. 2044

• Pointers should be assigned the null-pointer value before executing a return for any block-local 2045
addresses that have been stored in longer-lived storage. 2046

C.3.40.4 Implications for standardization 2047
 2048
Future standardization efforts should consider: 2049
None 2050
 2051
C.3.40.5 Bibliography 2052
 2053
 2054
C.3.41 Subprogram Signature Mismatch [OTR] 2055
 2056
C.3.41.0 Status and history 2057
 2058
C.3.41.1 Terminology and features 2059
 2060
C.3.41.2 Description of vulnerability 2061
 2062
Functions in C may be called with more or less than the number of parameters the receiving function expects. 2063
However, most C compilers will generate a warning or an error about this situation. If the number of arguments 2064
does not equal the number of parameters, the behaviour is undefined. This can lead to unexpected results when 2065
the count or types of the parameters differs from the calling to the receiving function. If too few arguments are 2066
sent to a function, then the function could still pop the expected number of arguments from the stack leading to 2067
unexpected results. 2068
 2069
C allows a variable number of arguments in function calls. A good example of an implementation of this is the 2070
printf function. This is specified in the function call by terminating the list of parameters with an ellipsis (, 2071
...). After the comma, no information about the number or types of the parameters is supplied. This can be a 2072
very useful feature for situations such as printf, but the use of this feature outside of very special situations can 2073
be the basis for vulnerabilities. 2074
 2075
Functions may or may not be defined with a function definition. The function definition may or may not contain a 2076
parameter type list. If a function that accepts a variable number of arguments is defined without a parameter 2077
type list that ends with the ellipsis notation, the behaviour is undefined. 2078
 2079
If the calling and receiving functions differ in the type of parameters, C will, if possible, do an implicit conversion 2080

such as the call to sqrt that expects a double: 2081
 2082
 double sqrt(double) 2083
 2084
the call: 2085
 2086
 root2 = sqrt(2); 2087
 2088
coerces the integer 2 into the double value 2.0. 2089
 2090
C.3.41.3 Avoiding the vulnerability or mitigating its effects 2091
 2092

• Use a function prototype to declare a function with its expected parameters to allow the compiler to 2093
check for a matching count and types of the parameters. The prototype contains just the name of the 2094
function and its parameters without the body of code that would normally follow. 2095

• Do not use the variable argument feature except in rare instances. The variable argument feature such as 2096
is used in printf()is difficult to use in a type safe manner. 2097

 2098
C.3.41.4 Implications for standardization 2099
 2100
Future standardization efforts should consider: 2101
None 2102
 2103
C.3.41.5 Bibliography 2104
 2105
 2106
C.3.42 Recursion [GDL] 2107
 2108
C.3.42.0 Status and history 2109
 2110
C.3.42.1 Terminology and features 2111
 2112
C.3.42.2 Description of vulnerability 2113
 2114
C permits recursive calls both directly and indirectly through any chain of other functions. However, recursive 2115
functions must be implemented carefully in C as C lacks some of the protective mechanisms that could avert 2116
serious problems such as an overly large consumption of resources or an overrun of buffers. Since C is frequently 2117
cited for its high performance efficiency, the use of recursion in C is counter to this as recursion is usually very 2118
inefficient both in execution time and memory usage. 2119
 2120
As with many languages, the high consumption of resources for recursive calls applies to C. It is difficult to predict 2121
the complete range of values that a recursive function can execute that will lead to a manageable consumption of 2122
resources. Part of this difficulty is that the range of values can change depending on the current load of the host. 2123
Manipulation of the input values to a recursive function can result in an intentional exhaustion of system resources 2124
leading to a denial of service. 2125
 2126
C.3.42.3 Avoiding the vulnerability or mitigating its effects 2127
 2128

• Only use recursion only in very rare instances. Although recursion can shorten programs considerably, 2129
there is a high performance penalty which is contrary to the usual high efficiency of C. 2130

• Only use recursion if it can be proven that adequate resources exist to support the maximum level of 2131
recursion possible. 2132

 2133
C.3.42.4 Implications for standardization 2134
 2135
Future standardization efforts should consider: 2136
None 2137
 2138
C.3.42.5 Bibliography 2139
 2140
 2141
C.3.43 Returning Error Status [NZN] 2142
 2143
C.3.43.0 Status and history 2144
 2145
C.3.43.1 Terminology and features 2146
 2147
C.3.43.2 Description of vulnerability 2148
 2149
C provides the include file errno.h that defines the macros EDOM, EILSEQ and ERANGE, which expand to 2150
integer constant expressions with type int, distinct positive values and which are suitable for use in #if 2151
preprocessing directives. C also provides the integer errno that can be set to a nonzero value by any library 2152
function (if the use of errno is not documented in the description of the function in the C Standard, errno could 2153
be used whether or not there is an error). Though these values are defined, inconsistencies in responding to error 2154
conditions can lead to vulnerabilities. 2155
 2156
C.3.43.3 Avoiding the vulnerability or mitigating its effects 2157
 2158

• Check the returned error status upon return from a function. The C standard library functions provide an 2159
error status as the return value and sometimes in an additional global error value. 2160

• Set errno to zero before a library function call in situations where a program intends to check errno 2161
before a subsequent library function call. 2162

• Use errno_t to make it readily apparent that a function is returning an error code. Often a function that 2163
returns an errno error code is declared as returning a value of type int. Although syntactically correct, 2164
it is not apparent that the return code is an errno error code. TR 24731-1 introduced the new type 2165
errno_t in errno.h that is defined to be type int. 2166

 2167
C.3.43.4 Implications for standardization 2168
 2169
Future standardization efforts should consider: 2170

• Joining with other languages in developing a standardized set of mechanisms for detecting and treating 2171
error conditions so that all languages to the extent possible could use them. Note that this does not mean 2172
that all languages should use the same mechanisms as there should be a variety (e.g. label parameters, 2173
auxiliary status variables), but each of the mechanisms should be standardized. 2174

 2175
C.3.43.5 Bibliography 2176
 2177
 2178
C.3.44 Termination Strategy [REU] 2179
 2180
C.3.44.0 Status and history 2181
 2182
C.3.44.1 Terminology and features 2183

 2184
C.3.44.2 Description of vulnerability 2185
 2186
Choosing when and where to exit is a design issue, but choosing how to perform the exit may result in the host 2187
being left in an unexpected state. C provides several ways of terminating a program including exit(), _Exit(), 2188
and abort(). A return from the initial call to the main function is equivalent to calling the exit() function 2189
with the value returned by the main function as its argument (this is if the return type of the main function is a 2190
type compatible with int, otherwise the termination status returned to the host environment is unspecified) or 2191
simply reaching the “}” that terminates the main function returns a value of 0. 2192
 2193
All of the termination strategies in C have undefined, unspecified, and/or implementation defined behaviour 2194
associated with them. For example, if more than one call to the exit() function is executed by a program, the 2195
behaviour is undefined. The amount of clean-up that occurs upon termination such as the removal of temporary 2196
files or the flushing of buffers varies and may be implementation defined. 2197
 2198
A call to exit() or _Exit() will terminate a program normally. Abnormal program termination will occur 2199
when abort() is used to exit a program (unless the signal SIGABRT is caught and the signal handler does not 2200
return). Unlike a call to exit(), when either _Exit() or abort() are used to terminate a program, it is 2201
implementation defined as to whether open streams with unwritten buffered data are flushed, open streams are 2202
closed, or temporary files are removed. This can leave a system in an unexpected state. 2203
 2204
C provides the function atexit() that allows functions to be registered so that at normal program termination, 2205
the registered functions will be executed to perform desired functions. C99 requires the capability to register at 2206
least 32 functions. Implementations expecting more than 32 registered functions may yield unexpected results. 2207
 2208
C.3.44.3 Avoiding the vulnerability or mitigating its effects 2209
 2210

• Use a return from the main() program as it is the cleanest way to exit a C program. 2211
• Use exit() to quickly exit from a deeply nested function. 2212
• Use abort() in situations where an abrupt halt is needed. If abort() is necessary, the design should 2213

protect critical data from being exposed after an abrupt halt of the program. 2214
• Become familiar with the undefined, unspecified and/or implementation aspects of each of the 2215

termination strategies. 2216
 2217
C.3.44.4 Implications for standardization 2218
 2219
Future standardization efforts should consider: 2220

• Since fault handling and exiting of a program is common to all languages, it is suggested that common 2221
terminology such as the meaning of fail safe, fail hard, fail soft, etc. along with a core API set such as 2222
exit, abort, etc. be standardized and coordinated with other languages. 2223

 2224
C.3.44.5 Bibliography 2225
 2226
 2227
 2228
C.3.45 Extra Intrinsics [LRM] 2229
 2230
Does not apply to C. 2231
 2232
C.3.45.0 Status and history 2233
 2234

C.3.45.1 Terminology and features 2235
 2236
C.3.45.2 Description of vulnerability 2237
 2238
C.3.45.3 Avoiding the vulnerability or mitigating its effects 2239
 2240
C.3.45.4 Implications for standardization 2241
 2242
Future standardization efforts should consider: 2243
None 2244
 2245
C.3.45.5 Bibliography 2246
 2247
 2248
C.3.46 Type-breaking Reinterpretation of Data [AMV] 2249
 2250
C.3.46.0 Status and history 2251
 2252
C.3.46.1 Terminology and features 2253
 2254
C.3.46.2 Description of vulnerability 2255
 2256
The primary way in C that a reinterpretation of data is accomplished is through a union which may be used to 2257
interpret the same piece of memory in multiple ways. If the use of the union members is not managed carefully, 2258
then unexpected and erroneous results may occur. 2259
 2260
C allows the use of pointers to memory so that an integer pointer could be used to manipulate character data. This 2261
could lead to a mistake in the logic that is used to interpret the data leading to unexpected and erroneous results. 2262
 2263
C.3.46.3 Avoiding the vulnerability or mitigating its effects 2264
 2265

• Avoid the use of unions as it is relatively easy for there to exist an unexpected program flow that leads to a 2266
misinterpretation of the union data. 2267

 2268
C.3.46.4 Implications for standardization 2269
 2270
Future standardization efforts should consider: 2271

• Deprecating unions. The primary reason for the use of unions to save memory has been diminished 2272
considerably as memory has become cheaper and more available. Unions are not statically type safe and 2273
are historically known to be a common source of errors, leading to many C programming guidelines 2274
specifically prohibiting the use of unions. 2275

 2276
C.3.46.5 Bibliography 2277
 2278
 2279
C.3.47 Memory Leak [XYL] 2280
 2281
C.3.47.0 Status and history 2282
 2283
C.3.47.1 Terminology and features 2284
 2285
C.3.47.2 Description of vulnerability 2286

 2287
C is prone to memory leaks as many programs use dynamically allocated memory. C relies on manual memory 2288
management rather than a built in garbage collector primarily since automated memory management can be 2289
unpredictable, impact performance and is limited in its ability to detect unused memory such as memory that is 2290
still referenced by a pointer, but is never used. 2291
 2292
Memory is dynamically allocated in C using the library calls malloc(), calloc(), and realloc(). When the 2293
program no longer needs the dynamically allocated memory, it can be released using the library call free(). 2294
Should there be a flaw in the logic of the program, memory continues to be allocated but is not freed when it is no 2295
longer needed. A common situation is where memory is allocated while in a function, the memory is not freed 2296
before the exit from the function and the lifetime of the pointer to the memory has ended upon exit from the 2297
function. 2298
 2299
C.3.47.3 Avoiding the vulnerability or mitigating its effects 2300
 2301

• Use debugging tools such as leak detectors to help identify unreachable memory. 2302
• Allocate and free memory in the same module and at the same level of abstraction to make it easier to 2303

determine when and if an allocated block of memory has been freed. 2304
• Use realloc() only to resize dynamically allocated arrays. 2305
• Use garbage collectors that are available to replace the usual C library calls for dynamic memory allocation 2306

which allocate memory to allow memory to be recycled when it is no longer reachable. The use of 2307
garbage collectors may not be acceptable for some applications as the delay introduced when the 2308
allocator reclaims memory may be noticeable or even objectionable leading to performance degradation. 2309

 2310
C.3.47.4 Implications for standardization 2311
 2312
Future standardization efforts should consider: 2313
None 2314
 2315
C.3.47.5 Bibliography 2316
 2317
 2318
C.3.48 Argument Passing to Library Functions [TRJ] 2319
 2320
C.3.48.0 Status and history 2321
 2322
C.3.48.1 Terminology and features 2323
 2324
C.3.48.2 Description of vulnerability 2325
 2326
Parameter passing in C is either pass by reference or pass by value. There isn’t a guarantee that the values being 2327
passed will be verified by either the calling or receiving functions. So values outside of the assumed range may be 2328
received by a function resulting in a potential vulnerability. 2329
 2330
A parameter may be received by a function that was assumed to be within a particular range and then an operation 2331
or series of operations is performed using the value of the parameter resulting in unanticipated results and even a 2332
potential vulnerability. 2333
 2334
C.3.48.3 Avoiding the vulnerability or mitigating its effects 2335
 2336

• Do not make assumptions about the values of parameters. 2337
• Do not assume that the calling or receiving function will be range checking a parameter. It is always safest 2338

to not make any assumptions about parameters used in C libraries. Because performance is sometimes 2339
cited as a reason to use C, parameter checking in both the calling and receiving functions is considered a 2340
waste of time. Since the calling routine may have better knowledge of the values a parameter can hold, it 2341
may be considered the better place for checks to be made as there are times when a parameter doesn’t 2342
need to be checked since other factors may limit its possible values. However, since the receiving routine 2343
understands how the parameter will be used and it is good practice to check all inputs, it makes sense for 2344
the receiving routine to check the value of parameters. Therefore, in C it is very difficult to create a 2345
blanket statement as to where the parameter checks should be made and as a result, parameter checks 2346
are recommended in both the calling and receiving routines unless knowledge about the calling or 2347
receiving routines dictates that this isn’t needed. 2348

 2349
C.3.48.4 Implications for standardization 2350
 2351
Future standardization efforts should consider: 2352

• Creating a recognizable naming standard for routines such that one version of a library does parameter 2353
checking to the extent possible and another version does no parameter checking. The first version would 2354
be considered safer and more secure and the second could be used in certain situations where 2355
performance is key and the checking is assumed to be done in the calling routine. A naming standard 2356
could be made such that the library that does parameter checking could be named as usual, say 2357
“library_xyz” and an equivalent version that does not do checking could have a “_p” appended, such as 2358
“library_xyz_p”. Without a naming standard such as this, a considerable number of wasted cycles will be 2359
conducted doing a double check of parameters or even worse, no checking will be done in both the calling 2360
and receiving routines as each is assuming the other is doing the checking. 2361

 2362
C.3.48.5 Bibliography 2363
 2364
 2365
C.3.49 Dynamically-linked Code and Self-modifying Code [NYY] 2366
 2367
C.3.49.0 Status and history 2368
 2369
C.3.49.1 Terminology and features 2370
 2371
C.3.49.2 Description of vulnerability 2372
 2373
Most loaders allow dynamically linked libraries also known as shared libraries. Code is designed and tested using a 2374
suite of shared libraries which are loaded at execution time. The process of linking and loading is outside the scope 2375
of the C standard, but many popular platforms select libraries from directories on the host in a similar way through 2376
the use of an environment variable that contains the search path to be used. For example, the environment 2377
variable for UNIX based systems 2378
 2379
 LD_LIBRARY_PATH=.:/opt/gdbm-1.8.3/lib:/net/lib 2380
 2381
specifies the directories to be searched to locate needed shared libraries (on Windows platforms, the PATH 2382
variable is used). By altering the path or location of libraries, it is possible that the library that is used for testing is 2383
not the same as the one used for operation. 2384
 2385
Shared libraries can call other shared libraries. It can be very difficult to exactly determine the location and depth 2386
of the dependencies of shared libraries. 2387
 2388
Modifying the LD_LIBRARY_PATH or PATH can alter which shared libraries are loaded. If an attacker is able to 2389
insert the /tmp path in the library path as follows: 2390

 2391
 LD_LIBRARY_PATH=/tmp:.:/opt/gdbm-1.8.3/lib:/net/lib 2392
 2393
and inserts a malicious library in the /tmp directory, the malicious library will be used instead of the one the 2394
developer had intended and tested with the code. Even with the original path: 2395
 2396
 LD_LIBRARY_PATH=.:/opt/gdbm-1.8.3/lib:/net/lib 2397
 2398
the use of the current directory path, “.”, at the start of the library path would mean that if an attacker is able to 2399
insert a malicious library in the directory where the code is executed, the malicious library would be used. 2400
 2401
C also allows self-modifying code. Since in C there isn’t a distinction between data space and code space, 2402
executable commands can be altered as desired during the execution of the program. Although self modifying 2403
code may be easy to do in C, it can be difficult to understand, test and fix leading to potential vulnerabilities in the 2404
code. 2405
 2406
Self-modifying code can be done intentionally in C to obfuscate the effect of a program or in some special 2407
situations to increase performance. Because of the ease with which executable code can be modified in C, 2408
accidental (or maliciously intentional) modification of C code can occur if pointers are misdirected to modify code 2409
space instead of data space or code is executed in data space. Accidental modification usually leads to a program 2410
crash. Intentional modification can also lead to a program crash, but used in conjunction with other vulnerabilities 2411
can lead to more serious problems that affect the entire host. 2412
 2413
C.3.49.3 Avoiding the vulnerability or mitigating its effects 2414
 2415

• Use signatures to verify that the shared libraries used are identical to the libraries with which the code 2416
was tested. 2417

• Do not use self-modifying code except in very rare instances. In those rare instances, self-modifying code 2418
in C can and should be constrained to a particular section of the code and well commented. 2419

 2420
C.3.49.4 Implications for standardization 2421
 2422
Future standardization efforts should consider: 2423

• Standardizing on an easy to use signature mechanism for libraries. Standard C libraries should be signed 2424
to allow for verification. 2425

 2426
C.3.49.5 Bibliography 2427
 2428
 2429
C.3.50 Library Signature [NSQ] 2430
 2431
C.3.50.0 Status and history 2432
 2433
C.3.50.1 Terminology and features 2434
 2435
C.3.50.2 Description of vulnerability 2436
 2437
Integrating C and another language into a single executable relies on knowledge of how to interface the function 2438
calls, argument lists and data structures so that symbols match in the object code during linking. Byte alignments 2439
can be a source of data corruption. 2440
 2441
For instance, when calling Fortran from C, several issues arise. Neither C nor Fortran check for mismatch argument 2442

types or even the number of arguments. C passes arguments by value and Fortran passes arguments by reference, 2443
so addresses must be passed to Fortran rather than values in the argument list. Multidimensional arrays in C are 2444
stored in row major order, whereas Fortran stores them in column major order. Strings in C are terminated by a 2445
null character, whereas Fortran uses the declared length of a string. These are just some of the issues that arise 2446
when calling Fortran programs from C. Each language has its differences with C, so different issues arise with each 2447
interface. 2448
 2449
Writing a library wrapper is the traditional way of interfacing with code from another language. However, this can 2450
be quite tedious and error prone. 2451
 2452
C.3.50.3 Avoiding the vulnerability or mitigating its effects 2453
 2454

• Use a tool, if possible, to automatically create the interface wrappers. 2455
• Minimize the use of those issues known to be error prone when interfacing from C, such as passing 2456

character strings, passing multi-dimensional arrays to a column major language, interfacing with other 2457
parameter formats such as call by reference or name and receiving return codes. 2458

 2459
C.3.50.4 Implications for standardization 2460
 2461
Future standardization efforts should consider: 2462
None 2463
 2464
C.3.50.5 Bibliography 2465
 2466
 2467
C.3.51 Unanticipated Exceptions from Library Routines [HJW] 2468
 2469
C.3.50.0 Status and history 2470
 2471
C.3.50.1 Terminology and features 2472
 2473
C.3.50.2 Description of vulnerability 2474
 2475
Calling software routines produced outside of the control of the main application developer puts all of the code at 2476
the mercy of the called routines. An unanticipated exception generated from a library routine could have 2477
devastating consequences. 2478
 2479
C.3.50.3 Avoiding the vulnerability or mitigating its effects 2480

• Check the values of parameters to ensure appropriate values are passed to libraries in order to reduce or 2481
eliminate the chance of an unanticipated exception 2482

 2483
C.3.50.4 Implications for standardization 2484
 2485
Future standardization efforts should consider: 2486
None 2487
 2488
C.3.50.5 Bibliography 2489
 2490
 2491
 2492
 2493

