ISO/IEC JTC 1/SC 22/O0WGV N 0228

Programming languages — C —Designated constructs, by Olwen Morgan and Metriga,
Ltd

Date 16 October 2009

Contributed by Steve Michell (Canada)

Original file name Microsoft Word - Metriga C Coding Standard.pdf
Notes

Moore, Jim

From: Olwen Morgan [olwen.morgan@btinternet.com]
Sent: Friday, October 16, 2009 7:58 AM

To: Moore, Jim

Subject: RE: [SC22-OWGV] Metriga C Coding Standard
Jim,

As you suggested:

“"The author and owner, Olwen Morgan, of the attached document,
"Programming languages - C - Designated constructs"”, hereby grants
permission for ISO/IEC JTC1/SC22/WG23 to post the document on its
website and to adapt the text of the document for use in standards and
other documents.”

Regards,
Olwen Morgan

WD/MS1

Working Draft

Programming languages — C -
Designated constructs

Copyright © 1992-2007 Olwen Morgan and Metriqa Ltd.

All rights reserved

0

1
2

3

Contents

Foreword 10
0.1 Language reStIICHONc.eueeveuiuirieeciiiiee ettt etes et eae et eaes et saese st neenenene 10
0.2 Characterising constructs needing to be restricted in C.........ccoccovevveeninccncncnnne. 10
0.3 Basis for construction of coding manuals...........cccoeeeiineneniineneiec e 11
0.4 Relation to other coding manualsc..ccccceeceruenee. Error! Bookmark not defined.

Scope 12

References 12
2.1 NOrmative TefeIeNCES.cciivimimiiiiiiiiiiic i s 12
2.2 Informative references.............cooiviiviiiiiiiiiiiiiiiiii 12

Definitions and conventions 14
3.1 Terms, abbreviations and aCronymscccceeeveeeeecennee .14

18
18

3.2 Conventions for syntactic description ..

3.2.1 Orthosyntax

3.2.2 ParasyntaX.......ccoceeeeiiiniiiiiniieeeeie e ... 19
3.2.3 PrOSE CONVENLIONSeouiuiuriuiriietirieietnteete sttt stetsete st tese st saes et ees e sae e st enesaennas 19
33 Editorial preSentation............c.ccooueueuiieiiuiiiiiiiieeciieeeec e 19
3.4 Designated CONSLITUCESc.eeueuriutiuirriieieiriet ettt sttt st be e et e e et se e s 20
341 DEfINIIONS ...oeeuiiiiiiiiiciiice ettt 20
342 NUMDEIINZ ...c.onvvviiiieiiieeteecictetett ettt ettt sttt st sttt e eee 20
343 RAUONALIES c..viieiiiiiieiiiteeee ettt ettt ettt ettt st st 20
B.1 Non-functional attributes of software....................... Error! Bookmark not defined.
B.2 Dependability attriDULES.......c.ccoueueiriereuirinieiirinieerineeciinice et 20
B.3 Relationship of non-functional attributes and language usagec.c.cocceceveveucucne. 21
B.4 Basis for identification of designated constructs.......Error! Bookmark not defined.
B.5 Analysability and predictable eXeCution...........cceeveieuirienieieencieeeeree e 21
Compliance 22
4.1 COdING MANUALS ...ttt ettt eb b e b eaesbestese b aeneene 22
411 CTIEEIIA ettt ettt ettt b e ea et ettt s s 22
4.2 DiIiagnoStiC PIOCESSOLSceverveeerieuerieurerenteerenrertesetensestestssessestssesseseeseesesaesseneesesseneene 22
421 CTIEIIA ottt ettt ettt st b e ettt na s 22
422 CLAIMS ..ttt ettt ettt ettt enenen 22
Environment 23
5.1 Conceptual MOdelS (NR)coveueuiririeuiiniiiiieieiiteieeeieteee et eteneesese et enesesessesesennenenens 23
5.1.1 Translation enVIrONMENtccccueueirieueuininiereniniereririneesereeeeetrieeeseesesenneseene e 23

5.1.2 EXecution NVIIONIMENLSceeuirterierirrerrerierieresiestesestesestesessenseeeseesessesesessessenns 23

5.2 Environmental considerationscceceevvereenieseeienennenns

5.2.1 CRATACLET SELS....coveueeueetiriereuirieet ettt st se ettt st eae s et eee e sae e st ebe e 25
5.2.2 Character display semantiCs (NR)cccceerierereruemeenienieteerienseesesseseeseesesneseennas 26
5.2.3 Signals and interrupts (NR)c.cceoveveuiriereuiniriererinierertniniereneneenestsessesesessesesnesesenenns 26
5.2.4 Environmental HMItScccooieiriiirineneniiee et 26
Language 29
6.1 INOLAtION (INR) ..evvevtieveeeieeteeitesteeteeseeeteesaeeteesaeeteessesseessessaeseessesseessesseessessesseessessesssenss 29
6.2 CONCEPLS w.eveveeiteeriiiieeett ettt sttt ettt st eae st se ettt sae st ae e eee 29
6.2.1 Scopes Of IdENtifierscocueiiiiiiiiiiiiiic s 29
6.2.2 Linkages of identifiersccceoevieueinieeinniecniniccrce e 29
6.2.3 Name spaces of identifiers..........ccccoooviiiiiiiiiiiii 29
6.2.4 Storage durations of identifiers..........coceeeveievereiiieninicecre e 30
6.2.5 TYPES (INR) .ttt ettt ettt et sttt sttt s b et et s es et eee e e st saeanes 30
6.2.6 Representations Of LYPEScueveirveueuirtereuiririererirterertrtsieresereeseetneeeseseesesenneseene e 30
6.2.7 Compatible and COMPOSILE LYPESc.erverrererireerreiieienriietetrienseteeeee e eeeesre e 30
6.3 CONVETSIONS w..vueiviiiieeeiit ettt ettt ettt st eaes st st st acaesaes e eaesene e 30
6.3.1 Arithmetic Operands (NR)cccccoueueirieueuirinueuerinierertrinierentneeneetrieieseseesesesseseenenns 30
6.3.2 Other OPETANAS.....c.ooveuiuieieiiiiieieiiietett ettt ettt st eee 31
6.4 LexXiCal CIBMENLSc.cveveuiieieiiiieieticete ettt s 32
6.4.1 KEYWOTTS ...ttt ettt sttt sttt st 32
6.4.2 TAENUFIETS ...ttt sttt 33
6.4.3 Universal character Names (NR)........c.covvevuierierereeeriesreeeeieeseeseeseesesseessesesssesseas 34
6.4.4 CONSANLS ...vviieiiiieieetiiet ettt ettt ae sttt be sttt ebe s et tes e sae e eseenesaeaeen 34
6.4.5 String HETals........ooooviiiiiiiiiii s 38
6.4.6 PUNCIUALOTSveiinieiiiiiiit ettt ettt ettt et st ee e s es e ere e 39
6.4.7 HEAdET NAIMES.ouveiuiiieieiiiiieieiit ettt ettt sttt st eee 40
6.4.8 Preprocessing NUIMDEISc.cocceuirtereeiriertenierieenieetesesresest et siescteeeseseesesesresaennes 41
6.4.9 COMIMENLS ...c.uemrvriitetiiercteeieeeteee ettt ettt eeeseieaeenes 41

6.5 Expressions...

6.5.1 Primary expressions

6.5.2 POStiX OPEIAtOrSc.eevemieuieiirieiiineiere ettt .44
6.5.3 UNATY OPEIALOTSeuvvieierriuinieteniteeenttesesttsaese et eses st aesestssenestnassesesessesenneseseneene 49
6.5.4 CASE OPETALOTSveeeeuirienreairieetest et sseste sttt stestesesbessestesesaens et eesesae e st eaeseennes 52
6.5.5 MultipliCatiVe OPEIALOTSc.erueerireuieiirtentenieteetesteeeeiesrerentertsaes et eee s e esesreseenees 53
6.5.6 AddItiVE OPETALOTSccuivimriuiriietinieieeirteee ettt sttt ettt et saes et eee s eee b e 54
6.5.7 Bitwise Shift OPEIatorSccccceirieriririinenieiiee ettt 56

6.5.8 Relational OPEIatorScc.eoiveeuirieieeiriente sttt sttt ettt eee s saeanes 56

6.5.9 Equality OPErators...........ccccoeuevueuiuieieueminieeiiiieeeee e

6.5.10 Bitwise AND OPETALOLcoiiiiiiiiiiiiiiiiicie e 59
6.5.11 Bitwise exclusive OR OPeratorcccoeeiviiiininicciiniccinec e 59
6.5.12 Bitwise inclusive OR OPEIator..........c.ceerueueririeueuirnieerneneinineenenseecneneenenns 60
6.5.13 Logical AND OPETALOLceirrerieiriineenietieee sttt sttt sies et eee s saeaees 60
6.5.14 L0ZICAl OR OPETALOTueuvviiiniereniteteeitrieaestnt ettt st eee 61
6.5.15 Conditional OPETALOLc..eveuiieueuirtereriririeeentrtetettrtsere st eaeetreeieeeseesesenneseene e 62
6.5.16 ASSIZNMENE OPETALOTueuveviuintereniaeeresttrienestrterestrtsaeseseseesentseeseseseesesenseseseneens 63
6.5.17 COMMA OPETALOL ...ttt s s 69
6.6 CONSLANE EXPIESSIONS ...vovenreverinirierenirtererirterertatsaeseststesestsesaesesessesessseesesesaesescnsesesenens 69
6.7 DECIAratiONS ...ttt 71
6.7.1 Storage-class SPECIfIErS.........c.cuiiiiiiiiiiiiiiiiicicce s 73
6.7.2 TyPE SPECIFIETS ... s 73
6.7.3 TYPE QUALITIETS ..ottt s 78
6.7.4 Function SPECIfIErS.........coviiiiiiiiiiiii i 78
6.7.5 DECIATALOTSoviiiiiii s 79
6.7.6 TYPE NAMES ...envvviiiiiieeettiiiet et ettt ettt sttt et st s ese e eee 83
6.7.7 Type defINItIONS ...c.eoveuiieiiiiiieieit ettt 84
6.7.8 INitialiSationccoeviiiiiiiiiiiiiiicii s 84
6.8 Statements and bIOCKS............ccciviuiiiiiiiiiiiii 87
6.8.1 Labelled StatemMENL.........c.c.ociuiuiiiiiiiii i s 87
6.8.2 Compound SLACIMENLc.eueveueuitereriirieritrieeerertereseresaere st eneatreebereseesesenneseene e 88
6.8.3 Expression and null StAtEMENLS...........coceuiviiiiiiniiiiiiee s 88
6.84 Selection SLALEIMENLS.........c.ciiiiiuiiiiiiie it 88
6.8.5 Iteration SLAtEMENLSc.eiiiuiuiiiieiii e s 91
6.8.6 JUMP SEALEINENLSeovvieiereriiinieeeiit ettt ettt ettt ettt st et e ea e e e 93
6.9 External definitions............cccoioiiiiiiiiiiiiiiiiii s 96
6.9.1 Function definitionsccccovvvviviviininniiiiiiiee, ... 96

6.9.2 External object definitions

6.10 Preprocessing directives ... 98
6.10.1 Conditional inCluSION.......c..ccueteinrinieinincterseee e ... 99
6.10.2 Source file INCIUSIONS.c.coveviirieeeirieieiiriree e 101
6.10.3 MaCIO FEPIACEIMENLvevinieiiiiiietcircee ettt sttt st 101
6.10.4 LINE CONLIOL...c.uiiiiiiiiiiiiiiiit ettt sttt 105
6.10.5 EITOr dirECHVE ..ottt e 106
6.10.6 Pragma dir€CtiVeccoeiiririirinirtinecie et sttt 106

6.10.7 INUIL QETECHIVE .ttt ettt et st ee e eae s 107

6.10.8 Predefined macro names

6.10.9 Pragma OPETator...........c.coiiiiiuiiiiiiiiiiciiiice e s
6.11 Future language dir€Ctions.c.ccoueiiiiiiiiiiiii i 109
6.11.1 Floating types (NR) ...ccceveueveueuiieuerininiesintriesestneenesesessesesensesesssssenesuesesensenesens 109
6.11.2 Linkages of identifiers (NR)ccccceeiviiiiiiniiiiniicciccecccces 109
6.11.3 EXternal NAmeES (NR)ccueeveiuieieiierieeeereeeesteeteseeseesseeseessesseessessesssessesseesnes 109
6.11.4 Character escape SeqUENCES (NR)......c.cerrueuerirrerermriruerermnreenmnmeneessesesenenescns 109
6.11.5 Storage-class SPECIfiers (NR)c.ccoveueuirirueeririeucmnnieeninreeinieeeseeseeneneenes 109
6.11.6 Function declarators (NR)ccccoereeruiniereinensenteineeneeseeeesre e seeneneenens 109
6.11.7 Function definitions (NR)cccveiuirieriioreeiesieieie et eereeee e evse e eaeeaees 109
6.11.8 Pragma directives (NR)cc.eceeieeriinieininieteinrcste sttt sese e 109
6.11.9 Predefined macro names (NR).....c..ccueoeeirierieinienenieieeenieteeereieeeesenseseeene 109
Library 110
7.1 INEFOAUCHION ...ttt ettt sttt st 110
7.1.1 Definitions of termMS (NR)eecverierieririeiieetierteeteetesteeeeieeteeeesseeaessesnensessnenns 110
7.1.2 Standard headers (NR).........ccoevveiieieiuiirieiiereeeeete e ste et eeeaeeaesreesesseesaenes 110
7.1.3 Reserved identifiers (NR)cceoievieiiiiieiieiieeeeie ettt aeaeevaenes 110
7.1.4 Use of library functions (NR)cceeureeueririreerinieremnnieeninnenennneeesnesesenenesens 110
7.2 DiagnoStics <asSSEIt . N> it 111
7.2.1 Program dia@nOSHICS........cueiruerueriruiniirterietntente sttt st tere sttt ettt ses e eene 111
7.3 Complex arithmetic <compleX.h> ..o 112
7.3.1 INtroduCtion (NR)cc.ecieriieieriesiieiesteeeeieeseeseeteessesteeaesaeessessesseessesseessesseesaenns 112
7.3.2 CONVENUONS (NR) ...uieutitieieeteeiesieeiesteeteteestesesseatesseessensesseensesseesessesnsensessaenns 112
7.3.3 Branch Cuts (INR)coueivieiiiieieciieieete et ettt eteeatesaeeaes e esaessesaeesaesaeessenseesaenes 112
734 The CX_LIMITED_RANGE Pragmacoccccovueuemmnuecnnuecnmnieeesnenecneneenes 112
7.3.5 Trigonometric functions 112

7.3.6 Hyperbolic functions

7.3.7 Exponential and logarithmic functions..........c.c.ceeeeevrneccrnievcninecncnerccienenene 114
7.3.8 Power and absolute-value functionsc..ceceeveveeerieieenenieeninenectrcne e 114
7.3.9 Manipulation fUNCHONSc..c.evirieueinieieirireenr e 114
7.4 Character handling <CLYPE . N> ..ot 116
7.4.1 Character classification funCtions...........c.coveceririecinncrcnnicrenineccseceereenes 116
7.4.2 Character case mapping fUnCtioN..........ccccovrueernreeinicrenniccecc s 116
7.5 EITOTS <EITNO.NS .ottt ettt sttt s 117
7.6 Floating-point environment <EENV . N> oo 118
7.6.1 The FENV_ACCESS PragMa.......ccccecirieuiminiriemeiiieieniiisiee s snesescneneenes 118

7.6.2 Floating-point EXCEPLONSc.cevveueririeueriririeerireeeeiirinieenenseeseeteesessenesesenesens 119

7.6.3 Rounding

7.64 EDVITONMENEoviiiiiiiiiiiiiiiiceic e e 119
7.7 Characteristics of floating types <float .h> (NR) ..cccooeiviiiininiiciiiiceiiiene 120
7.8 Format conversion of integer types <inttypes .h>.....ccvennennieeene. 121

7.8.1 Macros for format SPECIfIErS........oceeiruerieiriirenietiee sttt 121

7.8.2 Functions for greatest-width integer types............ccccvvveviiiriiciiicciicciene. 123
7.9 Alternative spellings <1S0646 . h> ..o 124
7.10 Sizes of integer types <1imits.h> (NR) coveoirmiiomcieniccinecesereeeeneenes 125
T 11 LOCAISAtIONuviviiiiiiiciicee e e 126

7.11.1 Locale CONLIOL........oviiiiiiiiiiiicic e 126

7.11.2 Numeric formatting convention enquUiry...........ceccoevererrerueerirenrererienreneneene 126
7.12 Mathematics <math.h> ... 127

7.12.1 Treatment of error conditions (NR)ceeervereerieseeiesieniieeeneeeieseeseeiesenenes 127

7.122 The FP_CONTRACT PIragMa.....cccecveueuirirueueiiemenirisiene s snesescneneenes 127

7.12.3 Classification macros....

7.124 Trigonometric fUNCHONSc.coveueirieueuininieenircecinrce e 128
7.12.5 Hyperbolic functionsccccooiiiiiiiiiiiniiic e 129
7.12.6 Exponential and logarithmic functions.............cccceceeoiriniiciiniiccinccicene. 129
7.12.7 Power and absolute value functions..............coccccivveiinicinincniiicne. 131
7.12.8 Error and gamma fUNCONScecevuerieiriinieniirine sttt 131
7.12.9 Nearest integer funCtoNSccccociiiiiiiiiiiniii e 132
7.12.10 Remainder functions............cccceeieiiininiiiiiiiniiiiniiiccccs 133
7.12.11 Manipulation fUnCtionsc.ccueeeirieueuinreennieeinee e 133
7.12.12 Maximum, minimum and positive difference functions............c.ccccccoveuenncee. 134
7.12.13 Floating multiply-addc.cccoueerimieeinmerennecincenccinece s 134
7.12.14 COMPATISON MACTOS «...voveveeverinirrerenitenerertrienestreesestseesesesessesessesesesessesescssesesenes 134
7.13 Nonlocal jumps <SEtimMP.N>....c.cocoriiiiiiiiiiiiiire e 135
7.13.1 Save calling enVIFONMENLc.eerteueviririereniniereiriree e enes 135
7.13.2 Restore calling eNVIFONMENLcc.evverueirrirenierieerieiieesreeeee et ceesenseseeeene 135
7.14 Signal handling functions <signal.h>ccccoceviiininininnncce e 136
7.14.1 Specify signal handling..........ccccccoveviiiirinininnineec e 136
7142 Send SIZNAL....cc.cueiiiiiiiiiirit et ettt 136
7.15 Variable arguments <stdarg.h>.......ccccccevirieriiiinininninieeee e 137
7.15.1 Variable argument liSt aCCESS MACTOSeverrveveriririeerirrereeirieeeniereeeereenes 137
7.16 Boolean type and values <stdbool.h>.........cccococcceniieinincnnnicincneeceeene 138
7.17 Common definitions <stddef.h>..........ccoovviiiiiiiiii 139

7.18 Integer types <StAINEN>c.covieiiinieiincircc s 140

7.18.1 Integer types....

7.18.2 Limits of specified-width integer typesc..cceeverueieerenieeninenecircnecseene 141
7.183 Limits of Other INteZEr tYPES......ccevirverieirririeriiriee ettt 142
7.184 Macros for integer CONSLANS........c.coveueuiririeerineeeeiririeeninreeieie et enes 142
7.19 Input/output <Stdio.h> ..o 143
7.19.1 INErOAUCHION. ...t s 143
7.19.2 SEEAMS (NR) .vievievtireeeieetieeteteetesteeseesseeteesaesteessesseessesseeseessesseessessesssessesseesnas 144
7.19.3 FALES (INR) ©eveitirieetiete ettt ettt ettt et e st et teebsesseeteessesbeessesseessenseeseesnas 144
7.194 Operations on files...........ccoiviiiiiiniiiiiiiii e 144
7.19.5 File access funCionSccccuvvviiiiiiininiiiiiiiise s 144
7.19.6 Formatted input/output funCtions............coccceeiviiiiniciciniciicccecceee 145
7.19.7 Character input/output functionscccccvveeiiiee i 146
7.19.8 Direct input/output funCtions............c.ccoecvveeiiniiiiiicie i 147
7.19.9 File positioning funCHONSceotrteueririreerinieieinineenneceine et enes 147
7.19.10 Error-handling functions..............cccceceiniiiiiiniiiiniccicccc e 147
7.20 General utilities <Stdlib.h> ... 149
7.20.1 Numeric conversion functions............cccceeeveiiiniiiiiiiiii e 149
7.20.2 Pseudo-random sequence generation functions..........c.ececevvececrierccrnenencne. 150
7.20.3 Memory management fUnCtONSc.coveeririeucinnierennieeineee e 150
7.204 Communication with the environmentcccccecvveveiiviiniiiiiiiiniee, 150
7.20.5 Searching and SOrting UtIHES.ccveeeiriirieiiiire et 150
7.20.6 Integer arithmetic fUNCLONSc.ccooveueuiririeeriniecirirce e 151
7.20.7 Multibyte/wide character conversion functions.............c.cccccvececiericcnenenne. 151
7.20.8 Multibyte/wide string conversion functionsccccevveevveccciinrccenenenne. 151
7.21 String handling <String.h>......c.ocoiiiiiiiiiiiiii e 152
7.21.1 String function conventions (NR)........c.covueueriniereuirnieernmeemnneesiereeneneenes 152
7212 COpYINgG fUNCHONS. ...ceetiiiriitiiriet ettt ettt s e 152
7.21.3 Concatenation funCtionscccevueiririiiiiniiiiiiiniiiiice s 152

7.214 Comparison functions..

7.21.5 Search functions..... .. 153
7.21.6 Miscellaneous fUNCHONSc.ccueerviiiiniriirieirteee et 154
7.22 Type-generic math <tgmath.n>ccoveiiininiiiiniiinccr e 155
7.23 Date and time <tiMe.N>cc.couiiiiiiiiiiiiiicicc e 158
7.23.1 Components Of tME.........cccuiiiiiiiiiiiiiee e 158
7.23.2 Time manipulation funCtions............ccccooveiiiniiiiniiiiiicicccccce 158
7.233 Time conversion fUNCHONScccoeveviiirierieirenr et 158

7.24 Extended multibyte and wide character utilities <wchar .h>cccccevvvvcnennenns 159

7.24.1

7.242 Formatted wide character input/output functionscccceceeecruruiinnnennne. 159
7.243 Wide character input/output functions..............ccccceveiiniicinicccincceene. 160
7.244 General wide String UtlItIESc.ecvvveverirrieenniecinccrcc e 160
7.245 Wide character time conversion functions..............coccccvuvuecvirccinccnnnenne. 162
7.24.6 Extended multibyte/wide character conversion utilities............c.coceceveuenencee. 162
7.25 Wide character classification functions <WCtype.h>.........cccovveevriccininrencnienenene. 163
7.25.1 INErOAUCHION. ... s 163
7.25.2 Wide character classification utilities.............c.cccccovveiiiniiiniciinicne. 163
7.25.3 Wide character case mapping Utilitiesc.oveevrvccernievcnnecrcnerccieneene 164
7.26 Future brary dir€CtonScoeoeiiieuiiiiiiiiiiice it 165
7.26.1 Complex arithmetic <complex . n> .. 165
7.26.2 Character handling <CEyPe . > ..o 166
7.263 EITOIS <EIINO . N> s 166
7.26.4 Format conversion of integer types <inttypes.h>. ... 166

7.26.5 Localisation <locale.h>

7.26.6 Signal handling <S1ignal . N> . 167
7.26.7 Boolean types and values <stdbool .h> ..o 167
7.26.8 Integer types <STAINt . N> 167
7.26.9 Input/output <SEAL0 . A> i 167
7.26.10 General utilities <StALib.h> i 168
7.26.11 String handling <String . N> .

7.26.12 Extended multibyte and wide character utilities <wchar .h>

7.26.13 Wide character classification and mapping utilities <wctype .h> 168
Annex A - Orthosyntax and Parasyntax Summary 169
8.1 Lexical Srammar..........cc.ccooioiiiiiiiiiiiic e 169
8.1.1 LexXical EIEMENLSc.coiviiieiirtieierieiiee ettt ettt s 169
812 KEYWOIAS ..o 169
813 TACNUFICTS ...ttt 169
8.1.4 Universal CharaCter NAMESc..coveueruerieuiiieereieie ettt st er e saeneenes 170
B.1.5 COMSLANLS ..euvueveiteueiiieicee sttt ettt etttk et b e bbb e s e 170
B.1.6 SHING THLETAIS....eiieueiiiriciriit ettt ettt 172
8.1.7 PUNCLUALOTS ...ttt ettt bbbt et 173
8.1.8 HeEAder NAMES.....c...cueuiriiciiiiiciciiieceeet ettt ettt 173
8.1.9 Preprocessing NUMDETSc.cccrurueueirieuereriereeiereeeereseetereeseereseeeesereseeseveaeenes 174
8.2 Phrase Structure Srammarcoceeeeeeeruereeinrenenieseeeesieseesesteseseeressensesessessesseeens 174

8.2.1 EXPIESSIONS ...ccuitiniiuiiirteteirt ettt sttt sttt bbbttt et st s 174

8.2.2 Declarations.. .. 180

8.2.3 Statements. .. 184
8.2.4 External definitionsS........cceviruireriiuirenienieiiie ettt s 186

8.3 Preprocessing dilCCtiVesco.eueeruiueirieieiirieieiei ettt 187

9 Annex B - Library summary (NR) 190
10 Annex C - Sequence points 191
11 Annex D - Universal character names for identifiers 192
12 Annex E - Implementation limits 193
13 Annex F - IEC 60559 floating-point arithmetic 194
14 Annex G - IEC 60559-compatible complex arithmetic 195
15 Annex H - Language-independent arithmetic 196
16 Annex I - Common warnings 197
17 Annex J - Portability issues 198

Annex P (informative) — Style Conventionsccceeceueeucsueneens Error! Bookmark not defined.

0 Foreword

0.1 Language restriction

In critical software applications, it is often desirable to restrict the use of certain programming
language constructs. This standard defines constructs (called herein “designated constructs”) in
the C programming language whose use may need to be restricted to meet dependability
requirements in critical applications.

The use of a construct may be restricted for any of several reasons among which commonly
cited ones are that it:

e isnon-standard (S)

® has unspecified behaviour or yields an unspecified value (S)
e s likely to be misunderstood by programmers (E),

e has different meanings in closely related languages (S),

® may be prone to be implemented incorrectly (E),

e may impair important non-functional characteristics, including among others: analysability
(SE), portability (S), interoperability (SE), security (E) or reliability (E),

® may impair internationalisation (SE),

For reasons marked “(S)”, relevant constructs can be determined from the language standard
alone. For those marked “(E)” determination is on empirical grounds. For those marked “(SE)*,
the determination has both and theoretical and an empirical basis. Constructs exhibiting such
characteristics may be identified in all programming languages.

Ideally any empirical basis of restriction should be founded on clear evidence that a construct is
associated with undesirable external attributes of software, particularly dependability
attributes. In practice, however, little hard evidence of this nature is generally available and
restrictions on some constructs are based on cogent reasoning or even just widely held beliefs
about effects on the external attributes of code.

This standard sets out a rationale for the identification of each designated construct that it
defines, whether based on evidence, reasoning or belief. It is hoped that codification of both
constructs and associated rationales will permit hypotheses regarding usage and dependability
to be stated clearly and subjected to rigorous tests.

0.2 Characterising constructs needing to be restricted in C

Usage restrictions typically comprise prohibitions of or limitations on the use of particular
kinds of construct in context. In specifying such restrictions three distinct tasks arise:

e determining which constructs should be restricted in which contexts,

e characterising them unambiguously so that they can be identified in context by human
reviewers or static checking tools,

e making the characterisations traceable to the language standard.

Among these tasks, characterisation is by far the most demanding. The easiest way to do it is
with an appropriate metanotation. This standard uses the SYMELAR metanotation, which has
been designed specifically for the purpose of defining language restrictions. SYMELAR is
based on BNF and allows restricted constructs to be specified by reference to the C syntax as
given in the standard, thus also providing suitable traceability.

The designated constructs identified in this standard are based on the diagnostics issued by a
range of commercial C compilers and static analysis tools. Users of this standard should
therefore have little difficulty in obtaining tools that will diagnose practically useful subsets of
those constructs.

0.3 Basis for construction of coding manuals

The degree of language restriction appropriate to an application is generally related to its
software integrity level [3]. Very high integrity applications may warrant the most severe
restrictions [4]. Less critical applications may require only a few basic coding rules.
Recognising this breadth of application, this standard identifies a wide range of designated
constructs but does not specify any particular language subset based on restriction of any
particular set of such constructs.

Within this standard each designated construct is identified by a designated construct reference
number (DCRN). A user wishing to construct a coding manual by reference to this standard can
do so by citing the DCRN of any construct he wishes to control and stating that nature of the
restriction to which it is subject. Hence this standard serves as a meta-standard for the
production of coding manuals.

1 Scope
This standard specifies:

e C language constructs, called “designated constructs” whose use it may be desirable to
restrict in certain application domains,

e requirements for compliant coding manuals
e requirements for compliant diagnostic processors,
e requirements for canonically conforming implementations of the C programming
language.
This standard does not specify:
e any particular set of designated constructs whose use is to be:
- restricted in any particular application domain or
- defined in any particular coding manual or
- diagnosed by any particular diagnostic processor.
® any particular capabilities required of diagnostic processors such as:
- the syntactic form of their diagnostic messages,
- the manner in which such messages are presented to the user of the processor,

- the manner in which such messages are associated with the language constructs to
which they refer

- rules of precedence among diagnostic messages whereby, for example, messages
relating to contained constructs are presented before or after messages relating to their
containing constructs,

- rules governing the suppression of diagnostic messages for a construct when several
could be issued.

e constructs for which the relation between usage and external attributes depends or is
supposed to depend on the attributes of graph-theoretic models of source code, such as
control flow graphs, data flow graphs and function-call trees.

2 References

2.1 Normative references

The following sources express requirements of this standard by virtue of reference to them
within this standard:

[1] ISO/IEC 9899:1999 Programming Languages — C <add TC data >
Note: Reference [1] is commonly called “C99”.
[2] ISO/IEC 9899:1990 Programming Languages — C < add TC data>
Note: Reference [2] is commonly called “C90”.

2.2 Informative references

The following sources do not express requirements of this standard by virtue of reference to
them within this standard (note that item numbering continues from clause 2.1 to ensure
uniqueness of referencing):

[4]
[5]
[6]

[71
[8]
[9]

ISO/IEC 15026:1998 Information technology — System and software integrity levels
ISO/IEC 61508 — <full title thp >
ISO/IEC 9126-1:2001 Software engineering — Product quality — Part 1: Quality model

MISRA-C 2004: Guidelines for the Use of C in Critical Systems, MIRA Ltd., 2004, ISBN
0952415623

Hatton, L., Safer C, McGraw-Hill, 1995, ISBN 0-07-707640-0
Koenig,A., C Traps and Pitfalls, Addison-Wesley, 1989, ISBN 0-201-17928-8
Plum, T., C Programming Guidelines, Plum-Hall Inc., 1989, ISBN 0-911537-07-4.

3 Definitions and conventions

3.1 Terms, abbreviations and acronyms

Terms abbreviations and acronyms used in this standard have the meanings given for them in
this clause. Where a standard is cited against the definition of a term, it indicates that the
definition given here is derived or adapted from that given in the cited standard. In case of
discrepancy between this standard and the cited standard, e.g. owing to updating of the source,
the definition given in this standard takes precedence.

The symbol = next to the citation of a standard denotes that the definition given here is
technically equivalent (though possibly of different grammatical form) to that given in the cited
standard. The symbol # next to the citation of a standard denotes that the definition given here is
not technically equivalent to that given in the cited standard.

accuracy

adaptability

analysability

base language standard

BNF

bounded

C++ style comment

changeability

coding manual

constraint

construct
corresponding parameter
DCRN

designated construct

n. (of a software product) the capability of the product to provide the right or
agreed results with the needed degree of precision (= ISO 9126)

n. (of a software product) the capability of the product to be adapted for different
specified environments without applying actions or means other than those
provided for this purpose in the product considered (= ISO 9126)

n. (of a software product) the capability of the product to be diagnosed for
deficiencies or causes of failures in the software, or for parts to be modified to be
identified (= ISO 9126)

n. the version of the C language standard, by reference to which this standard
states definitions of designated constructs.(Note: For the current revision of this
standard, the base-language standard is C99+TC1 - see Clause 3.1 Normative
references)

abbr. Backus-Naur form

adj. (of a string manipulation function) having the property that it processes only
a finite initial portion of any of its string arguments according to the value of an

integer argument,

n. a comment of the form beginning with two slashes // as permitted in the C++
programming language,

n. (of a software product) the capability of the product to enable modification to
be implemented (= ISO 9126)

n. a document specifying constructs in a programming language and controls that
are applied to their use in specified circumstances.

n. restriction, either syntactic or semantic, by which the exposition of language
elements is to be interpreted (= ISO/IEC 9899:1999)

n. a sequence of one or more preprocessing tokens or lexical tokens.
n. of an ARGUMENt,
abbr. designated construct reference number

n. a construct defined in this standard and identified by a DCRN for the purpose
of simplifying the construction of a coding manual.

diagnosed construct

diagnostic processor

E-behaviour

efficiency

fault-tolerance

format string

functionality

implementation-defined
behaviour

implementation-defined value

1 . q Tent

implementation limit

indeterminate value

initialising access

integrity level

internationalisation

maintainability

maturity

minimal epsilon

n. a construct for each occurrence of which in a program a diagnostic processor
provides a diagnostic message.

n. a processor that analyses source code and identifies occurrences of designated
constructs within it by means of diagnostic messages.

n. the behaviour that the implementation provides for a construct in its execution
environment

n. (of a software product) the capability of the product to provide appropriate
performance, relative to the amount of resources used, under stated conditions (=
ISO 9126)

n. (of a software product) the capability of the product to maintain a specified
level of performance in cases of software faults of of infringement of its specified
interface (= 1ISO 9126)

n. an argument to a formatted 1/O function that specifies the format conventions
to be applied to subsequent arguments.

n. (of a software product) the capability of the product to provide functions which
meet stated and implied needs when the product is used under specified
conditions (= ISO 9126)

n. unspecified behaviour where each implementation documents how the choice
is made (= ISO/IEC 9899:1999)

n. an unspecified value where each implementation document how the choice is
made (= ISO/IEC 9899:1999)

adj. (of the behaviour of a construct) unspecified and not necessarily defined.

n. restriction imposed upon programs by the implementation (= ISO/IEC
9899:1999)

n. an unspecified value or a trap representation (= ISO/IEC 9899:1999)

n. an access to an object that establishes a value for the object by the behaviour of
its initializer,

n. A denotation of a range of values of a property of an item necessary to maintain
system risks within tolerable limits. For items that perform mitigating functions,
the property is the reliability with which the item must perform the mitigating
function. For items whose failure can lead to a threat, the property id the limit on
the frequency of that failure (=<ISO/IEC 15026:1998)

n. adaptation of a system for use in different countries or by people of different
cultures having different conventions for the interpretation of human-readable
output (e.g. formatting of dates, currency amounts, direction of reading)

n. (of a software product) the capability of the product to be modified (= ISO
9126)

n. (of a software product) the capability of the product to avoid failure as a result
of faults in the software (= ISO 9126)

n. for a floating type, the floating-point value denoted by a representation in
which all but the least significant bit of the mantissa are zero and the exponent is
the least value for the type permitted in the <€loat . h> header. (Note: Such a
number is necessarily subnormalised and is not necessarily within the
implementation-defined range of representable floating-point values for the type
concerned.)

modifying access

non-modifying access

non-standard
tandard prepr
directive

null string

orthoclass

orthorule

orthosyntactic metasymbol
orthosyntax

pairwise-confusable

pararule
parasyntactic metasymbol
parasyntax

portability

proscribed

recursive

redundant

reliability

resource utilisation

scalar expression

security

software integrity level

n. an access to an object, other than an initialising access, that establishes a value
for the object,

n. an access that is neither an initialising access nor a modifying access,

adj. generally, not having a form or not satisfying constraints given in the base
language standard; specifically, in the context “a non-standard x” where x denotes
an orthoclass, a construct that an implementation treats as an x but does not have a
syntactic form derivable from x or whose behaviour violates a constraint of the

standard.

n. a source line whose first non-white-space character is hash # but that does not
have the form of a DIRECTIVE.

n. a string containing no characters,

n. a class of constructs represented by a non-terminal of the orthosyntax

n. a syntactic rule of the form specified in clause 4.1 of this specification.

n. any of the metasymbols specified in clause 4.1 of this specification.

n. a set of orthorules by which a C language construct is defined in this standard.
adj. (of identifiers) differing in corresponding character positions in the
alphabetic case of characters or having in such corresponding positions
respectively 0 and 0,1 and 1,2 and Z, or 5 and S.

n. a syntactic rule of the form specified in clause 4.2 of this specification.

n. any of the metasymbols specified in clause 4.2 of this specification.

n. a set of pararules by which a construct is defined in this standard.

n. (of a software product) the capability of the product to be transferred from one
environment to another (= ISO 9126)

adj. (of an identifier) having a spelling that is pairwise-confusable with that of a
keyword or another identifier, the spelling of the name of a standard function the
spelling of a predefined macro name or identifier or a reserved spelling.

adj. (of a function) having the property that its E-behaviour may contain one or
more E-behaviours of itself; (of a macro) having the property that its T-behaviour
may contain one or more T-behaviours of itself

adj. (of a construct) capable of being removed without affecting the value of an
expression or the occurrence of side effects,

n. (of a software product) the capability of the product to maintain a specified
level of performance when used under specified conditions (= ISO 9126)

n. (of a software product) the capability of the product to use appropriate amounts
and types of resources when the product performs its function under stated
conditions (= ISO 9126)

n. an expression whose value is of scalar type,

n. (of a software product) the capability of the product to protect information and
data so that unauthorised persons or systems cannot read or modify them and

authorised persons or system are not denied access to them (= ISO 9126)

n. the integrity level of a software item (=ISO/IEC 15026:1998)

SYMELAR

T-behaviour

time behaviour

undefined behaviour

understandability

unexecutable construct

unrepresentable

unspecified behaviour

unspecified value

acr. SYntactic MEtanotation for LAnguage Restriction — the syntactic
metanotation used in this standard for defining pararules.

n. the behaviour that the implementation provides for a construct in its translation
environment

n. (of a software product) the capability of the product to provide appropriate
response and processing times and throughput rates when performing its function
under stated conditions (=ISO 9126)

n. behaviour upon use of a nonportable or erroneous program construct or of
erroneous data, for which (ISO/IEC 9899:1999) imposes no requirements
(=ISO/IEC 9899:1999)

Note: Possible undefined behaviour ranges from ignoring the situation completely with
unpredictable results, to behaving during translation or program execution in a documented
manner characteristic of the implementation (with or without issuance of a diagnostic
message), to terminating a translation or execution (with the issuance of a diagnostic
message).

n. (of a software product) the capability of the product to enable the user or
developer to understand whether the software is suitable, and how it can be used
for particular tasks and conditions of use (# ISO 9126)

n. a construct for which the implementation can provide a T-behaviour but no
E-behaviour.

adj. (of the value of an expression) not capable of being converted to the result
type of the expression without loss of information.

n. behaviour where (ISO/IEC 9899:1999) provides two or more possibilities and
imposes no further requirements on which is chosen in any instance (= ISO/IEC
9899:1999)

n. a valid value of the relevant type where (ISO/IEC 9899:1999) imposes no
requirements on which value is chosen in any instance (= ISO/IEC 9899:1999)

3.2 Conventions for syntactic description

This standard defines some (but not all) designated constructs by means of syntactic
metanotation. For clarity of exposition syntactic rules are segregated into two groups called
respectively orthorules and pararules. Orthorules are transliterated versions of the syntax rules
given in the base language standard [1]. Pararules supplement the orthorules and are written in
the SYMELAR notation. They define designated constructs only in conjunction with and by
reference to the orthorules.

Notes: The prefix ortho- is from the Greek opflog meaning straight, right, or proper. It is used here to emphasise the

definitive character of orthosyntax, which is transliterated directly from the base language standard. The prefix para-
is from the Greek mapa, meaning beside, and emphasises the supplementary character of the parasyntax.

3.2.1 Orthosyntax

The orthosyntactic metanotation used in this standard to specify the syntax of C language
constructs is based on Backus-Naur Form (BNF). The notation has been modified from the
original to permit greater convenience of description. Table 3.1 lists the meanings of the
various metasymbols.

Table 3.1: Metasymbols in orthorules

Metasymbol Meaning

= shall be defined to be

< direct concatenation (i.e. without an intervening white-space characters)

spaced concatenation (i.e. with an intervening white space character).

| alternatively, i.e. disjunction

B end of definition

[x] 0 or 1 instances of x

XyZ the terminal symbol xyz (represented throughout in this standard by the use of bold
courier typeface)

meta-identifier in a nonterminal symbol of the orthosyntax
lower-case italics

Except as indicated by the direct concatenation metasymbol or as provided by the base
language standard, a sequence of terminal and nonterminal symbols in an orthorule implies the
concatenation of the text that they ultimately represent with or without intervening white space
characters. The orthosyntax in this standard differs from the syntax in the base language
standard solely in the use of different metasymbols. Table 3.2 sets out the correspondence
between the two syntaxes.

Table 3.2: Correspondence between orthosyntax and base language syntax

Orthosyntax metasymbol Base language syntax metasymbol

< No explicit symbol. The nature of concatenation is inferred from the
context in the base language standard.

No explicit symbol. Alternatives start on a new line.

; New line

[x] Xopt

Xyz xyz (conventions are identical)

meta-identifier in lower-case-italics meta-identifier in lower-case italics (conventions are identical)

3.2.2 Parasyntax

The parasyntactic metanotation used in this standard to specify designated constructs is also
based on Backus-Naur Form (BNF). It uses all of the metasymbols of the orthosyntax except
that meta-identifiers for paraclasses are written in italic small capitals. Nonterminal symbols of
both the orthosyntax and parasyntax may appear in pararules. There are also curly brace
metasymbols that allow recursive productions to be replaced with iterative ones. The
metasymbols of the parasyntax are listed in Table 3.3.

Table 3.3: Metasymbols in pararules

Metasymbol Meaning
{x}{r} 0 or more instances of x, one of more instances of ¥
{xly} grouping: either x or Y

~ relative complement

& Conjunction

meta-identifier in /TALIC-SMALL-CAPITALS | a nonterminal symbol of the parasyntax

3.2.3 Prose conventions

Use of the words of, containing, and closest-containing, when expressing a relationship
between terminal or nonterminal symbols shall have the following meanings:

e the x of a y means the x occurring directly in a production defining y,
e the xinay is synonymous with “the x of a y”,
® ay containing an x means any y from which an x is directly or indirectly derived,

e the y closest-containing an x means that y containing an x that does not contain another y
containing that x,

e they,), ..., ory, closest-containing an x means that y; for some i in [1,n],
closest-containing an x such that for all j in [1,n] —[i], if a y; contains that x, then that y;
contains that y;.

In addition to the normal English rules for hyphenation, hyphenation is used in this standard to
form compound words that represent meta-identifiers. All meta-identifiers that contain more
than one word are written as a unit with hyphens joining the parts.

The meanings of forms that are literally different from but are grammatically entailed by the
above forms shall correspond to the meaning of the forms by which they are entailed. For
example, “an x whose y ...” means “an x where a y is the y of that x ...”.

Note: These prose conventions have been adapted from those used in ISO/IEC 7185 for the definition of the Pascal
programming language.

3.3 Editorial presentation

From clause 5 onward, the structure and clause numbering of this standard follow those of the
base language standard [1]. Subclauses within Clause 5 and succeeding clauses either state
definitions or requirements or else have clause titles suffixed with “(NR)” to denote that they
state no requirements. Except as explicitly provided otherwise in this standard, all clauses of the
base language standard have corresponding clauses in this standard.

3.4 Designated constructs

3.4.1 Definitions

As far as possible, the definition of designated constructs is expressed using terms identical to,
consistent with those of the base language standard. Where prose description would be unduly
prolix, syntactic metanotation is used to help simplify the specifications. As far as possible such
use is confined to the orthosyntax and pararules are used only where it is adjudged that no
satisfactory alternative would be possible without them.

34.2 Numbering
Definitions for designated constructs are presented in tables. Each construct has an entry
containing its unique designated construct reference number (DCRN), its definition and a

rationale for its identification. The prefix of each DCRN identifies the clause in the base
language standard which the relevant construct is specified.

3.4.3 Rationales

Where the behaviour for a designated construct is undefined, unspecified or
implementation-defined, this is noted is bold type in the rationale entry for the construct. Where
there is an obvious relationship of undefined, unspecified or implementation-defined aspects of
behaviour to some non-functional attribute, the nature of the attribute is stated in bold small
capitals.

For some constructs there is a significant consensus that programmers may be prone to make
errors if they use them. In these circumstances the rationale for designating the construct is
stated as defensive programming in bold type. Generally in this standard the term defensive
programming refers to any convention aimed at reducing programmer error by controlling the
use of constructs whose use is or may be considered to be conducive to programmer error.

Some designated constructs do not lead to undefined, unspecified or implementation defined
behaviour but are designated on one or more of the following bases:

e they may not be portable to implementations conforming to earlier versions of the base
language standard or to pre-standard implementations.

e their interpretation in C may differ from their interpretation in related languages based on
C, such as C++,

e they may be some benefit in segregating them into particular parts of a translation unit,

e there is past evidence that C implementations have handled them incorrectly,

e there is reason to believe that their occurrence is indicative of programmer error,

Other than stating the basis on which a designated construct has been identified, this standard
does not discuss the evidential or rational basis of what users may believe about the use of
designated constructs.

3.5 Dependability attributes

Some practitioners use the term “dependability attributes” to refer to all non-functional
attributes while others use the latter term to refer to specific kinds of non-functional attributes.
Which particular sets of attributes are called dependability attributes varies from context to
context but such sets commonly include the following:

e reliability

® maintainability

e availability

® security

e safety

Among these attributes security and safety are properties of the system as a whole rather than
the software component considered in isolation. In this standard the term “dependability
attribute” refers to the set of the above five non-functional attributes.

3.6 Relationship of non-functional attributes and language usage

Users of this standard should note, however, that relationships to non-functional attributes are
stronger for code in development than for code in operational use. They should also appreciate
the indirectness of the relationship between internal and external attributes of software. Coding
conventions can facilitate the elimination of undesirable non-functional attributes but they
cannot guarantee the presence of desirable ones.

Moreover, such facilitation is the only way in which they can contribute to external quality.
Whether the surrounding practices actually exploit the facilitation is a matter of process quality,
not internal product quality. Since process quality varies markedly among different
development groups, it is not surprising if difficulties in controlling for process quality may to
date have defeated attempts to demonstrate reproducible correlations between internal and
external product quality.

3.7 Analysability

In any software engineering process, it is good practice to seek to detect faults in life cycle
products at the earliest possible opportunity. In the current state of the art the best feasible
practices in detecting programming errors are, in the order in which they can be most
productively applied: static checking of code to remove problematic constructs, dynamic
checking without execution (e.g. by abstract interpretation) and finally testing. In worst-case
circumstances, the cost of detecting an error by testing may be two orders of magnitude greater
than that of detecting it by static checking or dynamic analysis.

The use of dynamic analysis is a particularly powerful technique since it is commonly able to
examine the potential behaviour of a program for all possible input conditions. In favourable
circumstances, a dynamic analyser may be able to accomplish an analysis that is effectively
equivalent to a program proof. In particular it may be possible to demonstrate that a program
exhibits all and only those functions allocated to it in its specification.

The property of providing all and only specified functions is critical in attaining appropriate
levels of certain dependability attributes, notably those of reliability and security. Accordingly
it can be both desirable and cost-effective to ensure that program source code does not exhibit
attributes that hinder the use of dynamic analysis techniques. In practice, this requires the
systematic elimination of all constructs that impair the analysability of the code. Hence this
standard identifies many constructs that impair such analysability.

4 Compliance

4.1 Coding manuals

4.1.1 Criteria

A coding manual shall comply with this standard if and only, wherever it cites a designated
construct for which a definition exists in this standard, it cites the DCRN of that construct
within this standard and states that the definition given in this standard is normative.

A coding manual complying with this standard shall be designated as strictly compliant if and
only all of its designated constructs are cited by reference to their DCRNs in this standard.

4.2 Diagnostic processors

4.2.1 Criteria
A diagnostic processor shall comply with this standard if and only if it:

(a) is capable of analysing a C translation unit and identifying all occurrences within it of at
least one class of designated constructs defined in this standard, and

(b) identifies such occurrences to its user by means of diagnostic messages that cite the DCRN
of any construct so identified.

A diagnostic processor complying with this standard shall be designated as strictly compliant if

and only if all of its diagnosed constructs are designated constructs defined in this standard.

422 Claims

A diagnostic processor purporting to comply with this standard shall be accompanied by a
document that:

(a) identifies by means of a list of DCRNSs, which of its diagnosed constructs are designated
constructs defined in this standard,

(b) wherever it cannot identify all instances of a designated construct states a characterisation
of the subclass of instances that it can identify.
Note: Clause 4.2.2(b) is intended to allow legitimate claims of conformance for diagnostic processors that perform

no or only limited dynamic analysis and may therefore be able to identify only those occurrences of designated
constructs that are identifiable by purely static methods.

5 Environment

5.1 Conceptual models (NR)
5.1.1 Translation environment
5.1.1.1 Program structure (NR)

5.1.1.2 Translation phases

Designated constructs:

DCRN Definition Rationale

A nonempty source file ending in a new-line

5.1.1.2-1 | character that is immediately preceded by a Behaviour for such a construct is undefined.
backslash character.

A nonempty source file ending in a partial

5.1.1.2-2 preprocessing token or a partial comment. Behaviour for such a construct is undefined.
Some users prefer to suppress trailing white space
. . . characters for ergonomic convenience when
5.1.1.2:3 Anew-line character that is preceded by a white | yging editors. Insofar as this makes it easier to
space character. amend code, it may contribute marginally to
MAINTAINABILITY.

A character sequence that results from token

511244 concatenation and is a Behaviour for such a character sequence is

. undefined.
universal-character-name.
51125 A source character for which there is no Behaviour for such a character sequence is
el corresponding execution character. implementation-defined.

Such a construct was tolerated by some

5.1.1.2-6 A sequence of two adjacent identifiers. pre-standard implementations but behaviour is
undefined for conforming implementations.

Expansion of tab characters is
implementation-dependent. Consistent
indentation style may be lost if source code
relying on such expansion is ported between
systems. Hence the use of tab characters for
indentation impairs a (fairly minor) aspect of
PORTABILITY.

5.1.1.2-7 A tab character used to provide indentation

Some users believe that the use of a single brace

5.1.1.2-8 | A construct exhibiting different brace styles. style promotes the UNDERSTANDABILITY of code.

5.1.1.3 Diagnostics (NR)

Note: Some of the designated constructs defined in this standard can be detected by exclusively static methods. For
many constructs, however, static methods may not be able to detect all cases of the construct that satisfy its
definition. Where a diagnostic processor cannot detect all cases, this does not in itself render that processor
noncompliant with this standard, provided that the processor is accompanied by documentation stating, for each
relevant DCRN, criteria that discriminate between detected and undetected cases and state any differences in
diagnostic messages corresponding to different forms of the detected subcases.

5.1.2 Execution environments

Designated constructs:

DCRN Definition

Rationale

A construct for which behaviour may vary

The manner and timing of static initialization are

5.1.2-1 according to the manner and timing of static "
initialization. unspecified.
5.1.2.1 Freestanding environment (NR)

Note: Both C90 and C99 define the notion of a freestanding implementation. The purpose in so doing was to provide
for compliance of implementations whose execution environments are embedded processors for which provision of
all standard libraries would be either unnecessary or unduly onerous. Most compilers for embedded targets do,
however, provide library facilities surpassing the minimal set required of freestanding implementations. A coding
manual for the use of C under such an implementation may therefore be significantly more restrictive than one for a
hosted implementation. Users of this standard who code for both types of implementation may therefore wish to
consider whether they need separate coding manuals for freestanding and hosted environments.

5.1.2.2 Hosted environment
5.1.2.2.1 Program startup
Parasyntax:

STD-MAIN-FUNC-DEC =
&

FUNCTION-PROTOTYPE

int main (void)

FUNCTION-PROTOTYPE

&

int main (int argc,

Designated constructs:

char *argvl[]) ;

DCRN Definition Rationale
A FUNCTION-PROTOTYPE for main that is not R
5.1.2.2-1 . Behaviour is undefined.
equivalent to a STD-MAIN-FUNC-DEC.
51222 A FUNCTION-PROTOTYPE for main that is not a Some users believe that adherence to the standard
it STD-MAIN-FUNC-DEC. form promotes UNDERSTANDABILITY.
A translation-unit containing no R
5.1.2.2-3 . L ns Behaviour is undefined.
function-definition for main.
5.1.2.2.2 Program execution (NR)
5.1.2.2.3 Program termination

Designated constructs:

A FUNCTION-PROTOTYPE for main in which the

5.1.2.2.3-1 return type is not compatible with int.

The termination status returned to the host
environment is unspecified.

5.1.2.3 Program execution

Designated constructs:

DCRN Definition Rationale

‘Wherever such constructs occur they are highly
likely to have resulted from programmer error and
5.1.2.3-1 An unexecutable construct (see note 1 below). | the program’s behaviour may not be what the
programmer intends and the program may not
provide its specified FUNCTIONALITY.

A construct whose E-behaviour contains both a
5.1.2.3-2 modifying and a non-modifying access to an
object between consecutive sequence points.

The order of occurrence of the accesses is
unspecified (see note 2 below).

A construct whose E-behaviour contains more
5.1.2.3-3 than one side effect between consecutive
sequence points.

The order of occurrence of the side effects is
unspecified (see note 2 below).

Note 1: Not all unexecutable constructs can be detected by purely static means.
For example, if in the code fragment:
if (x < 0) foo_a() else foo_b();

the variable x is of unsigned integral type, then £oo_a () is an unexecutable construct and its unexecutability is
determinable solely from the type of x and the value of zero against which x is compared.

In contrast, in the code fragment:
int i = 1;

while (i != 3)

{

i= (i+i) % 7;
}
foo () ;

foo () is unexecutable because the loop causes i to cycle through the quadratic residues modulo 7 but, since 3 is not
such a quadratic residue, the loop never terminates. This condition is impossible to detect without dynamic analysis
and even then some methods of dynamic analysis may fail to detect it.

Note 2: The order of occurrence of accesses and side effects depends on the orders of evaluation of the operands of
expression, which are unspecified.

5.2 Environmental considerations

5.2.1 Character sets

Designated constructs:

DCRN Definition Rationale

A character not in the basic source character set. . .
5.2.1-1 Behaviour may be undefined or locale-specific..

5.2.1.1 Trigraph sequences

Designated constructs:

‘ DCRN ‘ Definition Rationale

5.2.1.1-1

A trigraph sequence.

Some users believe that trigraphs impair the
UNDERSTANDABILITY of code. Also, they may not
supported by pre-standard implementations.

5.2.1.2

Multibyte characters

Designated constructs:

DCRN Definition Rationale
. Support for multibyte characters is
5.2.1.2-1 A multibyte character. locale-specific.
52122 A byte with all bits zero occurring as the second
e or a subsequent byte of a multibyte character. Behaviour is undefined.
A comment, string-literal, character-constant
5.2.1.2-3 or header-name that does not begin in the initial | Behaviour is undefined.
shift state.
A comment, string-literal, character-constant
5.2.1.2-4 or header-name that does not consist of a Behaviour is undefined.
sequence of valid multibyte characters.
5.2.2 Character display semantics (NR)

523

524
5.24.1

Signals and interrupts (NR)

Environmental limits

Translation limits

Designated constructs:

DCRN Definition Rationale
An external-definition in which an occurrence
of any iteration-statement or Such an external-definition exceeds minimum
5.24.11 selection-statement causes the depth of nesting implementation limits.
of such statements to exceed 127 (C90 = 15).
A preprocessing-file in which an occurrence of
any IF-DIRECTIVE, IFDEF-DIRECTIVE Or Such a preprocessing-file exceeds minimum
5.24.12 IFNDEF-DIRECTIVE causes the depth of nesting of | implementation limits.
such directives to exceed 63 (C90 = 8).
52413 A declarator containing more than 12 (C90 = Such a declarator exceeds minimum
I 12) modifiers. implementation limits.
52414 A declarator in which the nesting of Such a declarator exceeds minimum

parentheses exceeds 63 (C90 = 31).

implementation limits.

5.24.1-5 An expression in which the nesting of Such an expression exceeds minimum
parentheses exceeds 63 (C90 = 32) levels. implementation limits.
A translation-unit containing more than 4095 Such lati R ds mini
5.2.4.1-6 (C90 = 511) distinct identifier having external sucna transAatm{l-u.mt exceeds minimum
linkage. implementation limits.
52417 A compound-statement that is the scope of more | Such a compound-statement exceeds minimum
ol than 511 (C90 = 127) distinct identifier. implementation limits.
A preprocessing-translation-unit containing Such . lati . d
52418 more than 4095 (C90 = 1024) macro uch a preprocessing-translation-unit exceeds
definitions. minimum implementation limits.
52419 A function-definition closest-containing more Such a function-definition exceeds minimum
A than 127 (C90 = 31) PARAMETER-DECLARATOR. implementation limits.
A FUNCTION-CALL-EXPRESSION Such a FUNCT! N g
5.2.4.1-10 | closest-containing more than 127 (C90 = 31) uch a FUNCTION- CALL-EXPRESSION exceeds
ARGUMENT. minimum implementation limits.
52.4.1-11 A FLIKE-DEFINE-DIRECTIVE whose identifier-list | Such a FLIKE-DEFINE-DIRECTIVE exceeds
el closets-contains more than 127 (31) identifier. | minimum implementation limits.
A MACRO-INVOCATION whose identifier-list Such . ds mini
5.2.4.1-12 | closest-contains more than 127 (C90 = 31) ouch a MACRFJ-INYOFAIION exceeds minimum
identifier. implementation limits.
52.4.1-13 A logical line that exceeds 4095 (C90 = 509) Such a logical line exceeds minimum
el characters. implementation limits.
24.1-14 A character-string-literal or wide-string-literal | Such a literal exceeds minimum implementation
524.1- that contains more than 4095 (509) characters. | limits.
524115 A declaration of an object whose size exceeds | Such an object exceeds minimum implementation
e 65535 (C90 = 32767) bytes. limits.
An INCLUDE-DIRECTIVE for which an
5.2.4.1-16 | implementation causes the depth of nesting of | Behaviour is undefined.
included files to exceed 15 (C90 = 8).
52.4.1-17 A swiTCH-BODY that closest-contains more than | Such a SWITCH-BODY exceeds minimum
e 1023 (C90 = 257) CASE-CLAUSE. implementation limits.
52.4.1-18 A struct-declaration that closest-contains more | Such a struct-declaration exceeds minimum
e than 1023 (C90 = 127) declarator. implementation limits.
52.4.1-19 An enumerator-list containing more than 1023 | Such an enumerator-list exceeds minimum
ol (C90 = 127) enumeration-constant. implementation limits.
A struct-declaration-list whose occurrence Such decl ion-li ds mini
52.4.1-20 | causes the depth of nesting of uch a struct-declaration-list exceeds minimum

struct-declaration-list to exceed 63 (C90 = 15).

implementation limits.

Note: In this clause parenthesised items in the definitions of designated constructs denote corresponding limits in

C90.

5.24.2

5.2.4.2.1

Numerical limits

Sizes of integer types <limits.h> (NR)

5.2.4.22

Characteristics of floating types <float .h> (NR)

Designated constructs:

DCRN Definition Rationale
A preprocessing-file in which the The implementation-defined rounding mode is
5.2.4.2.2-1 | MACRO-NAME FLT_ROUNDS expands to a not determinable, which impairs ANALYZABILITY
constant-expression whose value is —1. of codes for numerical processes.
A preprocessing-file in which the The implementation-defined evaluation method
5.2.4.2.2-2 | MACRO-NAME FLT_EVAL_METHOD expands is not determinable, which impairs
to a constant-expression whose value is —1. ANALYZABILITY of codes for numerical processes.
A preprocessing-file in which the A value that is not a minimal epsilon may be
MACRO-NAME FLT-EPSILON expands to a indicative of a crude implementation of
5:242.2-3 | onstant-expression whose value is not a floating-point arithmetic, which may impair the
minimal epsilon for the £1oat type. ACCURACY of floating-point computation.
A preprocessing-file in which the A value that is not a minimal epsilon may be
MACRO-NAME DBL—EPSILON expands to a indicative of a crude implementation of
5.24.2.2-4 | constant-expression whose value is not a floating-point arithmetic, which may impair the
minimal epsilon for the double type. ACCURACY of floating-point computation.
A preprocessing-file in which the A value that is not a minimal epsilon may be
524225 MACRO-NAME LDBL—EPSILON expands to a indicative of a crude implementation of

constant-expression whose value is not a

minimal epsilon for the long double type.

floating-point arithmetic, which may impair the
ACCURACY of floating-point computation.

Note: The value to which a MACRO-NAME in <£1loat . h> expands may not be the same as a value determined for the
corresponding quantity by direct computation.

6 Language

6.1 Notation (NR)

6.2 Concepts

6.2.1

Scopes of identifiers

Designated constructs:

DCRN Definition Rationale
Either the FUNCTION-PROTOTYPE in which the
identifier occurs differs from the
An identifier having no part of its scope outside | FUNCTION-PROTOTYPE of the Forrespondlng .
6.2.1-1 2 FUNCTION-PROTOTYPE. function-definition, or there is no corresponding
function-definition. Some users believe that such
usage impairs UNDERSTANDABILITY.
An identifier having block scope where that .
6.2.1-2 block scope is enclosed by the scope of another %omg IE‘ sers beh.eve lhal‘lhe' presence O‘f such
identifier having the same spelling. identifiers impairs UNDERSTANDABILITY.
X X Such an identifier is undeclared and will be
An identifier that is not the identifier of at least i i . .
. S treated as if it had been declared with type int.
6.2.1-3 one direct-declarator within the . . -
. L S Some users believe that allowing types to default
translation-unit in which it occurs. . . .
to int impairs the UNDERSTANDABILITY of ode.
6.2.2 Linkages of identifiers

Designated constructs:

DCRN

Definition

Rationale

6.2.2-1

An identifier appearing with both internal and
external linkage in a single translation-unit.

Behaviour is undefined.

6.2.2-2

An identifier with internal linkage or a
MACRO-NAME that does not differ from a distinct
identifier with internal linkage or MACRO-NAME
names that do not differ within the first 63 (C90
= 31) characters, regardless of alphabetic case.

Behaviour is undefined.

6.2.2-3

An identifier with external linkage or a
MACRO-NAME that does not differ from a distinct
identifier with external linkage or MACRO-NAME
names that do not differ within the first 31 (C90
= 6) characters, regardless of alphabetic case.

Behaviour is undefined.

6.2.2-4

An identifier that has block scope and that is
declared with the storage-class-specifier
extern.

The behaviour provided by pre-standard
implementations may differ from that provided by
a conforming implementation thus impairing
PORTABILITY.

6.2.3

Name spaces of identifiers

Designated constructs:

DCRN Definition Rationale
6231 An identifier that is declared in one more than Some users believe that the presence of such
T one of the name spaces of a translation-unit. identifiers impairs UNDERSTANDABILITY.
6.2.4 Storage durations of identifiers

Designated constructs:

DCRN Definition Rationale
6.2.4-1 An access to an object outside its lifetime. Behaviour is undefined.
6.2.42 A non-modifying access to an object whose Behaviour may be undefined depending on the
o value is indeterminate. context of usage.
Some users believe that access by a function to
A FUNCTION-BLOCK containing an expression objects not local to its FUNCTION-BLOCK impairs
6.2.4-3 that denotes the Ivalue of an object whose the UNDERSTANDABILITY and MAINTAINABILITY
lifetime is not contained in that of the code. Non-local accesses also contravene
FUNCTION-BLOCK. certain special-purpose conventions such as
data-flow programming.
6.2.5 Types (NR)
6.2.6 Representations of types
6.2.6.1 General (NR)
6.2.6.2 Integer types (NR)
6.2.7 Compatible and composite types

6.3 Conversions

6.3.1 Arithmetic operands (NR)

6.3.1.1 Boolean, character, and integers (NR)
6.3.1.2 Boolean type (NR)

6.3.1.3 Signed and unsigned integers

Designated constructs:

DCRN Definition Rationale
A construct whose behaviour converts a value The effects of such .
6.3.1.3-1 of integral type to an integral type in whichits | . ele eclst Ot' Su°d e;-cor(liversmn are
value cannot be represented. Implementation-delined.

Note: Several sub-cases can be identified for DCRN 6.3.1.3-1 and a diagnostic processor may distinguish among
them by issuing different diagnostic messages. In particular a diagnostic processor may distinguish cases in which
the construct concerned is an EXPLICIT-CAST-EXPR, where the explicit nature of the conversion may indicate a

particular intention of the programmer.

6.3.14 Real, floating and integer (NR)

6.3.1.5 Real floating types
Designated constructs:
DCRN Definition Rationale
A construct whose behaviour converts other a The effects of the conversion may be undefined
6.3.1.5-1 value of floating type to a value of a shorter or implementation-defined depending on the
floating type. value concerned.
Ac hose behavi ! The effects of the conversion may be undefined
6.3.1.5-2 construct whose behaviour converts a value or implementation-defined depending on the
of floating type to a value of integral type.
value concerned.
A hose behavi I The effects of the conversion may be undefined
6.3.1.5-3 r(;onstrulc t whose be la vmufrﬂconyerts avalue | or implementation-defined depending on the
of integral type to a value of floating type. value concerned.

Note: Several sub-cases can be identified for each of DCRNs 6.3.1.5-1, 6.3.1.5-2 and 6.3.1.5-3. A diagnostic
processor may distinguish among them by issuing different diagnostic messages. . In particular a diagnostic
processor may distinguish cases in which the construct concerned is an EXPLICIT-CAST-EXPR, where the explicit nature
of the conversion may indicate a particular intention of the programmer.

6.3.1.6 Real and complex (NR)
6.3.1.7 Usual arithmetic conversions (NR)
6.3.2 Other operands
6.3.2.1 Lvalues, arrays and function designators
Designated constructs
DCRN Definition Rationale
An lvalue that does not denot bject wh
6321 | 0 vauefatdoes notdenote an obJectWhEN | b e haviour is undefined.
evaluated.
6.3.22 Void
Designated constructs
DCRN Definition Rationale
A ion that i Some users, believing such constructs likely to
6.3.2.2-1 n expression atis not an . . have resulted from programmer error, regard their
expression-statement and whose type is void. prohibition as defensive programming.

Note: Particular sub-cases can be identified for DCRN 6.3.2.2-1, e.g. when the construct concerned is the expression
of an EXPLICIT- COMMA-EXPRESSION or when it is an EXPLICIT-CAST-EXPR that casts to void. A diagnostic processor
may distinguish among sub-cases by issuing different diagnostic messages.

6.3.2.3 Pointers (NR)

6.4 Lexical elements

Orthosyntax:
token = keyword
I identifier
| constant
I string-literal
| punctuator ;

header-name
identifier
pp-number
character-constant
string-literal

preprocessing-token

operator
punctuator
each non-white-space character that cannot be one of the
above ;
Designated constructs:
DCRN Definition Rationale
6.4-1 A preprocessing-token that cannot be converted | T-behaviour of the preprocessing-token is
- to an actual token. undefined which impairs analysability.
. . . Such a construct is likely to be a non-standard
6.4-2 A identifier that is not a keyword but that an keyword supported by the implementation. Its

implementation does not treat as an identifier. presence in code will impair analysability.

A " or ™ that is not a header-name, an

6.4-3 identifier, a pp-number, a character-constant, a | T-behaviour is undefined.
string-literal, an operator or a punctuator

Note: Examples of DCRN 6.4-2 are common, for example in C compilers provided as part of C++ implementations
or in cross-compilers for embedded targets. A diagnostic processor may distinguish among different sub-cases by
issuing different diagnostic messages.

64.1 Keywords
Orthosyntax:

keyword = auto | break | case | char | const | continue |
default | do | double | else | enum | extern |
float | for | goto | if | inline | int | long |
register | restrict | return | short | signed |
sizeof | static | struct | switch | typedef |
union | unsigned | void | volatile | while | _Bool |
_Complex | _Imaginary;

Parasyntax:

NON-C90-KEYWORD = inline | restrict | _Bool
_Complex | _Imaginary;

Designated constructs:

DCRN Definition Rationale
The presence of such keywords impairs
PORTABILITY of code among implementations
6.4.1-1 A NON-C90-KEYWORD.

conforming to earlier version of the base language
standard.

6.4.2 Identifiers

6.4.2.1

General

Orthosyntax:

identifier

identifier-nondigit

non-digit

digit

nondigit

- -
zZ P B

identifier-nondigit
identifier < identifier-nondigit
identifier < digit

universal character-name
other implementation-defined characters ;

lalbleldlelflglhliljlkl1lIm
lolplglrlsltliulviwlxlylz
IBICIDIEIFIGIHIIIJIKILIM
lolPlQIRISITIUIVIWIXIYI|Z

= 0111213141516171819;

Designated constructs:

DCRN Definition Rationale
Some users believe that the presence of proscribed
6.4.2.1-1 A proscribed identifier. identifiers impairs the understandability and thence
the maintainability of the code.
The presence of a universal-character-name in an
An identifier that contains a identifier impairs PORTABILITY of code among
6.4.2.1-2 universal-character-name. implementations conforming to earlier version of the
base language standard.
An identifier that contains an
6.4.2.1-3 | identifier-non-digit that is neither a non-digit | Behaviour is implementation-defined.

nor universal-character-name.

Note: Diagnostic processors identifying occurrences of DCRN 6.4.2.1-1 may distinguish between occurrences in
standard headers and elsewhere in a preprocessing-file. They may also distinguish instances of pairwise
confusability from other instances.

6.4.2.2

Predefined identifiers (NR)

6.4.3 Universal character names (NR)

Orthosyntax:
universal-character-name = \u < hex-quad
\U < hex-quad ;
hex-quad = hexadecimal-digit < hexadecimal-digit <

hexadecimal-digit < hexadecimal-digit ;

Designated constructs:

DCRN Definition Rationale
Correct use of universal character-names is critical in
. internationalisation of software. Some users consider
6.4.2.1-1 A universal-character-name. it useful for a diagnostic processor to identify all
occurrences of such characters to facilitate manual
review.
A universal-character-name that specifies a
character whose short identifier is less than X .
6.4.2.1-2 Behaviour is undefined.

00AO (other than 0024, 0040, or 0060) or in
the range D800 to DFFF inclusive.

6.44 Constants

Orthosyntax:

constant

[floating-constant
integer-constant
enumeration-constant
character-constant ;,

Designated constructs:

DCRN Definition Rationale
6.4.4-1 A constant whose value is unrepresentable in | Behaviour of an unrepresentable value is
s an object of arithmetic type. undefined.
6.4.4.1 Integer constants

Orthosyntax:

integer-constant

= decimal-constant < [integer-suffix |
| octal-constant < [integer-suffix]
|

hexadecimal-constant < [integer-suffix] ;

decimal-constant = nonzero-digit
decimal-constant < digit ;

octal-constant = 0
octal-constant < octal-digit ;

hexadecimal-constant = hexadecimal-prefix < hexadecimal-digit
| hexadecimal-constant < hexadecimal-digit ;

hexadecimal-prefix = 0x | 0X;

nonzero-digit = 112131415161718189;

octal-digit 0l1112131415161717;

hexadecimal-digit 6171819

||
> p o
W o -

integer-suffix unsigned-suffix < [long-suffix]
unsigned-suffix < long-long suffix
long-suffix < [unsigned-suffix]

long-long-suffix < [unsigned-suffix] ;

unsigned-suffix = ulU;
long-suffix = 11L;
long-long-suffix = 11 | LL;
DCRN Definition Rationale
An integer-constant that denotes a value of a Some users believe that failure to use an explicit
6.4.4.1-1 type other than int but does not contain an suffix for such an integer-constant impairs
integer-suffix. UNDERSTANDABILITY.

An integer-constant that:
Such an integer-constant (often called a “magic

(a) has not resulted from expansion of a macro, " .
constant”) may represent a configuration

and

6.4.4.1-2 parameter. Some users believe that failure to give
(b) is not contained by an initializer, and it a symbolic definition, either as a macro or a
N value of const-qualified type, impairs
(c¢) denotes a value that is neither zero nor one. R

The presence of such suffices may impair
6.4.4.1-3 A long-long-suffix. PORTABILITY among implementations
conforming to earlier versions of the base
language standard.

Note: A diagnostic processor may identify constructs similar to DCRN 6.4.4.1-2 such as a integer-constant that
denotes a value other than zero or one, e.g. two. The values zero and one are excluded from the definition of DCRN
6.4.4.1-2 because most uses of them are not magic numbers.

6.4.4.2 Floating constants
Orthosyntax:

floating-constant decimal-floating-constant

hexadecimal-floating-constant ;

decimal-floating-constant = [fractional-constant
< [exponent-part | < [floating-suffix]

hexadecimal-floating-constant =

[fractional-constant =

exponent-part =

sign =

digit-sequence =

hexadecimal-fractional-constant

binary-exponent-part

hexadecimal-digit-sequence =

Sfloating-suffix

Designated constructs:

digit-sequence < exponent-part < [floating-suffix] ;

hexadecimal-prefix

< hexadecimal-fractional-constant

< binary-exponent-part

< [floating-suffix]
hexadecimal-prefix

< hexadecimal-digit-sequence

< binary-exponent-part

< [floating-suffix] ;

[digit-sequence | < . < digit-sequence
digit-sequence ;

e < [sign] < digit-sequence
E < [sign] < digit-sequence ;

+ 1=

digit
digit-sequence < digit ;
= [hexadecimal-digit-sequence | <
< hexadecimal-digit-sequence
hexadecimal-digit-sequence < . ;

= p < [sign] < digit-sequence
I P < [sign] < digit-sequence ;

hexadecimal-digit
hexadecimal-digit-sequence < hexadecimal-digit ;

fI11IFIL;

DCRN Definition Rationale
A . . Some users believe that failure to use an explicit
6.4.4.2-1 Jloating-constant containing a suffix for such a floating-constant impairs

Sfloating-suffix that is £ or F.

UNDERSTANDABILITY.

A floating-constant that:

macro, and
6.4.4.2-2

one.

(a) has not resulted from expansion of a

(b) is not an initializer, and

(c) denotes a value that is neither zero nor

Such a floating-constant (often called a “magic
constant”) may represent a configuration
parameter. Some users believe that failure to give it
a symbolic definition, either as a macro or a value
of const-qualified type, impairs MAINTAINABILITY .

The use of such constants may impair PORTABILITY
. . of code among implementations conforming to
6.4.4.2-3 A hexadecimal-floating-constant. earlier versions of the base language standard.

Note: A diagnostic processor may identify constructs similar to DCRN 6.4.4.2-2 such as a floating-constant that
denotes a value other than zero or one, e.g. two. The values zero and one are excluded from the definition of DCRN
6.4.4.1-2 because most uses of them are not magic numbers.

6.4.4.3 Enumeration constants (NR)

6.4.44 Character constants

Orthosyntax:
character-constant = ‘< c-char-sequence < ' ;

L < ' < c-char-sequence < ' ;
character-constant = ' < c-char-sequence < '

L < ' < c-char-sequence < ' ;
c-char-sequence = c-char

c-char-sequence < c-char;
c-char = escape-sequence

any member of the source character set except the
single-quote ', backslash \, or new-line character ;

simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

escape-sequence

simple-escape-sequence = \N"I\N" I \?21\\I\al\b
\fl\nl\rl\tl\v ;

\ < octal-digit
\ < octal-digit < octal-digit
\ < octal-digit < octal-digit < octal-digit ;

()ctal-escape-sequence

hexadecimal-escape-sequence = \x < hexadecimal-digit
I hexadecimal-escape-sequence < hexadecimal-digit ;

Parasyntax:
character-constant = INTEGER-CHARACTER-CONSTANT

| WIDE-CHARACTER-CONSTANT
INTEGER-CHARACTER-CONSTANT = Y < c-char-sequence < ' ;
WIDE-CHARACTER-CONSTANT = L < ' < c-char-sequence < ' ;

VALUE-ESCAPE-SEQUENCE escape-sequence

& OCT-OR-HEX-ESCAPE-SEQUENCE ;

OCT-OR-HEX-ESCAPE-SEQUENCE = \ < OCTAL-ESC-DIGITS

\ < HEXADECIMAL-ESC-DIGITS ;
OCTAL-ESC-DIGITS octal-digit
octal-digit < octal-digit
octal-digit < octal-digit < octal-digit ;

HEXADECIMAL-ESC-DIGITS

hexadecimal-digit
HEXADECIMAL-ESC-DIGITS < hexadecimal-digit ;

Designated constructs:

DCRN Definition Rationale

S t for wide characters is impl tation-defined.
6.4.4.4-1 A character-constant beginning with L. upport forwide characters 1s implementation-cefine

64442 A INTEGER-CHARACTER-CONSTANT that The number of characters permitted in a
A contains more than one c-char. character-constant is implementation-defined.
6.4.4.4-3 A non-standard character-constant. Behaviour is undefined.

Support for non-standard escape sequences is

6.44.4-4 A non-standard escape sequence. implementation-defined.

An VALUE-ESCAPE-SEQUENCE that is
contained by an
INTEGER-CHARACTER-CONSTANTand
6.4.4.4-5 | whose OCTAL-ESC-DIGITS or
HEXADECIMAL-ESC-DIGITS denote a value
that is outside the range of representable
values for the type unsigned char.

A constraint is violated if the value lies outside the
range of the relevant type.

A VALUE-ESCAPE-SEQUENCE that is
contained by a
WIDE-CHARACTER-CONSTANT and whose
6.4.4.4-6 OCTAL-ESC-DIGITS OF
HEXADECIMAL-ESC-DIGITS denote a value
that is outside the range of representable
values for the type wchar_t.

A constraint is violated if the value lies outside the
range of the relevant type.

Such a character-constant (often called a “magic

A character-constant that has not constant”) may represent a configuration parameter.
6.4.4.4-7 resulted from expansion of a macro, and Some users believe that failure to give it a symbolic
is not an initializer. definition, either as a macro or as a value of

const-qualified type, impairs MAINTAINABILITY.

6.4.5 String literals
Orthosyntax:

string-literal " < [s-char-sequence] < "

L" < [s-char-sequence] < " ;

s-char-sequence = s-char
s-char-sequence < s-char;

s-char = escape-sequence
any member of the source character set except the
double-quote ", backslash \, or new-line character ;

Parasyntax:

CHARACTER-STRING-LITERAL

WIDE-STRING-LITERAL

Designated constructs:

" < [s-char-sequence] < " ;

L" < [s-char-sequence] < " ;

DCRN Definition Rationale
5 X L) Support for wide character strings is
6.4.5-1 A string-literal beginning with L. locale-specific.
6452 Adjacent occurrences of a Support for wide character strings is
SRS CHARACTER-STRING-LITERAL and a locale-specific.
WIDE--STRING-LITERAL.
6.4.5-3 A string-literal containing non-standard escape | Support for non-standard escape sequences is
T sequence. unspecified.
Such occurrences of null characters may lead to
A null character that is not the last s-char unexpected results if the string is an argument to
6.4.5-4 contained in a string-literal. an unbounded string processing functions. Some
users therefore consider that they impair
UNDERSTANDABILITY.
6.4.5.5 A string-literal containing a Some users believe that embedding such escape
s simple-escape-sequence. sequences in strings impairs
UNDERSTANDABILITY.
A string-literal appearing in a context such that
6.4.5-6 its stored representation is subject to a The effect of such an access is undefined.
modifying access.
Such a string-literal (often called a “magic
o N constant”) may represent a configuration
6.4.5-7 A 5”’"5’1””‘11 that has not resulted lrom . parameter. If it does, some users believe that
expansion of a macro, and is not an initializer. | fajlure to give it a symbolic definition, either as a
macro or as a value of const-qualified type,
impairs maintainability.
6.4.6 Punctuators
Orthosyntax:
punctuator = L1101 clYy r gyl =>4+ | -=1 &l *| + |-
| ~l 1/l s l<<I>>]l<I>]l<=l>=]=]2]]1s&&
I 1200 ; 1.0 0=l*=]/=]1%=14=| -=| <<=
| >S>= &= =1 =1, | # 1 ## 1 <21 :>1<%1%>1%:
I $:%:
Parasyntax:
SUBSTITUTE-PUNCTUATOR = <t > 1<% 1% %:1%:%:
Designated constructs:
‘ DCRN ‘ Definition Rationale

6.4.6-1

A SUBSTITUTE-PUNCTUATOR.

The presence of a SUBSTITUTE-PUNCTUATOR may
impair PORTABILITY among implementations
conforming to earlier versions of the base language
standard.

6.4.7

Header names

Orthosyntax:

header-name

< < h-char-sequence < >

" < g-char-sequence < " ;

h-char-sequence = h-char
h-char-sequence < h-char;

h-char = any member of the source character set

except the new-line character and >
g-char-sequence = g-char

g-char-sequence < q-char
g-char = any member of the source character set

except the new-line character and "
Parasyntax:
STD-HEADER-NAME = < < STD-HU-CHAR-SEQUENCE < > ;
USER-HEADER-NAME = " < STD-HU-CHAR-SEQUENCE < " ;
STD-HU-CHAR-SEQUENCE = STD-HU-BEFORE-PERIOD < . < LETTER;
STD-HU-BEFORE-PERIOD = STD-HU-CHAR & LETTER

STD-HU-BEFORE-PERIOD < STD-HU-CHAR ;

STD-HU-CHAR = LETTER

digit ;

Designated constructs:

DCRN Definition Rationale
The mapping from header names to corresponding
A header-name that is neither a source file names is undefined if non-standard forms
6.4.7-1 STD-HEADER-NAME NOT a of header name are used but is unique (although
USER-HEADER-NAME. implementation-defined) if a standard form is used.
The mapping from header names to corresponding
A STD-HU-CHAR-SEQUENCE containing more | source file names is undefined if non-standard forms
6.4.7-2 than 8 (C90 = 6) STD-HU-CHARS. of header name are used but is unique (although
implementation-defined) if a standard form is used.
6.4.7-3 A header-name whose h-char-sequence T-behaviour is undefined.

contains *,\,™,//,or/*

6.4.7-4

A header-name whose g-char-sequence
contains *,\, // ,or /*

T-behaviour is undefined.

6.4.7-5

A header-name that is not contained by an
INCLUDE-DIRECTIVE.

Behaviour is undefined.

Note: Several sub-cases of DCRNs 6.4.7-1 and 6.4.7-2 may be identified. A diagnostic processor may distinguish
among them by issuing different diagnostic messages.

6.4.8 Preprocessing numbers
Orthosyntax:
pp-number = digit
| < digit
| pp-number < digit
| pp-number < identifier-nondigit
| pp-number < e < sign
| pp-number < E < sign
| pp-number < p < sign
| pp-number < P < sign
| pp-number < . ;
Parasyntax:
ALL-DIGIT-PP-NUMBER = digit
| ALL-DIGIT-PP-NUMBER < digit ;
Designated constructs:
DCRN Definition Rationale
Such a construct may have been intended to be
64581 An ALL-DIGIT-PP-NUMBER that begins with 0 and | an octal-constant but is very likely to be the
e contains a nonzero-digit that is either 8 or 9. result of a programmer’s error. Behaviour is
undefined.
The presence of such a pp-number may impair
. PORTABILITY among implementations
6.4.8-2 A pp-number containing p or P. conforming to earlier versions of the base
language standard.
6.4.9 Comments

Designated constructs:

DCRN Definition Rationale

Such a construct may be indicative of an
6.4.9-1 A comment containing /* attempt to write a nested comment and

T-behaviour is undefined.

Such a construct may be indicative of an
6.4.9-2 The characters */ occurring outside a comment. | attempt to write a nested comment and

T-behaviour is undefined.

6.4.9-3

A comment beginning with the characters //.

The presence of such comments may impair
PORTABILITY among implementations
conforming to earlier versions of the base
language standard.

6.5 Expressions

Parasyntax:

SIDE-EFFECTIVE-OPERATOR = == l==1*=]/=]%= | +=|
—=|<<=|>>=&g=|*=]||=;

OLD-STYLE-COMP-ASSGN-OP = =x|=/|=% |=+|=—|=<<|=>>|=¢;

Designated constructs:

DCRN Definition Rationale
An expression in which the stored value of an
object is accessed by an lvalue that does not
have one of the following types:
(a) a type compatible with the effective
declared type of the object, or
(b) a qualified version of a type compatible
with the effective type of object, or
(c) a type that is the signed or unsigned
type corresponding to the effective type
of the object, or
6.5-1 (d) a type that is the signed or unsigned The effect of such an access is undefined.
type corresponding to a qualified
version of the effective type of the
object, or
(e) an aggregate or union type that
(recursively) includes one of the
aforementioned types among its
members, or
(63 a character type.
An expression whose E-behaviour causes an N . . e .
6.5-2 object to have its stored value modified more The effect of such multiple modifications is
. undefined.
than once between sequence points.
An expression whose value is dependent on the | The value of such an expression is undefined or
6.5-3 order of evaluation of the operands of any implementation-defined depending on the
expression that it contains.. expression.
An e ion in whose E-behaviour an
6.5-4 CXPression ih W . viou Subsequent E-behaviour is undefined.
exceptional condition arises.
Some pre-standard implementations supported
these as alternative ways of writing compound
6.5-5 An OLD-STYLE-COMP-ASSGN-OP assignment operators but they were not included
in C90. Corresponding behaviour under a
conforming implementation is undefined.
6.5-6 An expression containing operators of different | Some users believe that such usage impairs thye
= precedence without intervening parentheses. UNDERSTANDABILITY of code.
657 An expression in which lack of spacing makes | Some users believe that such usage impairs thye
= the expression difficult to read. UNDERSTANDABILITY of code.
6.5.1 Primary expressions

Orthosyntax:

primary-expr identifier
constant
string-literal

(expression)

6.5.2 Postfix operators
Orthosyntax:

postfix-expression = primary-expression

postfix-expression [expression]
postfix-expression ([argument-expression-list]')
postfix-expression identifier
postfix-expression —> identifier
postfix-expression ++

postfix-expression —

(type-name) { initializer-list }

(type-name) { initializer-list , } ;

argument-expression-list:
assignment-expr
argument-expression-list , assignment-expr

Parasyntax:

postfix-expression = primary-expr
SUBSCRIPT-EXPRESSION
FUNCTION-CALL-EXPRESSION
DIRECT-ACCESS-EXPRESSION
INDIRECT-ACCESS-EXPRESSION
POST-INCREMENT-EXPRESSION
POST-DECREMENT-EXPRESSION
COMPOUND-LITERAL ;

SUBSCRIPT-EXPRESSION = postfix-expression [expression] ;

FUNCTION-CALL-EXPRESSION FUNCTION-DESIGNATOR

([argument-expression-list]) ;

FUNCTION-DESIGNATOR postfix-expression ;

DIRECT-ACCESS-EXPRESSION postfix-expression identifier ;

INDIRECT-ACCESS-EXPRESSION = postfix-expression —> identifier ;

POST-INCREMENT-EXPRESSION postfix-expression ++ ;

POST-DECREMENT-EXPRESSION = postfix-expression —— ;

COMPOUND-LITERAL = (type-name) { initializer-list }
(type-name) { initializer-list , } ;

argument-expression-list ARGUMENT

ARGUMENT =

6.5.2.1

argument-expression-list , ARGUMENT ;

Array subscripting

Designated constructs:

assignment-expr

DCRN Definition Rationale

A SUBSCRIPT-EXPRESSION whose

6.5.2.1-1 | postfix-expression does not have pointer to Such a construct violates a constraint.
object type.
An SUBSCRIPT-EXPRESSION whose expression . .

6.5.2.1-2 - 4 Such a construct violates a constraint.
does not have integer type.

6.5.2.2 Function calls

Designated constructs:

DCRN Definition Rationale
A FUNCTION-CALL-EXPRESSION wWhose
6.5.2.2-1 FUNCTION-DESIGNATOR does not have type Such a construct violates a constraint.
pointer to function returning void or returning
an object type other than array type.
A h Other forms of function-designator in this context
6.5.2.2-2 i FUI’V_ CTION ’_CALL’?XP R,ESSI?N whose may render code that contains them less tractable
FUNCTION-DESIGNATOR 15 ot a to analysis thus impairing ANALYSABILITY.
PARENTHESISED-IDENTIFIER.
A FUNCTION-CALL-EXPRESSION Whose The semantics of calls to such functions permit
FUNCTION-DESIGNATOR denotes a function for only limited type-checking thus impairing the
6.5.2.2-3 | which the containing franslation-unit contains | ANALYSABILITY of any translation unit that
no corresponding FUNCTION-PROTOTYPE. contains them.
A FUNCTION-CALL-EXPRESSION Passi s of biect (i.c. function)
6.52.2-4 closest-containing an ARGUMENT that denotes a assing arguments of non-object (ie. function

value that is not of object type.

type impairs the ANALYSABILITY of code.

6.5.2.2-5

A FUNCTION-CALL-EXPRESSION whose
FUNCTION-DESIGNATOR denotes a function for
which the containing franslation-unit contains a
corresponding FUNCTION-PROTOTYPE that does
not contain , and whose
argument-expression-list does not contain
exactly as many ARGUMENT as there are
declarator in the parameter-type-list of that
FUNCTION-PROTOTYPE.

The effect of such a function-call is undefined.

6.5.2.2-6

A FUNCTION-CALL-EXPRESSION whose
FUNCTION-DESIGNATOR denotes a function for
which the containing franslation-unit contains a
corresponding FUNCTION-PROTOTYPE that does
contain , and whose
argument-expression-list does not contain at
least as many ARGUMENT as there are declarator
in the parameter-type-list of that
FUNCTION-PROTOTYPE.

The effect of such a function-call is undefined.

6.5.2.2-7

A FUNCTION-CALL-EXPRESSION whose
FUNCTION-DESIGNATOR denotes a function for
which the containing translation-unit contains a
corresponding K-AND-R-FUNCTION-DECLARATOR
and whose argument-expression-list does not
contain exactly as many ARGUMENT as there are
identifier in the identifier-list of that
K-AND-R-FUNCTION-DECLARATOR.

The effect of such a function-call is undefined.

6.5.2.2-8

A FUNCTION-CALL-EXPRESSION whose
FUNCTION-DESIGNATOr denotes a function for
which the containing translation unit contains a
corresponding FUNCTION-PROTOTYPE and in
which the type of each closest-contained
ARGUMENT is not compatible, after promotion,
with the type of the corresponding parameter in
the corresponding FUNCTION-PROTOTYPE.

The effect of such a function-call is undefined.

6.5.2.2-9

A FUNCTION-CALL-EXPRESSION wWhose
FUNCTION-DESIGNATOR denotes a function for
which the containing translation unit contains a
corresponding
K-AND-R-FUNCTION-DECLARATOR.and in which
the type of each closest-contained ARGUMENT is
not compatible, after promotion, with the type
of the corresponding parameter in the
corresponding
K-AND-R-FUNCTION-DECLARATOR., unless one of
the following is true of the type of the
ARGUMENT and the type of the parameter:

(a) one promoted type is a signed integer type
and the other promoted type is the
corresponding unsigned integer type, and
the value of the argument is representable
in both types, or

(b) both types are pointers to qualified or
unqualified versions of a character type or
void.

The effect of such a function-call is undefined.

6.5.2.2-10

A FUNCTION-CALL-EXPRESSION whose
FUNCTION-DESIGNATOR denotes a function that
accepts a variable number of arguments.

The semantics of calls to such functions permit
only limited type-checking thus impairing the
ANALYSABILITY of any translation unit that
contains them.

A FUNCTION-CALL-EXPRESSION
6.5.2.2-11 | closest-containing an ARGUMENT whose
E-behaviour contains a side effect.

The order of evaluation for the
argument-expression-list is unspecified.

A FUNCTION-CALL-EXPRESSION whose Behaviour is undefined if the result is a recursive
65.22-12 FUNCTION-DESIGNATOR denotes the function call of main.
main.
The amount of memory required to run any
A FUNCTION-CALL-EXPRESSION whose possible instance of such a call may not be
65.2.2-13 | 1 crioN-DESIGNATOR denotes a recursive tractable to determination by static or dynamic
function. analysis, thus impairing ANALYZABILITY.

A FUNCTION-CALL-EXPRESSION the E-behaviour
6.5.2.2-14 | of whose function-designator contains a side
effect.

Some users believe that such usage impairs the
UNDERSTANDABILITY of code.

Note: Coding manuals for high-integrity applications may prohibit recursive functions outright because it is
typically infeasible to predict the maximum amount of memory that they may require at execution time.

6.5.2.3 Structure and union members

Designated constructs:

DCRN Definition Rationale

A DIRECT-ACCESS-EXPRESSION whose

6.5.2.3-1 | postfix-expression does not have structure or Such a construct violates a constraint.
union type.

An INDIRECT-ACCESS-EXPRESSION whose

6.5.2.3-2 | postfix-expression does not have structure or Such a construct violates a constraint.
union type.

A DIRECT-ACCESS-EXPRESSION whose identifier

6.5.2.3-3 | does not denote a member of the structure or Such a construct violates a constraint.
union type object of its postfix-expression.

An INDIRECT-ACCESS-EXPRESSION whose

identifier does not denote a member of the X .
6.5.2.3-4 structure or union type object of its Such a construct violates a constraint.

postfix-exrpession.

6.5.24 Postfix increment and decrement operators

Designated constructs:

DCRN Definition Rationale

A POST-INCREMENT-EXPRESSION whose
postfix-expression does not have qualified or

6.5.2.4-1 unqualified real or pointer type or is not a Such a construct violates a constraint.
modifiable lvalue.
A POST-DECREMENT-EXPRESSION Whose
postfix-expression does not have qualified or . 3
6.5.2.4-2 unqualified real or pointer type or is not a Such a construct violates a constraint.

modifiable lvalue.

6.5.2.4-3

A POST-INCREMENT-EXPRESSION whose
postfix-expression has enumerated type.

Some users believe that application of increment
and decrement operators to values of enumerated
types is a common cause of programming errors

and view prohibition of such usage as defensive

programming.

6.5.2.4-4

A POST-DECREMENT-EXPRESSION Whose
postfix-expression has enumerated type.

Some users believe that application of increment
and decrement operators to values of enumerated
types is a common cause of programming errors

and view prohibition of such usage as defensive

programming.

6.5.2.4-5

A POST-INCREMENT-EXPRESSION whose
postfix-expression does not have integer type.

Some users believe that application of increment
and decrement operators to values of anything
other than integer types is a common cause of
programming errors and view prohibition of such
usage as defensive programming.

6.5.2.4-6

A POST-INCREMENT-EXPRESSION whose
postfix-expression does not have integer type.

Some users believe that application of increment
and decrement operators to values of anything
other than integer types is a common cause of
programming errors and view prohibition of such
usage as defensive programming.

6.5.2.4-7

A POST-INCREMENT-EXPRESSION whose
postfix-expression is not an IDENTIFIER.

Some users believe that application of increment
and decrement operators to values of anything
other than expression that are identifier is a
common cause of programming errors and view
prohibition of such usage as defensive
programming.

6.5.2.4-8

A POST-INCREMENT-EXPRESSION whose
postfix-expression is not an IDENTIFIER.

Some users believe that application of increment
and decrement operators to values of anything
other than expression that are identifier is a
common cause of programming errors and view
prohibition of such usage as defensive
programming.

6.5.2.5

Compound literals

Designated constructs:

DCRN Definition Rationale
A COMPOUND-LITERAL whose type-name
6.5.2.5-1 specifies neither an object type nor an array of Such a construct violates a constraint.
unknown size.
A COMPOUND-LITERAL wWhose type-name . .
6.5.2.5-2 . . P Such a construct violates a constraint.
specifies a variable length array type.
An initializer-list of a COMPOUND-LITERAL that
attempts to provide a value for an object not X .
6.5.2.5-3 contained within the entire unnamed object Such a construct violates a constraint.
specified by the COMPOUND-LITERAL.
A COMPOUND-LITERAL that is contained by a
FUNCTION-BLOCK and whose initializer-list X 3
6.5.2.5-4 Such a construct violates a constraint.

contains an expression that is not a
constant-expression.

6.5.3 Unary operators
Orthosyntax:

unary-expression =

unary-operator =

Parasyntax:

unary-expr

PRE-INCREMENT-EXPRESSION
PRE-DECREMENT-EXPRESSION

UNARY-OP-EXPR

SIZEOF-UNARY-EXPR
SIZEOF-TYPE-EXPR
AMPERSAND-EXPR
ASTERISK-EXPR
UPLUS-EXPR
UMINUS-EXPR
TILDE-EXPR

SHRIEK-EXPR

postfix-expression

++ unary-expression

—— unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name) ;

&l x|+ =-1~11;

postfix-expression
PRE-INCREMENT-EXPRESSION
PRE-DECREMENT-EXPRESSION
UNARY-OP-EXPR
SIZEOF-UNARY-EXPR
SIZEOF-TYPE-NAME

++ unary-expression ;

—— unary-expression ;
AMPERSAND-EXPR
ASTERISK-EXPR

UPLUS-EXPR

UMINUS-EXPR

TILDE-EXPR

SHRIEK-EXPR

sizeof unary-expression ;
sizeof (type-name) ;
& cast-expression

* cast-expression;

+ cast-expression ;

- cast-expression ;

~ cast-expression 5

! cast-expression ;

6.5.3.1

Prefix increment and decrement operators

Designated constructs:

DCRN Definition Rationale
A PRE-INCREMENT-EXPRESSION Whose
unary-expression does not have qualified or
6.5.3.1-1 unqualified real or pointer type or is not a Such a construct violates a constraint.
modifiable lvalue.
A PRE-DECREMENT-EXPRESSION whose
unary-expression does not have qualified or . 3
6.5.3.1-2 unqualified real or pointer type or is not a Such a construct violates a constraint.
modifiable lvalue.
Some users believe that application of increment
and decrement operators to values of enumerated
6.53.1-3 A PRE-INCREMENT-EXPRESSION Whose types is a common cause of programming errors
postfix-expression has enumerated type. and view prohibition of such usage as defensive
programming.
Some users believe that application of increment
and decrement operators to values of enumerated
6.53.1-4 A PRE-DECREMENT-EXPRESSION whose types is a common cause of programming errors
posifix-expression has enumerated type. and view prohibition of such usage as defensive
programming.
Some users believe that application of increment
and decrement operators to values of anything
6.52.4-5 A PRE-INCREMENT-EXPRESSION Whose other than integer types is a common cause of
posifix-expression does not have integer type. programming errors and view prohibition of such
usage as defensive programming.
Some users believe that application of increment
and decrement operators to values of anything
6.5.2.4-6 AP RE-INCREMENT-EXPRESSION whose other than integer types is a common cause of
postfix-expression does not have integer type. | programming errors and view prohibition of such
usage as defensive programming.
6.5.3.2 Address and indirection operators

Designated constructs:

DCRN Definition Rationale
An AMPERSAND-EXPR whose cast-expression is
not a FUNCTION-DESIGNATOR or whose value is
not the result of a SUBSCRIPT EXPRESSION or an
6.5.3.2-1 ASTERISK-EXPR, or is an lvalue that designates an Such a construct violates a constraint.
object that is bit-field or is declared with the
storage-class-specifier register.
Some users believe that there is no useful purpose
653122 An AMPERSAND-EXPR whose cast-expression in taking the address of main and prefer to ban the
.5.3.1-:

denotes the function main.

practice as a rule of defensive programming.

6.5.3.1-3

An ASTERISK-EXPR whose cast-expression does
not have pointer type.

Such a construct violates a constraint.

6.5.3.3

Unary arithmetic operators

Designated constructs:

DCRN Definition Rationale
A UPLUS-EXPR whose cast-expression does not . .
6.5.3.3-1 have arithmetic type. Such a construct violates a constraint.
A UMINUS-EXPR whose cast-expression does . .
6.5.3.3-2 not have arithmetic type. Such a construct violates a constraint.
A TILDE-EXPR whose cast-expression does not . .
6.5.3.3-3 . P Such a construct violates a constraint.
have integer type.
65334 A SHRIEK-EXPR whose cast-expression does Such truct violat (raint
.5.3.3- not have scalar type or is a constant. uch a construct violates a constraint.
65335 A TILDE-EXPR whose cast-expression does not | The result of applying the tilde operator to a signed
It have unsigned type. operand is unspecified.
65336 A SHRIEK-EXPR whose cast-expression does The result of applying the tilde operator to a signed
et not have unsigned type. operand is unspecified.
o Some users believe that it aids understandability
A SHRIEK-EXPR whose cast-expression is not
6.53.3-7 if logical operators are applied only to expressions
an EXPLICIT-LOGICAL-EXPR. that are of ostensively logical form.
The result of a uminus-expr is the negative of its
promoted operand. Some users believe that
65338 A UMINUS-EXPR whose cast-expression does Pprogrammers are prone to make errors b'y
.5.3.3- not denote a value of a signed type. mlsundfarslandmg th(? effects of the entailed ‘
promotion on an unsigned operand and therefore
choose to ban such constructs in aid of defensive
programming.
In many cases a UPLUS-EXPR can be replaced by its
cast-expression without altering the effect of the
6.5.3.3-9 A UPLUS-EXPR. program. Some users consider that the use of
redundant constructs impairs understandability.
6.5.34 The sizeof operator

Designated constructs:

DCRN Definition Rationale
A SIZEOF-UNARY-EXPR whose unary-expression
6.5.3.4-1 | has function type or an incomplete type or that | Such a construct violates a constraint.
designates a bit-field.
A SIZEOF-UNARY-EXPR whose result exceeds I
6.5.3.4-2 65535 (C90 = 32787). Behaviour is undefined.
653.4-3 A SIZEOF-TYPE-EXPR wWhose result exceeds Behaviour is undefined.

65535 (C90 = 32787).

A SIZEOF-UNARY-EXPR whose unary-expression

Since the operand of sizeof is evaluated only if
it denotes a variable-length array, side effects of
any SIDE-EFFECTIVE-OPERATOR in its
unary-expression may not occur. Some users
believe that the occurrence of such a

6.53.4-4 contains a SIDE EFFECTIVE-OPERATOR. unary-expression that does contain a
SIDE-EFFECTIVE-OPERATOR is likely to indicate an
error on the part of the programmer. Accordingly
they may wish to ban or control such use in aid of
defensive programming.

Some users believe that programmers are prone to
make errors by misunderstanding the effects of
6.5.3.4-5 A SIZEOF-UNARY-EXPR. the sizeof operator and there fore choose to ban
or control such constructs in aid of defensive
programming.
Some users believe that programmers are prone to
make errors by misunderstanding the effects of
6.5.3.4-6 A SIZEOF-TYPE-EXPR the sizeof operator and therefore choose to ban
of control such constructs in aid of defensive
programming.
6.5.4 Cast operators
Orthosyntax:
cast-expression = unary-expression
(type-name) cast-expression ;
Parasyntax:
cast-expression = unary-expression

EXPLICIT-CAST-EXPR =

| EXPLICIT-CAST-EXPR ;

Designated constructs:

(type-name) cast-expression ;

DCRN Definition Rationale
An EXPLICIT-CAST-EXPR whose type-name does
6.5.4-1 not specify the void type or a qualified or Such a construct violates a constraint.
unqualified scalar type.
6542 An EXPLICIT-CAST-EXPR that converts a value of
- const-qualified type to a type that is not Undefined behaviour can result.
const-qualified.
6543 An EXPLICIT-CAST-EXPR that converts a value of Undefined behavi 1
o one type to a type of stricter alignment. ndefined behaviour can result.
6.5.44 An EXPLICIT-CAST-EXPR that converts a value of

one type to another type in which that value is
unrepresentable.

The result may have an unspecified value.

An EXPLICIT-CAST-EXPR Whose cast-expression

Some users believe that programmers are
particularly prone to make errors when casting
pointer types. Accordingly they may ban or

6.5.4-5 .
has pointer type. control such usage in aid of defensive
programming.
A hose behavi Such a construct is redundant. Some users believe
6.5.4-6 N EXPLICIT-CAST-EXPR whose behaviour that redundant constructs should be eliminated in

converts a value of one type to the same type.

aid of understandability.

6.5.5 Multiplicative operators
Orthosyntax:

multiplicative-expression

cast-expression

multiplicative-expression / cast-expression
multiplicative-expression % cast-expression ;

Parasyntax:

multiplicative-expression

| multiplicative-expression * cast-expression
I
I

cast-expression

EXPLICIT-MULT-EXPR ;

EXPLICIT-MULT-EXPR = EXPLICIT-TIMES-EXPR

| EXPLICIT-DIVIDE-EXPR

| EXPLICIT-MOD-EXPR
EXPLICIT-TIMES-EXPR = multiplicative-expression * cast-expression ;
EXPLICIT-DIVIDE-EXPR = multiplicative-expression / cast-expression ;
EXPLICIT-MOD-EXPR = multiplicative-expression % cast-expression ;

Designated constructs:

DCRN Definition

Rationale

An EXPLICIT-MULT-EXPR Whose cast-expression
6.5.5-1 or multiplicative-expression does not have
arithmetic type.

Such a construct violates a constraint.

An EXPLICIT-MOD-EXPR Whose cast-expression

6.5.5-2 or multiplicative-expression does not have Such a construct violates a constraint.
integer type.

6.5.5-3 An EXPLICIT-DIVIDE-EXPR Whose .
cast-expression denotes a numerical value of The result is undefined.
zero.

6.5.5-4 An EXPLICIT-MOD-EXPR Whose cast-expression

denotes a numerical value of zero.

The result is undefined.

6.5.5-5 An EXPLICIT-MULT-EXPR either of whose
cast-expression or multiplicative-expression is
an EXPLICIT-LOGICAL-EXPR.

Some users believe that mixing arithmetic and
logical operators in the same expression impairs
the understandability of code.

6.5.5-6

An EXPLICIT-MULT-EXPR either of whose
cast-expression or multiplicative-expression is
an EXPLICIT-BITWISE-EXPR.

Some users believe that mixing arithmetic and
bitwise operators in the same expression impairs
the understandability of code.

6.5.6

Additive operators

Orthosyntax:

additive-expression

Parasyntax:

additive-expression =

EXPLICIT-ADDITIVE-EXPR =

EXPLICIT-PLUS-EXPR =

EXPLICIT-MINUS-EXPR =

multiplicative-expression
additive-expression + multiplicative-expression
additive-expression — multiplicative-expression

multiplicative-expression

EXPLICIT-ADDITIVE-EXPR

EXPLICIT-PLUS-EXPR

EXPLICIT-MINUS-EXPR

Designated constructs:

additive-expression + multiplicative-expression ;

additive-expression — multiplicative-expression

DCRN

Definition

Rationale

6.5.6-1

An EXPLICIT-PLUS-EXPR for which none of the
following holds:

(a) both its additive-expression or
multiplicative-expression have arithmetic
type, or

(b) its additive-expression has pointer to object
type and its multiplicative-expression has
integer type, or

(c) its multiplicative-expression has pointer to
object type and its additive-expression has
integer type.

Such a construct violates a constraint.

6.5.6-2

An EXPLICIT-SUB-EXPR for which none of the
following holds:

(a) both its additive-expression or
multiplicative-expression have arithmetic
type, or

S

both its additive-expression or
multiplicative-expression have qualified or
unqualified versions of compatible types,
or

(c

N2

its additive-expression has pointer to object
type and its multiplicative-expression has
integer type.

Such a construct violates a constraint.

6.5.6-3

An EXPLICIT-ADDITIVE-EXPR Whose
additive-expression or
multiplicative-expression has pointer to object
type but points to an object that is not an
element of an array.

Undefined behaviour may result.

6.5.6-4

An EXPLICIT-ADDITIVE-EXPR:

(a) whose additive-expression (resp.
multiplicative-expression) has pointer-to
object type and points to or one past the last
element of an array, and

(b) whose multiplicative-expression (resp.
additive-expression) has integer type, and

(c) whose result points to an element or one
past the last element of the same array, and

(d) for which evaluation would produce an
overtlow

Behaviour is undefined.

6.5.6-5

An EXPLICIT-ADDITIVE-EXPR that is the
cast-expression of an ASTERISK-EXPR and whose
result points one past the last element of an
array and is

Behaviour is undefined.

6.5.6-6

An EXPLICIT-SUB-EXPR whose
additive-expression and
multiplicative-expression both have pointer
type but do not point to elements of the same
array object or one past the last element of the
same array object.

Behaviour is undefined.

6.5.6-7

An EXPLICIT-SUB-EXPR whose
additive-expression and
multiplicative-expression both have pointer
type but for which the result of the subtraction
is not representable in an object of type
ptrdiff t.

Behaviour is undefined.

6.5.6-8

An EXPLICIT-SUB-EXPR whose
additive-expression and
multiplicative-expression both have pointer
type.

The result type, ptrdiff_t is
implementation-defined.

6.5.6-9

An EXPLICIT-ADDITIVE-EXPR Whose
additive-expression or
multiplicative-expression denotes a value of
pointer type.

The use of pointer arithmetic can in certain
circumstances impair the analyzability of code.
Also some users believe that programmers are
prone to make errors when using pointer
arithmetic and therefore ban or control such
constructs in aid of defensive programming.

6.5.6-10

An EXPLICIT-ADDITIVE-EXPR either of whose
additive-expression or
multiplicative-expression is an
EXPLICIT-LOGICAL-EXPR.

Some users believe that mixing arithmetic and
logical operators in the same expression impairs
the understandability of code.

6.5.6-11

An EXPLICIT-ADDITIVE-EXPR either of whose
additive-expression or
multiplicative-expression is an
EXPLICIT-BITWISE-EXPR.

Some users believe that mixing arithmetic and
bitwise operators in the same expression impairs
the understandability of code.

6.5.7 Bitwise shift operators
Orthosyntax:

shift-expression

Parasyntax:

shift-expression =

EXPLICIT-SHIFT-EXPR

EXPLICIT-LSHIFT-EXPR

EXPLICIT-RSHIFT-EXPR =

Designated constructs:

additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression ;

additive-expression
EXPLICIT-SHIFT-EXPR

EXPLICIT-LSHIFT-EXPR
EXPLICIT-RSHIFT-EXPR

shift-expression << additive-expression ;

shift-expression >> additive-expression ;

DCRN Definition Rationale

An EXPLICIT-SHIFT-EXPR Whose shift-expression

6.5.7-1 or additive-expression does not have integer Such a construct violates a constraint.

type.

6.5.7-2

An EXPLICIT-SHIFT-EXPR Whose
additive-expression denotes a negative value.

Behaviour is undefined.

its shift-expression.

An EXPLICIT-SHIFT-EXPR whose
additive-expression denotes a value greater than
6.5.7-3 or equal to the width of the promoted value of

Behaviour is undefined.

An EXPLICIT-LSHIFT-EXPR whose

6.5.7-4 shift-expression has a signed type and whose Behaviour is undefined.

result is not representable in its result type.

An EXPLICIT-RSHIFT-EXPR Whose

6.5.7-5 shift-expression has a signed type and denotes a The result is implementation-defined.

negative value.

6.5.7-6

Many users favour restriction of the

An EXPLICIT-SHIFT-EXPR whose shift-expression | shift-expression to unsigned type as a simple way
does not have unsigned type. to avoid both the undefined and

implementation-defined behaviour that might
otherwise result.

6.5.8 Relational operators

Orthosyntax:

relational-expr

Parasyntax:

relational-expression

EXPLICIT-REL-EXPR

EXPLICIT-LT-EXPR
EXPLICIT-GT_EXPR
EXPLICIT-LE-EXPR
EXPLICIT-GE-EXPR

Designated constructs:

shift-expr

relational-expr < shift-expr
relational-expr > shift-expr
relational-expr <= shift-expr
relational-expr >= shift-expr ;

shift-expression
EXPLICIT-REL-EXPR

EXPLICIT-LT-EXPR

EXPLICIT-GT_EXPR

EXPLICIT-LE-EXPR

EXPLICIT-GE-EXPR |

relational-expression < shift-expression ;
relational-expression > shift-expression ;

relational-expression <= shift-expression ;

relational-expression >= shift-expression ;

DCRN

Definition

Rationale

6.5.8-1

An EXPLICIT-REL-EXPR for which none of the
following holds:

(a) both its relational-expression or
shift-expression have real type,

(b) both its relational-expression or
shift-expression have pointer types that are
pointers to qualified or unqualified version
of compatible object types,

both its relational-expression or
shift-expression have pointer types that are
pointers to qualified or unqualified version
of incomplete types.

(c

-

Such a construct violates a constraint.

6.5.8-2

An EXPLICIT-REL-EXPR Whose
relational-expression and shift-expression both
have pointer type but do not both point to the
same object or both point one past the last
element of the same array object,

Behaviour is undefined.

6.5.8-3

An EXPLICIT-REL-EXPR Whose
relational-expression or shift-expression is an
EXPLICIT-LOGICAL-EXPR.

Some users believe that mixing relational and
logical operators in the same expression impairs
the UNDERSTANDABILITY of code.

6.5.8-4

An EXPLICIT-LT-EXPRESSION whose
shift-expression denotes a non-negative value
and whose relational-expression denotes a
value of unsigned type.

Such an expression always evaluates to 0 and is
likely to be the result of a programming error that
may in turn impair the FUNCTIONALITY of the
code.

An EXPLICIT-REL-EXPR Whose

Some users believe that programmers are prone to
make errors using such constructs (mistakenly
believing that they gives lexicographical

6.5.8-5 . . . S
relz.ztwnlal—expresszon or shift-expression is a comparison of the strings themselves) and may
string-literal. wish to ban on control them in aid of defensive
programming.
6.5.9 Equality operators

Orthosyntax:

equality-expression

Parasyntax:

equality-expression =

EXPLICIT-EQUALITY-EXPR |

relational-expression
equality-expression == relational-expression
equality-expression = relational-expression ;

relational-expression

| EXPLICIT-EQUALITY-EXPR |

equality-expression == relational-expression

| equality-expression ! = relational-expression ;

Designated constructs:

DCRN

Definition

Rationale

6.5.9-1

An EXPLICIT-EQUALITY-EXPR for which none of
the following holds:

(a) its equality-expression and
relational-expression both have arithmetic
type,

(b

its equality-expression and
relational-expression both have pointer
types that are qualified on unqualified
versions of compatible types,

S
o

its equality-expression (resp. relational
expression) denotes a pointer to an object
or incomplete type and its
relational-expression (resp.
equality-expression) denotes a pointer to a
qualified of unqualified version of void.

d

its equality-expression (resp. relational
expression) has pointer type and its
relational-expression (resp.
equality-expression) denotes a null pointer
constant.

Such a construct violates a constraint.

6.5.9-2

An EXPLICIT-EQUALITY-EXPR whose
equality-expression and relational-expression
are such that both have arithmetic types but
none of the following holds:

(a) both have integer types,

Some users believe that programmers are prone to
make errors when using equality operators whose
operands have different kinds of arithmetic type;

(b) both have floating types, accordingly they may wish to ban or control such
(¢) both have real types usage in aid of defensive programming.
(d) both have imaginary types,
(e) both have complex types.
xact comparison of values of floating type is a
An EXPLICIT-EQUALITY-EXPR Wh E pari f val f floating type i
n E. TY-EXPR whose . .
11 ki f 1
6.5.9-3 equality-expression or relational-expression WelL Known cause of error In numerica

denotes a value of a floating type.

computations and may impair the
FUNCTIONALITY of code.

6.5.10 Bitwise AND operator

Orthosyntax:

AND-expression

Parasyntax:

AND-expression

EXPLICIT-AND-EXPR |

equality-expression

AND-expression & equality-expression ;

equality-expression
| EXPLICIT-AND-EXPR

Designated constructs:

AND-expression & equality-expression ;

DCRN Definition Rationale
An EXPLICIT-AND-EXPR whose and-expression
6.5.10-1 | and equality-expression do not both have Such a construct violates a constraint.
integer type.
Some users believe that programmers are prone to
An EXPLICIT-AND-EXPR whose and-expression make errors when using bitwise operators with
6.5.10-2 and equality-expression does not both have signed operands; accordingly they may ban or
unsigned type. control such usage in aid of defensive
programming.

6.5.11 Bitwise exclusive OR operator

Orthosyntax:

exclusive-OR-expression

Parasyntax:

exclusive-OR-expression

AND-expression

exclusive-OR-expression ~ AND-expression ;

AND-expression

EXPLICIT-XOR-EXPR

EXPLICIT-XOR-EXPR exclusive-OR-expression ~ AND-expression ;

Designated constructs:

DCRN Definition

Rationale

An EXPLICIT-XOR-EXPR whose
6.5.11-1 exclusive-or-expression and AND-expression
does not both have integer type.

Such a construct violates a constraint.

An EXPLICIT-XOR-EXPR ewhose
6.5.11-2 exclusive-or-expression or AND-expression
does not both have unsigned type.

Some users believe that programmers are prone to
make errors when using bitwise operators with
signed operands; accordingly they may ban or
control such usage in aid of defensive
programming.

6.5.12 Bitwise inclusive OR operator

Orthosyntax:
inclusive-OR-expression = exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression ;
Parasyntax:
inclusive-OR-expression = exclusive-OR-expression
| EXPLICIT-IOR-EXPR ;
EXPLICIT-IOR-EXPR | inclusive-OR-expression | exclusive-OR-expression ;

Designated constructs:

DCRN Definition

Rationale

An EXPLICIT-IOR-EXPR Whose

6.5.12-1 inclusive-OR-expression or
exclusive-OR-expression do not both have
integer type.

Such a construct violates a constraint.

An EXPLICIT-IOR-EXPR Whose

6.5.12-2 inclusive-OR-expression or
exclusive-OR-expression do not both have
unsigned type.

Some users believe that programmers are prone to
make errors when using bitwise operators with
signed operands; accordingly they may ban or
control such usage in aid of defensive
programming.

6.5.13 Logical AND operator

Orthosyntax:
logical-AND-expression = inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression ;
Parasyntax:
logical-AND-expression = inclusive-OR-expression

EXPLICIT-LAND-EXPR ;

EXPLICIT-LAND-EXPR logical-AND-expression && inclusive-OR-expression ;

Designated constructs:

DCRN Definition Rationale

An EXPLICIT-LAND-EXPR Whose
6.5.13-1 | logical-AND-expression and Such a construct violates a constraint.
inclusive-OR-expression do not both have
scalar type.

The inclusive-OR-expression is evaluated only if
the logical-AND-expression yields true. Some
users believe that programmers are prone to
forget this partial evaluation and hence make
errors if they use DC 6.5.13-2. Accordingly, they
may wish to ban or control it in aid of defensive

An EXPLICIT-LAND-EXPR whose
6.5.13-2 inclusive-OR-expression contains a
SIDE-EFFECTIVE-OPERATOR.

programming.
An EXPLICIT-LAND-EXPR Whose Some users believe that combining logical and
6.5.13-3 logical-AND-expression and non-logical operators in an expression impairs
inclusive-OR-expression are not both UNDERSTANDABILITY.
EXPLICIT-LOGICAL-EXPR.
6.5.14 Logical OR operator
Orthosyntax:
logical-OR-expression = logical-AND-expression
logical-OR-expression | | logical-AND-expression
Parasyntax:
logical-OR-expression = logical-AND-expression
EXPLICIT-LOR-EXPR
EXPLICIT-LOR-EXPR = logical-OR-expression | | logical-AND-expression ;

Designated constructs:

DCRN Definition Rationale

An EXPLICIT-LOR-EXPR Whose

6.5.14-1 | logical-OR-expression and Such a construct violates a constraint.
logical-AND-expression do not have scalar

type.

The logical-AND-expression is evaluated only if
the logical-OR-expression yields false. Some
users believe that programmers are prone to

An EXPLICIT-LOR-EXPR the behaviour of whose forget this partial evaluation and hence make
logical-AND-expression contains a side effect. errors if they use the DC. Accordingly, they may
wish to ban or control it in aid of defensive
programming.

6.5.14-2

6.5.14-3

An EXPLICIT-LOR-EXPR Whose
logical-OR-expression and
logical-AND-expression are not both
EXPLICIT-LOGICAL-EXPR.

Some users believe that combining logical and
non-logical operators in an expression impairs
UNDERSTANDABILITY.

6.5.15 Conditional operator

Orthosyntax:

conditional-expression =

Parasyntax:

conditional-expression =

EXPLICIT-COND-EXPR =

logical-OR-expression

logical-OR-expression
? expression
: conditional-expression ;

logical-OR-expression

EXPLICIT-COND-EXPR ;

logical-OR-expression

? expression
: conditional-expression ;

Designated constructs:

DCRN

Definition

Rationale

6.5.15-1

An EXPLICIT-COND-EXPR whose
logical-OR-expression does not have scalar
type.

Such a construct violates a constraint.

6.5.15-2

An EXPLICIT-COND-EXPR for whose expression
and conditional-expression none of the
following holds:

(a) both have arithmetic type,
(b) both have the same structure or union type,
(c) both have void type,

(d) both have pointer type and point to
qualified or unqualified versions of
compatible types,

(e) one has pointer type and the other is a null
pointer constant

(f) one has pointer type and points to an object
or incomplete type and the other has
pointer type and points to a qualified or
unqualified version of void.

Such a construct violates a constraint.

6.5.15-3

An EXPLICIT-COND-EXPR whose
logical-OR-expression has a pointer type.

In certain circumstances the use of pointer types
impairs the ANALYSABILITY of code.

6.5.15-4

An EXPLICIT-COND-EXPR wWhose expression and
conditional-expression do note denote values of
the same type.

Some users believe that when the expression and
conditional-expression have different types this
impairs the UNDERSTANDABILITY of code.

6.5.15-5

An EXPLICIT-COND-EXPR either of whose Some users believe that side effects in the
expression or conditional-expression contains a | expression or conditional-expression impair the
SIDE-EFFECTIVE-OPERATOR.

UNDERSTANDABILITY of code.

Note: Banning DC 6.5.15-3 removes the risk that the result of an EXPLICIT-COND-EXPR may be modified or accessed
after the next sequence point, thereby resulting in undefined behaviour.

6.5.16 Assignment operator
Orthosyntax:

assignment-expression
assignment-expression ;

assignment-operator

Parasyntax:

assignment-expression

EXPLICIT-ASSIGN-EXPR

EXPLICIT-SIMPLE-ASSIGN-EXPR
EXPLICIT-MULT-ASSIGN-EXPR
EXPLICIT-DIVIDE-ASSIGN-EXPR
EXPLICIT-MOD-ASSIGN-EXPR
EXPLICIT-PLUS-ASSIGN-EXPR
EXPLICIT-MINUS-ASSIGN-EXPR

EXPLICIT-SHIFT-ASSIGN-EXPR

EXPLICIT-LSHIFT-ASSIGN-EXPR
EXPLICIT-RSHIFT-ASSIGN-EXPR

EXPLICIT-BITWISE-ASSIGN-EXPR

conditional-expression
unary-expression assignment-operator

= %= | /= | %= | 4= | —=
<<= | >>=]g=| *=| |=;

5

conditional-expression
EXPLICIT-ASSIGN-EXPR

EXPLICIT-SIMPLE-ASSIGN-EXPR
EXPLICIT-MULT-ASSIGN-EXPR
EXPLICIT-DIVIDE-ASSIGN-EXPR
EXPLICIT-MOD-ASSIGN-EXPR
EXPLICIT-PLUS-ASSIGN-EXPR
EXPLICIT-MINUS-ASSIGN-EXPR
EXPLICIT-LSHIFT-ASSIGN-EXPR
EXPLICIT-RSHIFT-ASSIGN-EXPR
EXPLICIT-BITWISE-ASSIGN-EXPR |
unary-expression = assignment-expression ;
unary-expression *= assignment-expression ;
unary-expression /= assignment-expression ;
unary-expression %= assignment-expression ;
unary-expression += assignment-expression ;

unary-expression —= assignment-expression ;

EXPLICIT-LSHIFT-ASSIGN-EXPR
EXPLICIT-RSHIFT-ASSIGN-EXPR |

unary-expression <<= assignment-expression ;
unary-expression >>= assignment-expression ;
EXPLICIT-AND-ASSIGN-EXPR

EXPLICIT-XOR-ASSIGN-EXPR
EXPLICIT-IOR-ASSIGN-EXPR

EXPLICIT-AND-ASSIGN-EXPR = unary-expression &= assignment-expression ;

EXPLICIT-XOR-ASSIGN-EXPR unary-expression = assignment-expression ;

EXPLICIT-IOR-ASSIGN-EXPR = unary-expression | = assignment-expression ;

Expanded forms:
EXPLICIT-MULT-ASSIGN-EXPR(CL)

unary-expression(f) *= assignment-expression(Y)
expand(o) = B=PB*v;

EXPLICIT-DIVIDE-ASSIGN-EXPR(OL)

unary-expression(B) /= assignment-expression(y)

expand@) = B=B/v:

EXPLICIT-MOD-ASSIGN-EXPR(O)

unary-expression(B) $= assignment-expression(Yy)

expand() = p= B3y:

EXPLICIT-PLUS-ASSIGN-EXPR(OL)

unary-expression(f) += assignment-expression(Y)

expand() = p= p+y:

EXPLICIT-MINUS-ASSIGN-EXPR(Q)

unary-expression(B) —= assignment-expression(Yy)

expand) = p= p-v:

EXPLICIT-LSHIFT-ASSIGN-EXPR(Q)

unary-expression() <<= assignment-expression(y)

éxpand((x) = B= B<<vy;

EXPLICIT-RSHIFT-ASSIGN-EXPR(CL)

unary-expression() >>= assignment-expression(y)

éxpand(oc) = B= B>>7;

EXPLICIT-AND-ASSIGN-EXPR(CL)

unary-expression(B) &= assignment-expression(Yy)

expand() = p= Pay:

EXPLICIT-XOR-ASSIGN-EXPR(O)

unary-expression(B) ~= assignment-expression(Y)

expand() = p= By

EXPLICIT-IOR-ASSIGN-EXPR(Q)

unary-expression() | = assignment-expression(Y)

expand() = B= By

Designated constructs:

DCRN Definition Rationale

An EXPLICIT-ASSIGN-EXPR Whose

6.5.16-1 | unary-expression does not denote a modifiable Such a construct violates a constraint.
Ivalue..

An EXPLICIT-ASSIGN-EXPR that is any of the
following:

(a) the postfix-expression of a
POST-INCREMENT-EXPRESSION Or a
POST-DECREMENT-EXPRESSION,

Since such a construct would attempt to modify
the result of an EXPLICIT-ASSIGN-EXPR, the
behaviour is undefined.

6.5.16-2

(b) the unary-expression of a
PRE-INCREMENT-EXPRESSION OF a
PRE-DECREMENT-EXPRESSION.

Some users believe that programmers are prone to
make errors if they mix different types in
assignment expressions. Accordingly they may
wish to ban or control such usage in aid of
defensive programming.

An EXPLICIT-ASSIGN-EXPR that is not an
6.5.16-3 EXPLICIT-SHIFT-ASSIGN-EXPR and whose
unary-expression and assignment-expression
do not have identical types.

6.5.16.1 Simple assignment (NR)

Designated constructs:

‘ DCRN ‘ Definition Rationale

6.5.16.1-1

An EXPLICIT-SIMPLE-ASSIGN-EXPR for which none
of the following holds:

(a)

(b)

(c)

(e)

®

its unary-expression has qualified or
unqualified arithmetic type and its
assignment-expression has arithmetic
type,

its unary-expression has a qualified or
unqualified version of a structure or union
type compatible with the type of its
assignment-expression,

both its unary-expression and its
assignment expression have pointer types
that point to qualified or unqualified
versions of compatible types and the type
pointed to by the unary-expression has all
the qualifiers of the type pointed to by the
assignment-expression,

its unary-expression (resp.
assignment-expression) has a pointer type
that points to an object or incomplete type
and its assignment-expression (resp.
unary-expression) has a pointer type that
points to a qualified or unqualified version
of void, and the type pointed to by its
unary-expression has all the qualifiers of
the type pointed to by its
assignment-expression,

its unary-expression has pointer type and
its assignment-expression is a null pointer
constant,

its unary-expression has type _Bool and
its assignment-expression has pointer type.

Such a construct violates a constraint.

6.5.16.1-2

An EXPLICIT-SIMPLE-ASSIGN-EXPR such that both
of the following hold:

(a)

(b)

both its unary-expression and its
assignment-expression have qualified or
unqualified version of compatible types,
and

the lvalue of its unary-expression refers to
an object part but not all of which is
accessed by its assignment-expression.

Behaviour is undefined

6.5.16.2 Compound assignment

Designated constructs:

‘ DCRN ‘

Definition

Rationale

6.5.16.2-1

An EXPLICIT-PLUS-ASSIGN-EXPR for which none
of the following holds:

(a) its unary-expression has a pointer to object
type and its assignment-expression has
integer type,

(b) its unary-expression has qualified or
unqualified arithmetic type and its
assignment-expression has arithmetic
type.

Such a construct violates a constraint.

6.5.16.2-2

An EXPLICIT-MINUS-ASSIGN-EXPR for which none
of the following holds:

(c) its unary-expression has a pointer to object
type and its assignment-expression has
integer type,

(d) its unary-expression has qualified or
unqualified arithmetic type and its
assignment-expression has arithmetic
type.

Such a construct violates a constraint.

6.5.16.2-3

An EXPLICIT-MULT-ASSIGN-EXPR 0. such that
expand(a) contains any of the following DCs:
6.5.5-1,6.5.5-2, 6.5.5-3, 6.5.5-4, 6.5.5-5,
6.5.5-6

Reasons as for listed DCs respectively.

6.5.16.2-4

An EXPLICIT-DIVIDE-ASSIGN-EXPR 0. such that
expand(a) contains any of the following DCs:
6.5.5-1, 6.5.5-2, 6.5.5-3, 6.5.5-4, 6.5.5-5,
6.5.5-6

Reasons as for listed DCs respectively.

6.5.16.2-5

An EXPLICIT-MOD-ASSIGN-EXPR O, such that
expand(a) contains any of the following DCs:
6.5.5-1, 6.5.5-2, 6.5.5-3, 6.5.5-4, 6.5.5-5,
6.5.5-6

Reasons as for listed DCs respectively.

6.5.16.2-6

An EXPLICIT-LSHIFT-ASSIGN-EXPR o such that
expand(o) contains any of the following DCs:
6.5.7-1, 6.5.7-2, 6.5.7-3, 6.5.7-4, 6.5.7-5,
6.5.7-6

Reasons as for listed DCs respectively.

6.5.16.2-7

An EXPLICIT-RSHIFT-ASSIGN-EXPR 0. such that
expand(a) contains any of the following DCs:
6.5.7-1, 6.5.7-2, 6.5.7-3, 6.5.7-4, 6.5.7-5,
6.5.7-6

Reasons as for listed DCs respectively.

6.5.16.2-8

An EXPLICIT-AND-ASSIGN-EXPR 0. such that
expand(o) contains any of the following DCs:
6.5.10-1, 6.5.10-2

Reasons as for listed DCs respectively.

6.5.16.2-9

An EXPLICIT-XOR-ASSIGN-EXPR 0. such that
expand(a) contains any of the following DCs:
6.5.11-1,6.5.11-2

Reasons as for listed DCs respectively.

6.5.16.2-10

An EXPLICIT-IOR-ASSIGN-EXPR 0. such that
expand(a) contains any of the following DCs:
6.5.12-1,6.5.12-2

Reasons as for listed DCs respectively.

6.5.16.2-11

An EXPLICIT-PLUS-ASSIGN-EXPR whose
unary-expression does not have the lvalue of an
object of integer type.

Some users believe that confining the use of these
expression to integer operands promotes the
UNDERSTANDABILITY of code.

6.5.16.2-12

An EXPLICIT-MINUS-ASSIGN-EXPR Whose
unary-expression does not have the lvalue of an
object of integer type.

Some users believe that confining the use of these
expression to integer operands promotes the
UNDERSTANDABILITY of code.

6.5.17 Comma operator

Orthosyntax:

comma-expression =

Parasyntax:

comma—expressi()n =

EXPLICIT-COMMA-EXPR =

assignment-expression

expression , assignment-expression ;

assignment-expression

EXPLICIT-COMMA-EXPR ;

Designated constructs:

expression , assignment-expression ;

DCRN Definition Rationale
Some user believe that programmers are prone to
make errors when using a comma-expression and
6.5.17-1 An EXPLICIT-COMMA-EXPR. may wish to ban or control such usage in aid of
defensive programming.
An EXPLICIT-COMMA-EXPR that is any of the
following:
(a) the postfix-expression of a Since such a construct would attempt to modify
6.5.17-2 POST-INCREMENT-EXPRESSION or 2 the result of an EXPLICIT-COMMA-EXPRESSION, the
POST-DECREMENT-EXPRESSION, behaviour is undefined.
(b) the unary-expression of a
PRE-INCREMENT-EXPRESSION OT a
PRE-DECREMENT-EXPRESSION.
Since the expression has no side effect, it is
X . redundant and the EXPLICIT-COMMA-EXPR may be
6.5.17-3 An expression of an . replaced by its assignment-expression without
EXPLICIT-COMMA-EXPRESSION the E-behaviour effect on the behaviour of the program. Some
for whose expression has no side-effect. users believe that elimination of such redundant
usage promotes the UNDERSTANDBILITY of code.

6.6 Constant expressions

Orthosyntax:

constant-expression =

Designated

constructs:

conditional-expression ;

DCRN

Definition

Rationale

6.6-1

A constant-expression that is not the
unary-expression of a SIZEOF-UNARY-EXPR but
that contains any of the following:

(a) a SIDE-EFFECTIVE-OPERATOR, OT
(b) a FUNCTION-CALL-EXPRESSION, OF

(c) an EXPLICIT-COMMA-EXPRESSION.

Such a construct violates a constraint.

6.6-2

A constant-expression denoting a value that is
not in the range of representable values for its

type.

Such a construct violates a constraint.

6.7 Declarations

Orthosyntax:

declaration

declaration-specifiers

init-declarator-list = init-declarator
init-declarator-list , init-declarator ;

init-declarator = declarator
| declarator = initializer ;,

Designated constructs:

declaration-specifiers [init-declarator-list];

storage-class-specifier [declaration-specifiers |
type-specifier [declaration-specifiers]
type-qualifier | declaration-specifiers]
Sfunction-specifier [declaration-specifiers | ;

DCRN

Definition

Rationale

6.7-1

A declaration that does not contain an
init-declarator-list.

Such a construct violates a constraint.

6.7-2

A declaration of an identifier with no linkage
where that declaration is in the same scope as
another declaration of the same identifier in the
same name space, unless the identifier is a tag.

Such a construct violates a constraint.

6.7-3

A declaration of an identifier where that
declaration in the same scope as another
declaration of the same identifier in the same
name space but the two declaration specify
types that are not compatible..

Such a construct violates a constraint.

6.7-4

A declaration-specifiers that contains more than
one storage-class-specifier.

Such a construct violates a constraint.

6.7-5

A declaration whose declaration-specifiers
contain a function-specifier but that does not
declare an identifier for a function.

Such a construct violates a constraint.

6.7-6

A declaration for which all of the following
hold:

e its declaration-specifiers contain a
storage-class-specifier other than
extern, and

e it declares an identifier for a function,

e the declared identifier has block scope.

Such a construct violates a constraint.

6.7-7

A declaration whose declaration-specifiers
contain more than one
STANDARD-TYPE-SPECIFIER-LIST.

Such a construct may violate a constraint.

6.7-8

A declaration of an identifier such that its type is
not complete by the end of the init-declarator in
which it occurs.

Behaviour is undefined.

6.7-9 A declaration that declares an object with Lo
. . Behaviour is undefined.
incomplete type and no linkage.
Initialization at the point of declaration
An init-declarator that does not contain an eliminates the risk of accessing an object whose
6.7-10 initializer. value is undefined. Some users believe that this
practice promotes RELIABILITY.
Some users find it convenient to declare one
object or function per declaration, thus enabling
the line number of the declaration to serve as a
67-11 An init-declarator-list that has more than one an addi[ionalv meap? of idenl'ifying the oijecl,
init-declarator. Insofar as this facilitates easier configuration
management, such a practice may promote
MAINTAINABILITY.
A declaration whose declaration-specifiers It is implementation-defined whether plain
6.7-12 specify the plain char type. char is a signed or an unsigned type.
Such types may not be supported by
A declaration whose declaration-specifiers implementations conforming to earlier version
6.7-13 specify an extended integer type. of the base language standard and their use
impairs PORTABILITY.
. . . . Behaviour for such a construct is undefined for
A declaration ll,lal 1S cor}lamed Ina BLOCK and implementations conforming to earlier versions
6.7-14 whose declaration-specifiers contain the . .
I of the base language standard, thus imparing
storage-class-specifier typedef. PORTABILITY.
. . L Behaviour for such a construct is undefined for
A declaration that is contained in a BLOCK and
) 5 R implementations conforming to earlier versions
6.7-15 whose declaratwn—‘s'pecy’zers contain the of the base language standard, thus imparing
storage-class-specifier extern. PORTABILITY.
‘When no type-specifier is given, the type
A declaration whose declaration-specifiers defaults to int. Some users believe that failure
6.7-16 have no rype-specifier. to state the type explicitly impairs the
UNDERSTANDABILITY of code.
. . . Some users consider it prudent to ban the use of
6.7-17 A de.claratmn .whose declaration-specifiers floating types in critical applications, believing
specify a floating type. such a ban to promote RELIABILITY.
Repetition of a type-qualifier is redundant. Some
A declaration-specifiers containing more than users believe that elimination of such
6.7-18 one occurrence of the same type-qualifier. redundancy promotes the UNDERSTANDABILITY
of code.
Use of such a construct leaves the function
A source file containing a function declaration | without a definition. This is so often a
6.7-19 with the storage class specifier static butno | programming error that some users may wish to
definition for the declared function. ban or ComeI itin aid of defensive
programming.
Some users believe that programmers are prone
6720 A source line containing more than one to make errors when amending declarations if

declaration.

there are more than one per line and may wish to
ban or control them in aid of MAINTAINABILITY.

6.7.1 Storage-class specifiers
Orthosyntax:
storage-class-specifier = typedef
I extern
I static
| auto
| register;

Designated constructs:

enum-specifier

struct-or-union-specifier

DCRN Definition Rationale
6.7.1-1 A non-standard storage-class-specifier. The semantics of such constructs are undefined.
The extent to which a translator takes any notice
of register is implementation-defined. Hence,
6.7.1-2 The storage-class-specifier register. some users believe that any function-specifier is
misleading and impair the UNDERSTANDABILITY
of code.
There is a widespread convention of not using this
. storage-class-specifier and some users consider
6.71-3 The storage-class-specifier auto. that using it impairs the UNDERSTANDABILITY of
code.
6.7.2 Type specifiers
Orthosyntax:
type-specifier = void
I char
I short
I int
I long
I float
I double
| signed
| unsigned
| _Bool
| _Complex
I _Imaginary
|
|
I

Parasyntax:

typedef-name ;

STANDARD-TYPE-SPECIFIER-LIST

void

signed char
short

short int
unsigned short
int

char

unsigned char
signed short
signed short int
unsigned short int
signed

signed int

unsigned int

signed long

signed long int
unsigned long int
long long int

signed long long int
unsigned long long int
float

double

float _Complex
double _Complex
long double _Complex
_Bool
struct-or-union-specifier
enum-specifier

typedef-name ;

Designated constructs:

unsigned

long

long int

unsigned long
long long

signed long long
unsigned long long

long double

float _Imaginary
double _Imaginary
long double _Imaginary

DCRN Definition Rationale
6.7.2-1 A type-specifier that is an enum-specifier. The integral type used to represent an enumerated
type is implementation-defined.
6.7.2-2 A non-standard type-specifier. The semantics of such constructs are undefined.
Implementations are not required to support
6.7.2-4 The rype-specifier _Complex complex types and their use impairs
PORTABILITITY
Implementations are not required to support
6.7.2-5 The type-specifier _Imaginary imaginary types and their use impairs
PORTABILITY.
Implementations conforming to earlier version of
6.7.2-3 The type-specifier _Bool the base language standard may not support
_Bool, hence its use may impair PORTABILITY.
6.7.2.1 Structure and union specifiers

Orthosyntax:

struct-or-union-specifier

= [struct-or-union identifier | { struct-declaration-list }

| struct-or-union identifier ;

struct-or-union =

struct-declaration-list =

struct-declaration =

struct
union;

struct-declaration
struct-declaration-list struct-declaration ;

specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list = type-specifier | specifier-qualifier-list]
type-qualifier [specifier-qualifier-list] ;

struct-declarator-list = struct-declarator
struct-declarator-list , struct-declarator ;

struct-declarator = declarator
[declarator] : constant-expr ;

Parasyntax:

struct-or-union-specifier = [struct-or-union SU-IDENTIFIER | { struct-declaration-list }
| struct-or-union SU-IDENTIFIER ;

SU-IDENTIFIER = identifier ;

Note: An SU-IDENTIFIER is also referred to as a struct or union tag.

declarator
BIT-FIELD-DECLARATOR

struct-declarator

BIT-FIELD-DECLARATOR

[declarator] : constant-expr ;

Designated constructs:

DCRN Definition Rationale

A struct-declaration whose
specifier-qualifier-list specifies an incomplete
6.7.2.1-1 type or a function type unless it specifies an
incomplete array type for the last member of a
structure that has more than one named member

Such a construct violates a constraint.

A BIT-FIELD-DECLARATOR whose
constant-expression is not an integer constant
expression.

6.7.2.1-2 Such a construct violates a constraint.

A BIT-FIELD-DECLARATOR whose

6.7.2.1-3 | constani-expression does not denote a Such a construct violates a constraint.
nonnegative value of integer type.

A BIT-FIELD-DECLARATOR whose
constant-expression does not denote a
nonnegative value of integer type whose value
6.7.2.1-4 does not exceed the number of bits in an object Such a construct violates a constraint.
of the type specified in the
specifier-qualifier-list of its closest-containing
struct-declaration..

A BIT-FIELD-DECLARATOR whose

6.7.2.1-5 constant-expression denotes the value zero and Such a construct violates a constraint.
that does not closest-contain a declarator.

A BIT-FIELD-DECLARATOR such that the
specifier-qualifier-list of its closest-containing
struct-declaration specifies a type that is not

6.7.2.1-6 implementation-defined and is other than a Such a construct violates a constraint
qualified version of _Bool, signed int,or
unsigned int
6.7.2.1-7 A struct-declarator that contains no identifier. Behaviour is undefined.
6.7.2.1-8 A struct-nr-Lmi'nn-S/'Jectﬁer that has no Behaviour is undefined.
struct-declaration-list.
. . . L Some pre-standard compilers tolerated a
6.7.2.1-9 Asp eczﬁe}r—quallﬁfr.—lzst containing a storage-class-specifier in this context but such
storage-class-specifier. usage is non-standard and behaviour is
undefined.
A specifier-qualifier-list that specifies a type
6.7.2.1-10 | other than an object type that is not variably Behaviour is undefined.
modified.
A BIT-FIELD-DECLARATOR such that the
specifier-qualifier-list of its closest-containing | The semantics of the type are
6.7.2.1-11 | syyct-declaration specifies a type that is implementation-defined.
implementation-defined.
6.7.2.1-12 A construct whose behaviour may vary The packing of bits in a bit-field. Is
el according to the packing of bits in a bit-field. implementation-defined.
A construct whose behaviour may vary . Lo . .
6.7.2.1-13 | according to the order of allocation of bits in a '.The order of 2}110021[10[1 of bits in a bit-field is
bit-field. implementation-defined.
A construct whose behaviour may vary . .
6.7.2.1-14 | according to the alignment of the addressable The alignment of a'ddressab'le slorage' units
storage unit allocated to hold a bit-field. allocated to hold bit-fields is unspecified.
A construct whose behaviour may vary The ali £ b £ .
6.7.2.1-15 | according to the alignment of a member of a The alignment of members of structures 1s
structure. implementation-defined.
Some users believe that programmers are prone to
) . . make errors when using union types and may
6.7.2.1-16 | A struct-or-union that is union. wish to ban or control their use in aid of defensive
programming.
Some users believe that programmers are prone to
make errors when using bit-fields and may wish
6.7.2.1-17 | A BIT-FIELD-DECLARATOR. to ban or control them in aid of defensive
programming.
A BIT-FIELD-DECLARATOR such that the Such usage may not be supported by
specifier-qualifier-list of its closest-containing | implementations conforming to earlier versions
6.7.2.1-18 | spryct-declaration specifies a type other than of the base language standard, and its occurrence
signed int orunsigned int thus impairs PORTABILITY.
A BIT-FIELD-DECLARATOR such that the Believing that programmers are less prone to
67.2.1.19 specifier-qualifier-list of its closest-containing | make errors under such a restriction, some users

struct-declaration specifies a type other than
unsigned int

prefer to restrict bit-fields to unsigned int
type in the in aid of defensive programming.

An SU-IDENTIFIER Whose scope is not the

Some users believe that declaring tags other than

6.7.2.1-20 translation-unit in which it appears at file scope impairs the understandability of
" > code.
An SU-IDENTIFIER whose scope has a non-empty S beli h £ .
6.7.2.2-21 | intersection with the scope of a distinct Some users believe that use ol non-unique tags
SU-IDENTIFIER of the same spelling. impairs the understandability of code.
6.7.2.2 Enumeration specifiers

Orthosyntax:

enum-specifier

enumerator-list

enumerator

Parasyntax:

enum-specifier

ENUM-IDENTIFIER

enum [identifier]
enum [identifier]
enum identifier ;

enumerator

{ enumerator-list }
{ enumerator-list , }

enumerator-list , enumerator ;

= enumeration-constant
enumeration-constant = constant-expression ;

identifier ;

Note: An ENUM-IDENTIFIER is also referred to as a tag.

Designated constructs:

enum [ENUM-IDENTIFIER | { enumerator-list }
enum [ENUM-IDENTIFIER | { enumerator-list , }
enum ENUM- IDENTIFIER ;

DCRN Definition Rationale
An enum-specifier that does not have an
6.7.2.2-1 enumerator-list occurring in a context where Such a construct violates a constraint.
the type that it specifies is not complete.
An enumerator whose constant-expression is
6.7.2.2-2 not an integer constant expression whose value Such a construct violates a constraint.
is representable as an int.
It is implementation-defined whether an
6.7.2.2-3 An enum-specifier. enumerated type is compatible with char, a
signed integer type or an unsigned integer type.
An enumerator whose constant-expression
does not denote a non-negative value of integral | Reliance on any type other than char impairs
6.7.22-4 | (ype that does not exceed the value of PORTABILITY.
SCHAR_MAX.
67225 An enum-specifier that does not have an Some users believe that not declaring tags impairs

identifier.

the UNDERSTANDABILITY of code.

Some user believe that programmers are prone to
make errors when using constant-expression in an
enumerator. Accordingly they may ban or control

6.7.2.2-6 | An enumerator that has a constant-expression. - A 3 ¢
such usage in aid of defensive programming.
AnE NTIFIER wh is not th Some users believe that declaring tags other than
67227 11 ENUM-IDENTIFIER Whose scope 15 not the at file scope impairs the UNDERSTANDABILITY of
translation-unit in which it appears.
code.
An ENUM-IDENTIFIER whose scope has a . .
. . - Some users believe that use of non-unique tags
6.7.2.2-8 non-empty intersection with the scope of a ; irs th derstandability of cod
distinct ENUM-IDENTIFIER of the same spelling. | MPairs the understandability of code.
6.7.2.3 Tags (NR)

Designated constructs:

See 6.7.2.1 and 6.7.2.2.

6.7.3 Type qualifiers
Orthosyntax:
type-qualifier = const
I restrict
I volatile;

6.7.3.1

Formal definition of restrict (NR)

Designated Constructs:

DCRN Definition Rationale
A specifier-qualifier-list that contains
6.7.3.1-1 | restrict butdoes not specify a pointer type. Such a construct violates a constraint.
A construct for which the behaviour attempts to
modify an object-defined with a const-qualified L
6.7.3.1-2 type through use of an lvalue with Behaviour is undefined.
non-const-qualified type.
A construct for which the behaviour attempts to
modify an object-defined with a o
6.7.3.1-3 | yolatile-qualified type through use of an Ivalue Behaviour is undefined.
with non-volatile-qualified type.
A P hich the behavi ‘What behaviour constitutes such an access is
COHSMCL,M Whlc ht © T‘ alv tour zll,ltt.e'gpls to implementation-defined and the presence of a
6.7.3.1-4 access an object that has volatile-qualified type. | o qryer attempting such access may impair the
ANALYZABILITY of code.
This type qualifier may not be supported by
. . implementations conforming to earlier version of
6.7.3.1-5 | The type-qualifier restrict. the base language standard, hence its use impairs
PORTABILITY.
6.7.4 Function specifiers

Orthosyntax:

Sfunction-specifier = inline;
Designated Constructs:
DCRN Definition Rationale
The function-specifier inline appearing in
the specifier-qualifier-list of a declaration of an X)
6.7.4-1 identifier that is not the identifier of a function. Such a construct violates a constraint.
An inline definition of a function with external
linkage that contains a definition of a
6.7.4-2 modifiable object with static storage duration or Such a construct violates a constraint.
contains a reference to an identifier with
external linkage.
By providing an alternative to an external
definition the presence of such a construct may
6.7.4-3 An inline definition of a function. impair the ANALYZABILITY of code, since it is
unspecified which definition an implementation
uses.
The extent to which an implementation takes any
notice of inline is implementation-defined.
6.7.4-4 The function-specifier inline. Hence, some users beli.eve t}fal any .
function-specifier is misleading and impair the
UNDERSTANDABILITY of code
6.7.5 Declarators
Orthosyntax:
declarator = [pointer] direct-declarator ;,

direct-declarator

Parasyntax:

declarator

POINTER-DECLARATOR

NON-POINTER-DECLARATOR

identifier
(declarator)

direct-declarator [[type-qualifier-list]

[assignment-expression]]

| direct-declarator

[static [type-qualifier-list]

assignment-expression]
direct-declarator [type-qualifier-list static

assignment-expression]

| direct-declarator [

[type-qualifier-list 1 * 1

| direct-declarator (parameter-type-list)
| direct-declarator ([identifier-list]) ;

POINTER-DECLARATOR

NON-POINTER-DECLARATOR ;

pointer direct-declarator ;

direct-declarator ;

direct-declarator

DD-IDENTIFIER =

DEC-IN-PAREN

identifier ;

Designated constructs:

DD-IDENTIFIER
DEC-IN-PAREN
ARRAY-DECLARATOR
FUNCTION-DECLARATOR ;

(declarator) ;

DCRN Definition Rationale
The use of pointers can impair the
. ANALYZABILITY of code, for which reason some
6.7.5-1 A declarator that has a pointer. users may choose to ban them altogether in
critical applications.
A declarator, the scope of whose DD-IDENTIFIER Such truct violat traint f
is a compound-statement, where that declarator | ucl a corllsl}'uc vio ? s a colns [ﬂl? or
6.7.5-2 is closest-contained by a declaration whose impiementations conforming 1o eartier versions
B declaration-specifiers contain the f’f Lh(=T base language standard and thereby
. impairs PORTABILITY.
storage-class-specifier extern.
Such a declarator occurring in user-written code
. . . indicates a definition that is unused and may be
67.5-3 A direct-declarator whose identifier appears eliminated, thereby reducing the volume of code
nowhere else in its scope. under maintenance and hence promoting
MAINTAINABILITY.
A direct-declarator whose DD-IDENTIFIER occurs . .
in the same name space as a DD-IDENTIFIER of the Some users believe that use of the same name in
6.7.5-4 3 . s different name spaces impairs the
B same spelling contained by a distinct
direct-declarator UNDERSTANDABILITY of code.
3 Such a construct entails that the same identifier
A direct-declarator whose DD-IDENTIFIER has a . .
that h v int G ith th has been declared twice. Some users believe that
scope fa 45 4 non-emp! yflr}nl ersection vllll © | programmers are prone to make errors when
6.7.5-5 scoll)er ;gn—lﬁg}r?{F{E;p 5 ; se;me spelling using multiple declarations of the same
contained by a distinct direct-deciarator. identifier and may wish to ban or control such
usage in aid of defensive programming.
6.7.5.1 Pointer declarator
Orthosyntax:
pointer = * [type-qualifier-list]

type-qualifier-list

* [type-qualifier-list] pointer ;

type-qualifier

| type-qualifier-list type-qualifier ;

Designated constructs:

‘ DCRN ‘

Definition

Rationale

A pointer containing more than two occurrences

Some users believe that programmers are prone
to make errors when using many levels of

6.7.5.1-1 of *. indirection and may wish to ban or control such
usage in aid of defensive programming.
6.7.5-1-2 A declarator that is a POINTER-DECLARATOR and | Confusing a constant pointer to a variable value
is closest-contained by a declaration whose and a variable pointer to a constant value is
declaration-specifiers contains the sufficiently common error that some users may
type-qualifier const or the type-qualifier wish to ban or control such usage in aid of
volatile. defensive programming.
6.7.5.2 Array declarators
Parasyntax:
ARRAY-DECLARATOR = PLAIN-ARRAY-DECLARATOR
| STATIC-ARRAY-DECLARATOR
| UNSPEC-SIZE-ARRAY-DECLARATOR
PLAIN-ARRAY-DECLARATOR | direct-declarator [[type-qualifier-list]
[ARRAY-BOUND |] ;
STATIC-ARRAY-DECLARATOR I direct-declarator

UNSPEC-SIZE-ARRAY-DECLARATOR

ARRAY-BOUND

[static [type-qualifier-list]
ARRAY-BOUND]

direct-declarator

[type-qualifier-list static
ARRAY-BOUND 1 ;

direct-declarator

[[type-qualifier-list 1 * 1 ;

assignment-expression ;

Designated constructs:

DCRN Definition Rationale
An ARRAY-BOUND that does not have integer . .
6.7.5.2-1 type 8 Such a construct violates a constraint.
An ARRAY-BOUND that is a constant-expression . .
6.7.5.2-2 but does not have a value that exceeds zero.. Such a construct violates a constraint.
An ARRAY-BOUND whose value does not exceed . .
6.7.5.2-3 Ze10 Such a construct violates a constraint.
An identifier denoting an object of a variably
modified type but that does not have either X .
6.7.5.2-4 Such a construct violates a constraint.

block or function prototype scope and no
linkage.

An identifier denoting an object that has static
6.7.5.2-5 | storage duration and is a variable length array Such a construct violates a constraint.
type.
An declarator that is an ARRAY-DECLARATOR and
is a declarator of a declaration whose X .
6.7.5.2-6 declaration-specifiers specify an incomplete Such a construct violates a constraint.
type or a function type.
Use of arrays whose size is not known at
6.7.5.2-7 AN UNSPEC-SIZE-ARRAY-DECLARATOR. translation time impairs the ANALYZABILITY of
code.
A that is not Use of arrays whose size is not known at
6.7.5.2-8 1 ARRAY-BOUND that is not a translation time impairs the ANALYZABILITY of
constant-expression.
code.
An ARRAY-DECLARATOR whose direct-declarator Use of such truct i irs th
6.7.5.2-9 | is neither a DD-IDENTIFIER nor a DEC-IN-PAREN A;ifY::;IL;:’I?;me rucd Impairs the
whose declarator is an DD-IDENTIFIER r. : ot code.
6.7.5.3 Function declarators (including prototypes)

Orthosyntax:

parameter-type-list =

parameter-list =

parameter-declaration =

identifier-list =

parameter-list

parameter-list , ... ;

parameter-declaration

parameter-list , parameter-declaration ;

declaration-specifiers declarator

declaration-specifiers | abstract-declarator] ;

identifier

identifier-list , identifier ;

Parasyntax:

FUNCTION-DECLARATOR

FUNCTION-PROTOTYPE =
K-AND-R-FUNCTION-DECLARATOR

parameter-declaration =

PARAM-DEC-SPECIFIERS =
PARAMETER-DECLARATOR =

parameter-type-list =

ELLIPSIS-PARAMETER-LIST =

FUNCTION-PROTOTYPE
K-AND-R-FUNCTION-DECLARATOR ;

direct-declarator (parameter-type-list) ;
= direct-declarator ([identifier-list]) ;

PARAM-DEC-SPECIFIERS PARAMETER-DECLARATOR
PARAM-DEC-SPECIFIERS | abstract-declarator] ;

declaration-specifiers ;
declarator

parameter-list
ELLIPSIS-PARAMETER-LIST

parameter-list , ... ;

Designated constructs:

DCRN Definition Rationale
An declarator that is an FUNCTION-DECLARATOR
and is a declarator of a declaration whose X .
6.7.5.3-1 declaration-specifiers specify an array type or a Such a construct violates a constraint.
function type.
A parameter-declaration whose
6.7.5.3-2 declaration-specifiers contain a Such a construct violates a constraint.
storage-class-specifier other than register.
A K-AND-R-FUNCTION-DECLARATOR Whose
6.7.53-3 | identifier-list is not contained by the Such a construct violates a constraint.
corresponding function definition.
A PARAM-DEC-SPECIFIERS that:
(a) is closest-contained by a
6.7.5.3-4 FUNCTION-DECLARATOR that is contained by Such a construct violates a constraint.
the function-definition of the corresponding
function, and that
(b) specifies a type that is an incomplete type
after adjustment.
67535 A Use of functions that take variable numbers of
e N ELLIPSIS-PARAMETER-LIST. arguments impairs the ANALYSABILITY of code.
6.7.53-6 A PARAMETER-DECLARATOR that is not an Use of parameters that have pointer type can
e identifier. impair the ANALYSABILITY of code.
A FUNCTION-PROTOTYPE wWhose direct-declarator The £ such (ruct . ir th
6.7.5.3-7 | is neither an identifier nor a DEC-IN-PAREN whose © use ol such constructs can impair the
. . o ANALYZABILITY of code.
declarator is an identifier.
The use of such constructs limits the ability of
6.7.5.3-8 | A K-AND-R-FUNCTION-DECLARATOR. static checking tools to perform type checking,
thus impairing the ANALYZABILITY of code.
67539 A parameter-declaration whose The use of such contructs can severely impair
oS0 PARAM-DEC-SPECIFIERS specify an incomplete the ANALYZABILITY of code.
type.
A declarator that is a FUNCTION-DECLARATOR and
is a declarator closest-contained by a Such a construct may not be supported by
declaration whose declaration-specifiers implementations conforming to earlier versions
6.7.5-10 specify a function type, an array type, a struct or | of the base language standard, thereby impairing
union type or an incomplete type other than PORTABILITY.
void.
. Such a construct may not be supported by
Ap aramét’ter—d‘ecltizr-atwn w?}osel that i implementations conforming to earlier versions
6.7.5-11 PﬁlARAy_Dic_S%C”'";RS ipem ya)[/pe atisa of the base language standard, thereby impairing
nction type or a struct or union type.. PORTABILITY.
6.7.6 Type names
Orthosyntax:

type-name

= specifier-qualifier-list [abstract-declarator] ;

abstract-declarator =

direct-abstract-declarator =

pointer

[pointer] direct-abstract-declarator ;

(abstract-declarator)

| [direct-abstract-declarator |

[assignment-expression]
| [direct-abstract-declarator] [*]
| [direct-abstract-declarator |

([parameter-type-list) ;

Designated constructs:

DCRN Definition Rationale
6.7.6-1 A type-name whose abstract-declarator Uncontrolled use of pointer types can impair the
-0 closest-contains a pointer. ANALYSABILITY of code.
6.7.7 Type definitions
Orthosyntax:
typedef-name = identifier ;
Designated constructs:
DCRN Definition Rationale
A typedef-name that specifies a variably . .
6.7.7-1 modified type but does not have block scope. Such a construct violates a constraint.
Some users believe that programmers are prone
A typedef-name that specifies a type of unknown | to make errors when using such a typedef-name
6.7.7-2 size. and may wish to ban or control such usage in aid
of defensive programming.
3 " . Some users believe that it impairs the
An ’de."”ﬁer thatis a ”’Pedef name anq Whose UNDERSTANDABILITY of code if such an
6.7.7-3 scope is not the translation-unit in which it identifier does not have a scope that is not the
appeas. translation-unit in which it appears.
6.7.8 Initialisation
Orthosyntax:
initializer assignment-expr

initializer-list =

designation

designator-list =

{ initializer-list }
{ initializer-list , '} ;

[designation | initializer
initializer-list ,

[designation] initializer ;

= designator-list = ;

designator

designator

Parasyntax:

initializer

COMMA-TERMINATED-INIT-LIST

designator

ARRAY-ELEMENT-DESIG

STRUCT-MEMBER-DESIG =

designator-list designator ;

[constant-expression]

identifier ;

assignment-expr
{ initializer-list }
{ COMMA-TERMINATED-INIT-LIST } ;
{ initializer-list ,

}s

ARRAY-ELEMENT-DESIG

STRUCT-MEMBER-DESIG ;

identifier

Designated constructs:

[constant-expression] ;

DCRN Definition Rationale

An initializer that attempts to provide a value for
6.7.8-1 an object not contained within the entity being Such a construct violates a constraint.

initialized.

An initializer for an entity that is not one of the

following:
6.7.8-2 (a) anarray of unknown size, or Such a construct violates a constraint.

(b) an object that is not a variable length array

type.
6.7.8-3 An initializer for an object of unknown size that . .

. . Such a construct violates a constraint.

is not an array object.

An initializer for an object of static storage

duration that contains an expression that is X .
6.7.8-4 neither a constant-expression nor a Such a construct violates a constraint.

string-literal.

An initializer for an object whose identifier has . .
6.7.8-5 block scope and external or internal linkage. Such a construct violates a constraint.
6.7.8-6 An ARRAY-ELEMENT-DESIG for part of a current Such ol traint

object that is an array. uch a construct violates a constraint.
6.7.87 An STRUCT-MEMBER-DESIG for part of a current Such ol traint

.7.8- object that is not a struct or union. uch a construct violates a constraint.
Such a construct may not be supported by some

An initializer for an object of array, struct or implementations that conform to earlier version
6.7.8-8 union type that has automatic storage duration. of the base language standard, under which their

use may result in undefined behaviour.

An initializer in which the numbers, types and
sizes of every contained assignment-expr do not

Such can be highly confusing to readers of

6.7.8-9 exactly match those of the object that it programs and lq .likely to impair the
initializes. understandability of code.
Some users deprecate such usage believing it to
6.7.8-10 A COMMA-TERMINATED-INIT-LIST. be poor style and possibly to impair

UNDERSTANDABILITY.

6.8 Statements and blocks
Orthosyntax:

statement

labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
Jjump-statement ;

Designated constructs:

DCRN Definition Rationale
. . . Such a styatement may be redundant in which

A statement whose E-behaviour contains no side 2 5y ¥ be

6.8-1 ff case it can be removed without effect on the
effect. behaviour of the program.
A li .. h Some users believe that adhering to one

6.8-2 source line containing more than one statement per line promotes the
statement. 'UNDERSTANDABILITY of code.

6.8.1 Labelled statement

Orthosyntax:

labeled-statement

identifier : statement

Parasyntax:

labeled-statement

IDENTIFIER-LABELED-STATEMENT

CASE-LABELED-STATEMENT

DEFAULT-LABELED-STATEMENT

Designated constructs:

case constant-expr : statement
default : statement ;

IDENTIFIER-LABELED-STATEMENT
CASE-LABELED-STATEMENT
DEFAULT-LABELED-STATEMENT
identifier : statement

case constant-expr : statement ;

default : statement ;

DCRN Definition Rationale
68.1-1 A CASE-LABELLED-STATEMENT that is not Such cruct violat fraint
-0l contained by a SWITCH-STATEMENT. uch a construct vioates a constraint.
6812 A DEFAULT-LABELLED-STATEMENT that is not Such ol traint
.8.1-. contained by a SWITCH-STATEMENT. uch a construct violates a constraint.
. Some users consider that giving a statement
A labeled-statement that contains more than one siving
6.8.1-3 labelled-stat . more than one label may impair the
avetled-statement. UNDERSTANDABILITY of code.

6.8.1-4 An IDENTIFIER-LABELLED-STATEMENT.

Such a statement is required only to provide a
destination for a GOTO-STATEMENT. If the latter
are banned, then there is no need for any
IDENTIFIER-LABELLED-STATEMENT.

6.8.2 Compound statement
Orthosyntax:

compound-statement =

block-item-list = block-item

{ [block-item-list] } ;

block-item-list block-item

declaration
Statement

block-item =

Designated constructs:

DCRN Definition Rationale
A d 1 .. Such a construct may not be supported by
d clomp oun —s;atemenr ¢ 0565";0:;:2?‘:}11@ a implementations conforming to earlier version
6.8.2-1 declarat{on anda Smifme';: such that the of the base language standard and their use
leclaration appears after the statement. impairs PORTABILITY.
A compound-statement containing more than
6.8.2-2 one IDENTIFIER-LABELED-STATEMENT whose Such a construct violates a constraint.
identifiers have the same spelling.
6.8.3 Expression and null statements

Orthosyntax:

expression-statement = [expression] ;

Designated constructs:

DCRN Definition Rationale
In this context the value returned by the
. . function is discarded. Some users believe that
An expression-statement that is a FUNCTION-CALL discarding of function values is associated
6.83-1 | EXPRESSION whose FUNCTION-DESIGNATOR denotes a with programmer error and may wish to ban
function whose return type is not void. or control such usage in aid of defensirve
programming.
Some users believe that such usage is
confusing and impairs understandability.
6.8.3-2 | An expression-statement that has no expression. Others rega}'d tasa yseful defepswe
programming practice in selection
statements.

6.8.4 Selection statements

Orthosyntax

selection-statement

Parasyntax

selection-statement

BINARY-SELECTION

PLAIN-IF-STMT
IF-ELSE-STMT
IF-EXPR

EXPLICIT-LOGICAL-EXPR

TRUE-STMT
FALSE-STMT
SWITCH-STMT
SWITCH-EXPR
SWITCH-BODY
STRUC-SWITCH-STMNT
STRUC-SWITCH-BODY

CASE-CLAUSES

CASE-CLAUSE

DEFAULT-CLAUSE

if (expression) statement
if (expression) statement else statement
switch (expression) statement;

BINARY-SELECTION
SWITCH-STMT

PLAIN-IF-STMT
IF-ELSE-STMT ;

if (IF-EXPR) TRUE-STMT;
if (IF-EXPR) TRUE-STMT else FALSE-STMT;
expression ;

EXPLICIT-REL-EXPR

EXPLICIT-EQUALITY-EXPR

EXPLICIT-LAND-EXPR

EXPLICIT-LOR-EXPR

! (EXPLICIT-LOGICAL-EXPR) ;

statement ;

Statement ;

switch (SWITCH-EXPR) SWITCH-BODY ;
expression ;

Statement

switch (SWITCH-EXPR) STRUC-SWITCH-BODY

{ CASE-CLAUSES ; DEFAULT-CLAUSE } ;

CASE-CLAUSE
CASE-CLAUSES ;

CASE-CLAUSE
case constant-expr : CASE-GROUP

default CASE-GROUP

CASE-GROUP = { statement-list ; break } ;
6.8.4.1 The if statement
Designated constructs:
DCRN Definition Rationale
6.8.4.1-1 An IF-EXPR that does not have scalar type. Such a construct violates a constraint.

6.8.4.1-2

An 1F-EXPR that is an
EXPLICIT-SIMPLE-ASSIGNMENT-EXPR.

The programmer may have written = when ==
was intended. This error is sufficiently
common that the construct warrants being
diagnosed in aid of defensive programming.

6.8.4.1-3

An IF-EXPR that contains a
SIDE-EFFECTIVE-OPERATOR.

Some users believe that programmers are
prone to make errors when using such a
construct. Accordingly they may wish to ban
or control them in aid of defensive
programming.

6.8.4.1-4

An IF-EXPR that is constant-expression or is
deduced to have a value that never changes.

Such constructs are often the result of
programming errors and are sufficiently
common to warrant being diagnosed in aid of
defensive programming.

6.8.4.1-5

An [F-EXPR that i not an EXPLICIT-LOGICAL-EXPR.

Some users believe making logical operations
explicit in selection statements promoes
UNDERSTANDABILITY and is a useful
defensive programming technique that may
help programmers to detect logical errors to
during coding.

6.8.4.1-6

A TRUE-STMT that is not a compound-statement.

Some users consider that prohibition of this
construct enhances the understandability of
code.

6.8.4.1-7

A FALSE-STMT that is not a compound-statement.

Some users consider that prohibition of this
construct enhances the understandability of
code.

6.8.4.1-8

A PLAIN-IF-STMT.

Some users believe that writing else cases
explicitly is a useful defensive programming
technique that helps programmers to find
logical errors to during coding.

6.8.4.1-9

An IF-ELSE-STMT Whose FALSE-STMT is a
BINARY-SELECTION that does not begin on the same
line as the else of the /F-ELSE-STMT.

Some users consider that prohibition of this
construct enhances the understandability of
code.

6.8.4.2

The switch statement

Designated constructs:

DCRN Definition Rationale

6.8.4.2-1 A swiTCH-EXPR that does not have integer type. Such a construct violates a constraint.
A SWITCH-STMNT closest-containing case or
default where either is within the scope of an

6.8.4.2-2 | identifier with a variably-modified type but where Such a construct violates a constraint.
the SWITCH-STMNT is not itself within the scope of
that identifier.
A constant-expr of a CASE-LABELED-STATEMENT . .

6.8.4.2-3 that is not an integer constant expression. Such a construct violates a constraint.
A SWITCH-STMNT closest-containing two distinct

6.8.4.2-4 CASE-LABELED-STATEMENT whose constant-expr Such a construct violates a constraint.

have the same value after conversion.

A SWITCH-STMNT closest-containing more than one . .
6.8.4.2-5 J Such a construct violates a constraint.
default.
Such constructs are often the result of
X programming errors and are sufficiently
6.8.4.2-6 | A SWITCH-EXPR that is an EXPLICIT-LOGICAL-EXPR. | common to warrant being diagnosed in aid of
defensive programming.
Such constructs are often the result of
6.8.427 A SWITCH-EXPR that is a constant-expression or is | programming errors and are sufficiently
O deduced to have a value that never changes. common to warrant being diagnosed in aid of
defensive programming.
6.8.5 Iteration statements

Orthosyntax:

iteration-sta

Parasyntax:

iteration-sta

WHILE-STATEMENT

DO-WHILE-STATEMENT

tement

= while (expression) statement
| do statement while (expression) ;
|

for ([expression] ;
[expression] ;

[expression])

statement

for (declaration [expression] ;
[expression]) statement ;

tement WHILE-STATEMENT

FOR-STATEMENT

DO-WHILE-STATEMENT

FOR-STATEMENT

C90-FOR-STATEMENT =

C99-FOR-STAMEMENT

WHILE-EXPRESSION =

while (WHILE-EXPRESSION) BODY
do BODYwhile (WHILE-EXPRESSION) ;

C90-FOR-STATEMENT
C99-FOR-STAMEMENT

for ([expression] ;

| WHILE-EXPRESSION | ;

[expression])

BODY ;

for (declaration |WHILE-EXPRESSION] ;

[expression]) BODY ;

expression ;

BODY = Statement
Designated constructs:
DCRN Definition Rationale
6.8.5-1 i?,;:HILEiEXPRESSION that does not have scalar Such a construct violates a constraint.

An WHILE-EXPRESSION that does not have

Some users believe that use of non-arithmetic

6.8.5-2 . . types impairs the UNDERSTANDABILITY of
arithmetic type.
code.
A hat i Some users believe that not using an
6.8.5-3 ‘n WHI’L_E’EXPRESSI_OM atis not an EXPLICIT-LOGICAL-EXPR impairs the
EXPLICIT-LOGICAL-EXPR. UNDERSTANDABILITY of code.
Such constructs are often the result of
A WHILE-EXPRESSION that is an programming errors and are sufficiently
6.8.5-4 EXPLICIT-SIMPLE-ASSIGNMENT-EXPR. common to warrant being diagnosed in aid of
defensive programming.
Such constructs are often the result of
. programming errors and are sufficiently
6.8.5-5 An WHILE-EXPRESSION that is constant-expr. common to warrant being diagnosed in aid of
defensive programming.
Such constructs are often the result of
6.8.5-6 An WHILE-EXPRESSION that is not a constant-expr | programming errors and are sufficiently
e but is statically deduced to have a constant value. | common to warrant being diagnosed in aid of
defensive programming.
A . ssioN that i Some users believe that using a
6.8.5-7 0 WHILE-EXPRESSION (hat 1s 4 SIDE-EFFECTIVE-EXPR impairs the
SIDE-EFFECTIVE-EXPR. UNDERSTANDABILITY of code.
Some users believe that not using a
6.8.5-8 A Bopy that is not a compound-statement. compound-statement impairs the

UNDERSTANDABILITY of code.

Note: A loop for which the WHILE-EXPRESSION takes a constant value is sometimes required for implementation of
idle-wait states. It is important to ensure that such loops are not removed by code optimisers. If an idle-wait loop is
required, the following form may be found useful:

{

volatile int i = 2;

while (i != 3)
{

i= (iti) % 7;
}

The effect of this construct is to cycle the value of i indefinitely through the quadratic residues mod 7. The
assignment to i has the effect of multiplying it by 2 mod 7 and since 2 is a quadratic residue mod 7, i never attains
the value 3, which is a non-quadratic residue mod 7. The presence of a side effect on i (both by assignment and
because i is declared volatile) is intended to defeat an incautious optimiser that might otherwise attempt to
remove the loop. It is believed that few optimisers can make the inferences in elementary number theory required to
prove that the loop is infinite. This may not, however, be beyond the power of a dynamic analysis tool.

6.8.5.1

6.8.5.2

The while statement (NR)

The do statement

Designated constructs:

DCRN Definition Rationale
A - STATEMENT wh dwhil Some users believe that a single separating
6.8.5.2-1 DO-WHILE-STATEMENT whose BoDY and while are space is a usage that promotes using a the

not separated by a single space.

UNDERSTANDABILITY of code.

6.8.5.3

The for statement

Designated constructs:

DCRN Definition Rationale

A declaration of a C99-FOR-STATEMENT that

declares an identifier for an object that does . .
6.8.5.3-1 | 10t either have automatic storage duration or Such a construct violates a constraint.

have register storage class.

The use of such a construct may impair PORTABILITY
6.8.5.3-2 | A C99-FOR-STATEMENT. to implementations conforming to earlier version of
the base language standard.
68533 A FOR-STATEMENT that does not Such usage is treated as if the WHILE-EXPRESSION had a
+Qee0m closest-contain a WHILE-EXPRESSION. constant-value (c.f. DCRN 6.8.5-5

A FOR-STATEMENT for whose BoDY the .)
6.8.5.3-4 E-behaviour contains a modifying access to Some users prefer to modify loop control variables

an object and for whose WHILE-EXPRESSION only l; lhjllllmd ;xPreSSlon of a[for’Slalemenl and

the E-behaviour contains any access to the consider that such usage promotes

same object UNDERSTANDABILITY.

Al | variable that has floati Some users consider that use of such variables is prone
6.8.5.3-5) oop-control vartable that has tloating to error and prefer to ban or control them in aid of

ype- defensive programming.

A f hich there i Some users consider that use of more than one such
6.8.5.3-6 FOR-STATEMENT for which there is more variables is prone to error and prefer to ban or control

than one loop-control variable.

them in aid of defensive programming.

Note: Since the notion of a loop-control variable is not syntactically defined, diagnostic processors may use heuristic
methods to identify such variables and hence their capacity for such identification may exhibit wide variation.

6.8.6

Jump statements

Orthosyntax:

Jjump-statement

continue ;
break ;

Parasyntax:

Jjump-statement

GOTO-STATEMENT =

CONTINUE-STATEMENT =

continue ; ;

goto identifier ;

return [expression] ; ;

GOTO-STATEMENT
CONTINUE-STATEMENT
BREAK-STATEMENT
RETURN-STATEMENT ;

goto identifier ; ;

BREAK-STATEMENT

RETURN-STATEMENT =

PLAIN-RETURN-STMNT =

EXPR-RETURN-STMNT

6.8.6.1

break ; ;

PLAIN-RETURN-STMNT

I EXPR-RETURN-STMNT

return ; ;

The goto statement

Designated constructs:

return [expression] ; ;

DCRN Definition Rationale
A GOTO-STATEMENT whose identifier is not
the identifier of an
6.8.6.1-1 | IDENTIFIER-LABELED-STATEMENT contained in Such a construct violates a constraint.
the same compound-statement as that
GOTO-STATEMENT
A GOTO-STATEMENT that is within the scope
of an identifier [having a variably-modified
6.8.6.1-2 | type butsuch thatits own idenrifier is the Such a construct violates a constraint.
identifier of an
IDENTIFIER-LABELLED-STATEMENT that is
outside that scope of I.
Some users believe that programmers are
prone to make errors when using the
6.8.6.1-3 | A GOTO-STATEMENT. GOTO-STATEMENT and may therefore wish to
ban or control its use in aid of defensive
programming.
6.8.6.2 The continue statement

Designated constructs:

DCRN Definition Rationale
A CONTINUE-STATEMENT that is not contained X .

6.8.6.2-1 by a BODY. Such a construct violates a constraint.
Some users believe that programmers are
prone to make errors when using the

6.8.622 | A CONTINUE-STATEMENT. CONTINUE-STATEMENT and may therefore
wish to ban or control its use in aid of
defensive programming.

6.8.6.3 The break statement

Designated constructs:

DCRN

Definition

Rationale

6.8.6.3-1

A BREAK-STATEMENT that is not contained by
a BODY.

Such a construct violates a constraint.

6.8.6.3-2

A BREAK-STATEMENT that is contained by the
BODY of an ITERATION-STATEMENT.

Some users believe that programmers are
prone to make errors when using the
BREAK-STATEMENT within loops and may
therefore wish to ban or control its use in aid
of defensive programming.

6.8.6.4

The return statement

Designated constructs:

DCRN Definition Rationale
An EXPR-RETURN-STATEMENT contained by
the compound-statement of the . .
6.8.6.4-1 | finction-definition of a function whose Such a construct violates a constraint.
return type is void.
An PLAIN-RETURN-STATEMENT contained by
the compound-statement of the . .
6.8.6.4-2 function-definition of a function whose Such a construct violates a constraint.
return type is not void.
A RETURN-STATEMENT whose expression Dereferencing such a returned value will
denotes a value of pointer-type that points to | lead to undefined behaviour. Accordingly
6.8.6.4-3 | an object whose scope is the some users may wish to ban or control use of
compound-statement containing that this construct in aid of defensive
RETURN-STATEMENT.. programming.
Some users believe that programmers are
. prone to make errors when using such a
6.8.6.4-4 A RETURN-STATEMENT Whose expression construct and may therefore wish to ban or
does not denote a value of arithmetic type. control its use in aid of defensive
programming.
6.8.6.4-5 | An EXPR-RETURN-STATEMENT Whose Some users believe that programmers are

expression does not denote a value of a type
identical to the return type of the
function-definition in whose
compound-statement it is contained.

prone to make errors when using such a
construct and may therefore wish to ban or
control its use in aid of defensive
programming.

6.9 External definitions

Orthosyntax:

translation-unit

external-declaration

| translation-unit external-declaration ;

external-declaration = function-definition

| declaration

Designated constructs:

DCRN Definition Rationale
An external-declaration that contains either of the . .
6.9-1 . : Such a construct violates a constraint.
storage-class-specifier auto or register.
A translation-unit containing more than one
6.9-2 external-declaration that is an external definition for Such a construct violates a constraint.
a given identifier with internal linkage.
Distinct declarations that refer to the same object or
6.9-3 function but that specify incompatible types. Behaviour is undefined.
6.9-4 A construct provided to support T-behaviour of Behaviour for such a construct is
o assembly code appearing within a transl. -unit. impl tation-dependent.
A translation-unit containing a construct whose . .
. L - - . Such a construct impairs the PORTABILITY of
6.9-5 interpretation in C++ differs from the interpretation de b C and Ca+ impl .
of a syntactically identical construct in C. code between C and G+ implementations.
In certain circumstances preprocessing of a
source file may result in a file that contains no
A source file not that does not contain a exlemgl declarall(')nsv (e.g. owing to lhe'effecls of
6.9-6 | nslation-unit. COHdlthFlal ?ompllauon)A Sorpe users like to be
warned if this occurs and a diagnostic processor
may flag the condition if it arises.
6.9.1 Function definitions
Orthosyntax:
Sfunction-definition = [declaration-specifiers | declarator [declaration-list |

declaration-list

compound—statement H

declaration

declaration-list declaration;

Parasyntax:

Sfunction-definition = [declaration-specifiers | declarator [declaration-list |
FUNCTION-BLOCK

FUNCTION-BLOCK

Designated constructs:

comp()und—statement 5

‘ DCRN ‘ Definition

Rationale

A function-definition whose declared identifier

6.9.1-1 does not have function type. Such a construct violates a constraint.
A function-definition the return type of whose
6.9.1-2 | declared function is neither the void type nor an Such a construct violates a constraint.
object type other than an array type.
A function-definition whose
6.9.1-3 | declaration-specifiers contain a Such a construct violates a constraint.
storage-class-specifier other that extern or
static.
A function-definition whose declarator is a
6.9.1-4 | FUNCTION-PROTOTYPE and that itself has a Such a construct violates a constraint.
declaration-list.
A function-definition whose declarator is a
K-AND-R-FUNCTION-DECLARATOR whose . .
6.9.1-5 identifier-list does not correspond to the Such a construct violates a constraint.
declaration-list of the function-definition.
A FUNCTION-BLOCK that contains both a . . .
6.9.1-6 PLAIN-RETURN-STMNT and an EXPR-RETURN-STMNT. Behaviour for one or the other is undefined.
For such a construct the possibility exists that
. the terminating } of the function-block may be
6.9.1-7 A FUNCTION-BLOCK that does not contain a reached and that the value of the function call
RETURN-STATEMENT. will be used in the calling environment. In this
occurs, the behaviour is undefined.
6.9.18 A function-definition whose declarator does not The use of such function-definitions impairs the
2 contain a FUNCTION-PROTOTYPE. ANALYSABILITY of code.

A that tai th Some users believe that adherence to a
6.9.1-9 FUNCTION-BLOCK that contains more than one single-entry, single-exit convention promotes
RETURN-STATEMENT. the UNDERSTANDABILITY of code.

A construct whose E-behaviour may vary .
. . The layout of storage for parameters is
6.9.1-10 | according to the layout of storage for function ified
parameters. unspecified.
A function-definition that declares a parameter but | Some users believe that the presence of such
6.9.1-11 | whose function block contains no access to that unused parameters impair the
parameter. UNDERSTANDABILITY of code.
6.9.2 External object definitions
DCRN Definition Rationale
A tentative definition of an object that has internal .)
6.9.2-1) Behaviour is undefined.

linkage and incomplete type.

6.10 Preprocessing directives

Orthosyntax:

preprocessing-file

group

group-part

if-section

if-group

elif-groups

elif-group
else-group
endif-line

control-line

Iparen
replacement-list
pp-tokens
new-line

Parasyntax:

[group];

group-part
group group-part;

[pp-tokens | new-line
if-section
control-line ;

if-group | elif-groups] [else-group | endif-line ;

if constant-expression new-line [group]
ifdef identifier new-line [group]
ifndef identifier new-line [group];

elif-group
elif-groups elif-group ;

elif constant-expression new-line [group | ;
else new-line[group];
endif new-line ;

include pp-tokens new-line

define identifier replacement-list new-line

define identifier Iparen [identifier-list |

replacement-list new-line

define identifier Iparen . . .)
replacement-list new-line

define identifier Iparen identifier-list , .
replacement-list new-line

undef identifier new-line

line pp-tokens new-line

error [pp-tokens] new-line

#

#

3+ 3= I3

pragma [pp-tokens] new-line
new-line ;

a left-parentheses without preceding white space ;
[pp-tokens] ;

preprocessing-token
pp-tokens preprocessing-token ;

the new-line character ;

control-line

DIRECTIVE

Designated constructs:

INCLUDE-DIRECTIVE
PLAIN-DEFINE-DIRECTIVE
FLIKE-DEFINE-DIRECTIVE
UNDEF-DIRECTIVE
LINE-DIRECTIVE
ERROR-DIRECTIVE
PRAGMA-DIRECTIVE
NULL-DIRECTIVE ;

IF-DIRECTIVE
IFDEF-DIRECTIVE
IFNDEF-DIRECTIVE
ELIF-DIRECTIVE
ELSE-DIRECTIVE
ENDIF-DIRECTIVE
INCLUDE-DIRECTIVE
PLAIN-DEFINE-DIRECTIVE
FLIKE-DEFINE-DIRECTIVE
EMPTY-VAR-FLIKE-DEFINE-DIRECTIVE
VAR-FLIKE-DEFINE-DIRECTIVE
UNDEF-DIRECTIVE
LINE-DIRECTIVE
ERROR-DIRECTIVE
PRAGMA-DIRECTIVE
NULL-DIRECTIVE ;

DCRN Definition Rationale
6.10-1 A DIRECTIVE whose opening hash # is Such a construct violates a constraint. (The #
e followed by a white space character. will be treated as a # preprocessing token)
A directive that contains a white space
character other than space or horizontal X
6.10-2 tab between one preprocessing-token and Such a construct violates a constraint.
another.
6.10-3 A non-standard control-line. T-behaviour is impl lepend
6.10-4 A non-standard endif-line. T-behaviour is impl tation-dependent.
6.10-5 A non-standard if-group. T-behaviour is impl tat dependent
6.10-6 A non-standard elif-group. T-behaviour is impl lepend
6.10-7 A non-standard else-group. T-behaviour is impl tat dependent
A DIRECTIVE whose opening hash # does | Such a construct may not be treated as a
6.10-8 not occur in the first character position of | directive by pre-standard implementations
a source line. thereby impairing PORTABILITY.

6.10.1 Conditional inclusion

Parasyntax:

IF-DIRECTIVE [group |;
IFDEF-DIRECTIVE [group |;
IFNDEF-DIRECTIVE [group | ;

if-group

IF-DIRECTIVE = # if constant-expression new-line ;

IFDEF-DIRECTIVE = # ifdef identifier new-line ;

IFNDEF-DIRECTIVE = # ifndef identifier new-line ;

elif-group = ELIF-DIRECTIVE [group | ;

ELIF-DIRECTIVE = # elif constant-expression new-line ;

else-group = ELSE-DIRECTIVE [group | ;

ELSE-DIRECTIVE = # else new-line;

endif-line = ENDIF-DIRECTIVE

ENDIF-DIRECTIVE = # endif new-line ;

Designated constructs:

DCRN Definition Rationale
An IF-DIRECTIVE , IFDEF-DIRECTIVE OF
IFNDEF-DIRECTIVE whose . .
6.10.1-1 constant-expression is not an integer Such a construct violates a constraint.
constant expression.
An IF-DIRECTIVE , IFDEF-DIRECTIVE OF
IFNDEF-DIRECTIVE whose
6.10.1-2 | constant-expression is or expands to one that T-behaviour is undefined.
contains defined not followed by an
identifier or (identifier).
A non-standard if-group that begins with #
6.10.1-3 | ifdefor # ifndef in neither case T-behaviour is undefined.
followed by an identifier.
An IF-DIRECTIVE , IFDEF-DIRECTIVE OF Aspects of T-behavi
6.10.1-4 | IFNDEF-DIRECTIVE whose . Spelc SO t -t'e a;u::]r a(ie
constant-expression contains a Implementation-delined.
character-constant.
Such a construct may not be supported by
6.10.1-5 | An ELIF-DIRECTIVE. pre-standard implementations thereby
impairing PORTABILITY.
Some users believe that programmers are
An IF-DIRECTIVE whose constant-expression | prone to write such constructs in error and
6.10.1-6 denotes the value zero. may wish to ban or control them in aid of
defensive programming.

An [F-DIRECTI VE, IFDEF-DIRECTIVE Or
IFNDEF-DIRECTIVE for which there is no

Some users believe that programmers are
prone to write such constructs in error and

6.10.1-7 matching ELSE-DIRECTIVE, ELIF-DIRECTIVE or | may wish to ban or control them in aid of
ENDIF-DIRECTIVE defensive programming.
An ELSE-DIRECTIVE, ELIF-DIRECTIVE OT Some users believe that programmers are
6.10.1-8 ENDIF-DIRECTIVE for which there is no prone to write such constructs in error and

matching /F-DIRECTIVE, IFDEF-DIRECTIVE or
IFNDEF-DIRECTIVE.

may wish to ban or control them in aid of
defensive programming.

6.10.2 Source file inclusions

Parasyntax:

INCLUDE-DIRECTIVE =

Designated constructs:

include pp-tokens new-line ;

DCRN Definition Rationale

An INCLUDE-DIRECTIVE that does not contain N
6.10.2-1 | . der-name. T-behaviour is undefined.

An INCLUDE-DIRECTIVE whose first contained
6.10.2-2 | preprocessing-token is not a header-name. T-behaviour is undefined.

An INCLUDE-DIRECTIVE whose T-behaviour
6.10.2-3 | causes inclusion of the file in which it occurs T-behaviour is undefined.

(recursive inclusion).

An INCLUDE-DIRECTIVE whose first contained

preprocessing-token is a STD-HEADER-NAME | Use of non-standard headers impairs
6.10.2-4 | \hat is not a header-name for a standard PORTABILITY.

library.

An INCLUDE-DIRECTIVE whose first contained Use of defined headers i .
6.10.2-5 | preprocessing-token is not a se ol user-delined headers Impatrs

STD-HEADER-NAME. PORTABILITY.

. Such a construct may not be supported by

6.10.2-6 An :NC Lulﬁbumbc'{‘/b th ose T-behaviour pre-standard implementations and its

contains the expansion ol a macro. presence impairs PORTABILITY.

An INCLUDE-DIRECTIVE containing more than | Such a construct may not be supported by
6.10.2-7 | one preprocessing-token, only the first of pre-standard implementations and its

which is a header-name.

presence impairs PORTABILITY.

6.10.3 Macro replacement

Parasyntax:

DEFINE-DIRECTIVE

PLAIN-DEFINE-DIRECTIVE =

PLAIN-DEFINE-DIRECTIVE
FLIKE-DEFINE-DIRECTIVE
EMPTY-VAR-FLIKE-DEFINE-DIRECTIVE
VAR-FLIKE-DEFINE-DIRECTIVE

define MACRO-NAME [J
replacement-list new-line ;

FLIKE-DEFINE-DIRECTIVE = #

EMPTY-VAR-FLIKE-DEFINE-DIRECTIVE =

VAR-FLIKE-DEFINE-DIRECTIVE =~ = #

define identifier < (
replacement-list new-line ;

replacement-list new-line ;

define identifier < (. .
replacement-list new-line ;

identifier-list
L)

define MACRO-NAME < ([identifier-list]

-)

Note: Use here of the direct concatenation metasymbol < obviates the need for the definition of a nonterminal lparen
defined to be a left-parentheses without preceding white space.

MACRO-NAME

PAREN-REPLACEMENT-LIST =

Designated constructs:

identifier ;

(replacement-list) ;

DCRN Definition Rationale

A translation-unit containing both a

PLAIN-DEFINE-DIRECTIVE and an The presence of such constructs violates a
6.10.3-1 | 7 xp-pEFINE-DIRECTIVE such that the constraint.

identifier of one is the same as the identifier

of the other.

Two or more distinct occurrences of an Th £ such tructs violat
6.10.3-2 | FLIKE-DEFINE-DIRECTIVE that define the N [t’re§e'tlce Of such constructs viofates a

sameidentifier as a macro but hav different | €OTStraint.

replacement lists.

Two or more distinct occurrences of an Th £ such tructs violat
6.10.3-3 | EMPTY-VAR-FLIKE-DEFINE-DIRECTIVE that © [t’refe't'ce Ol such constructs viofates a

define the sameidentifier as a macro but hay | €omstraint.

different replacement lists.

Two or more distinct occurrences of a Th £ such tructs violat
6.10.3-4 | VAR-FLIKE-DEFINE-DIRECTIVE that define the © [:refer;ce Ol such constructs viofates a

sameidentifier as a macro but hav different | €OTStraint.

replacement lists.

Two or more distinct occurrences of a Th £ such tructs violat
6.10.3-5 | PLAIN-DEFINE-DIRECTIVE that define the © |t)re§ert1ce ol such constructs viofates a

sameidentifier as a macro but hav different | €OmStraint.

replacement lists.

A replacement-list of a Th i VA ARGS i h
6.10.3-6 | PLAIN-DEFINE-DIRECTIVE OT an © presence of __VA_ARGS__ 1n such a

FLIKE-DEFINE-DIRECTIVE that contains the context violates a constraint.

identifier __VA_BARGS_.

An FLIKE-DEFINE-DIRECTIVE whose I
6.10.3-7 Behaviour is undefined.

replacement-list does not contain) .

A replacement-list containing a sequence of

6.10.3-8 | pp-token that have the syntactic form of a Behaviour is undefined.
DIRECTIVE.
A DEFINE-DIRECTIVE that contains a
6.10.3-9 | preprocessing-token having the same Behaviour is undefined.
spelling as a keyword or is defined.
A non standard DEFINE-DIRECTIVE that does I
6.10.3-10 | o tain an identifier. Behaviour is undefined.
A DEFINE-DIRECTIVE that can be replaced A programmer may have used an object-like
ol . . macro when an object definition could have
6.10.3-11 (bpossc;bivy ?tl,a dlffferen?m:ﬂ ina source file been used. Use of an object definition can
Y a definition of an object. promote ANALYSABILITY.
Such a construct may lead to undefined
A translation-unit containing two distinct behaviour under pre-standard
occurrences of a PLAIN-DEFINE-DIRECTIVE implementations or implementations that
6.10.3-12 | guch that the identifiers of both instances are | conform to earlier version of the base
the same. language standard. Its presence therefore
impairs PORTABILITY .
Such a construct may lead to undefined
A translation-unit containing two distinct behaviour under pre-standard
occurrences of an FLIKE-DEFINE-DIRECTIVE | implementations or implementations that
6.10.3-13 | ¢uch that the identifiers of both instances are | conform to earlier version of the base
the same. language standard. Its presence therefore
impairs PORTABILITY.
Some users believe that programmers are
. . prone to make errors when they do not
6.10.3-14 A replacement-list that is not a parenthesise replacement lists. Accordingly
PAREN-REPLACEMENT-LIST. they may wish to ban or control such usage
in aid of defensive programming.
Some users believe that programmers are
An FLIKE-DEFINE-DIRECTIVE whose prone to make errors when they do not
6.10.3-15 | identifier-list contains distinct occurrences | parenthesise replacement lists. Accordingly
of an identifier that have the same spelling. | they may wish to ban or control such usage
in aid of defensive programming.
A ion that th Some users believe that programmers are
mac:f) expfansmn " a tcaus:sv e prone to make errors when using such
6.10.3-16 | generation ol a construct containing a constructs and may wish to ban or control
SIDE-EFFECTIVE-OPERATOR. their use in aid of defensive programming.
A ion that th Some users believe that programmers are
mac{f) expltemsnonl 4 lca;ses Eeb havi prone to make errors when using such
6.10.3-17 | generation oba construct Whose E-behaviour | qircts and may wish to ban or control
contains sequence point. their use in aid of defensive programming.
Such a construct may lead to undefined
behaviour under pre-standard
6.10.3-18 An EMPTY-VAR-FLIKE-DEFINE-DIRECTIVEOT @ | jmplementations or implementations that

VAR-FLIKE-DEFINE-DIRECTIVE

conform to earlier version of the base
language standard. Their presence therefore
impairs PORTABILITY.

6.10.3.1 Argument substitution

Parasyntax:

MACRO-INVOCATION =

Designated constructs:

MACRO-NAME [(INVOCATION-TAIL];

DCRN

Definition

Rationale

6.10.3.1-1

A MACRO-INVOCATION whose
INVOCATION-TAIL does not begin with an
identifier-list that contains no fewer
identifiers than occur in the identifier-list
of its corresponding
FLIKE-DEFINE-DRECITIVE, .
EMPTY-VAR-FLIKE-DEFINE-DIRECTIVE OF &
VAR-FLIKE-DEFINE-DIRECTIVE.

Such a construct violates a constraint.

6.10.3.1-2

A MACRO-INVOCATION whose
INVOCATION-TAIL does not begin with an
identifier-list that contains more
identifiers than occur in the identifier-list
of its corresponding
FLIKE-DEFINE-DRECITIVE.

Such a construct violates a constraint.

6.10.3.1-3

A MACRO-INVOCATION whose
INVOCATION-TAIL does not begin with an
identifier-list.

Behaviour is undefined.

6.10.3.1-4

A MACRO-INVOCATION whose
INVOCATION-TAIL does not end witha).

Behaviour is undefined.

6.10.3.1-5

A MACRO-INVOCATION whose T-behaviour
creates a further invocation of the same
macro (recursive invocation).

Behaviour is undefined.

6.10.3.1-6

A MACRO-INVOCATION that is not enclosed
in parentheses.

Some users believe that programmers are prone to make
errors when using such constructs and may wish toe ban
or control them in aid of defensive programming.

6.10.3.2 The # operator

Designated constructs:

DCRN Definition Rationale
An occurrence of the # preprocessing
6.10.3.2-1 | token other than immediately before a Such a construct violates a constraint.
pp-token contained by a replacement-list.
An occurrence of the # preprocessing
6.10.3.2-2 | token whose T-behaviour does not Behaviour is undefined.
generate a string-literal.
Some users believe that programmers are prone to
making errors when using this operator and may wish to
6.10.3.2-3 | The # preprocessing operator.

ban or control such usage in aid of defensive
programming.

6.10.3.3 The ## operator

Designated constructs:

DCRN Definition Rationale
6.10.3.3-1 An occurrence of the #4# preprocessing Such a construct violates a constraint.
token as the first or last pp-token in a
replacement-list.
An occurrence of the #4# pre-processing
6.10.3.3-2 operator whose T-behaviour does not Behaviour is undefined.
generate a pp-token.
Some users believe that programmers are prone to
making errors when using this operator and may wish to
6.10.3.3-3 | The ## preprocessing operator.

ban or control such usage in aid of defensive
programming.

6.10.3.4 Rescanning and further replacement (NR)

6.10.3.5 Scope of macro definitions

Parasyntax:

UNDEF-DIRECTIVE =

Designated constructs:

undef identifier new-line ;

DCRN Definition Rationale
A UNDEF-DIRECTIVE that contains a
6.10.3.5-1 | preprocessing-token having the same Behaviour is undefined.
spelling as a keyword or is defined.
A non standard UNDEF-DIRECTIVE that does N
6.10.3.5-2 1ot contain an idenfifier. Behaviour is undefined.
Some users believe that programmers are prone to
making errors when using such a construct and may
6.10.3.5-3 | An UNDEF-DIRECTIVE.

wish to ban or control such usage in aid of defensive
programming.

6.10.4 Line control

Parasyntax:

LINE-DIRECTIVE

LINE-PP-TOKENS

line LINE-PP-TOKENS new-line ;

LINE-DIG-SEQ
LINE-DIG-SEQ-SCHAR-SEQ
pp-tokens ~ LINE-DIG-SEQ

LINE-DIG-SEQ =
LINE-DIG-SEQ-SCHAR-SEQ =

Designated constructs:

pp-tokens ~ LINE-DIG-SEQ-SCHAR-SEQ;

digit-sequence ;

digit-sequence ™ | s-char-sequence 1 ™ ;

DCRN Definition

Rationale

A LINE-DIG-SEQ-SCHAR-SEQ whose
s-char-sequence is not a
character-string-literal.

6.10.4-1

Such a construct violates a constraint.

A LINE-DIG-SEQ or
6.10.4-2 LINE-DIG-SEQ-SCHAR-SEQ whose

range [1, 2147483647]

digit-sequence denotes a value outside the

Behaviour is undefined.

6.10.4-3 replacement in a LINE-DIG-SEQ or &
LINE-DIG-SEQ-SCHAR-SEQ.

A LINE-PP-TOKENS that does not result after

Behaviour is undefined.

6.10.4-4 A LINE-DIRECTIVE.

Some users believe that programmers are prone to
making errors when using such a construct and may
wish to ban or control such usage in aid of defensive
programming.

6.10.5 Error directive
Parasyntax:

ERROR-DIRECTIVE =

Designated constructs:

error [pp-tokens] new-line ;

DCRN Definition

Rationale

6.10.5-1 An ERROR-DIRECTIVE.

Some users believe that programmers are prone to
making errors when using such a construct and may
wish to ban or control such usage in aid of defensive
programming.

6.10.6 Pragma directive
Parasyntax:

PRAGMA-DIRECTIVE =

STDC-PRAGMA-DIRECTIVE =

STDC-PRAGMA-NAME

STDC-PRAGMA-DIRECTIVE
PLAIN-PRAGMA-DIRECTIVE ;

#pragma STDC STDC-PRAGMA-NAME

on-off-switch ;

FP_CONTRACT
FENV_ACCESS
CX_LIMITED_RANGE ,;

on-off-switch =

PLAIN-PRAGMA-DIRECTIVE =

ON | OFF | DEFAULT ;

(# pragma [pp-tokens] new-line)

STDC-PRAGMA-DIRECTIVE ;

Designated constructs:
DCRN Definition Rationale
The effects of such directi
6.10.6-1 A PLAIN-PRAGMA-DIRECTIVE. : e‘e ects O.Suc, 1rec‘1ves are

6.10.7 Null directive

Parasyntax:

NULL-DIRECTIVE

Designated constructs:

new-line;

DCRN

Definition

Rationale

6.10.7-1

A NULL-DIRECTIVE.

Such a directive has no effect and is therefore redundant.

6.10.8 Predefined macro names

Parasyntax:

PREDEFINED-MACRO-NAME

C90-PREDEFINED-MACRO-NAME

= C90-PREDEFINED-MACRO-NAME

C99-PREDEFINED-MACRO-NAME

= __DATE__ |__FILE__

__LINE__ |

_STDC__

C99-PREDEFINED-MACRO-NAME

TIME

= __STDC_HOSTED_ _

_ STDC_VERSION__

UNDEF-DIRECTIVE

Designated constructs:

I __STDC_IEC_559_
I __ STDC_IEC_559_COMPLEX_
I __STDC_ISO_10646__ ;

undef identifier new-line ;

DCRN Definition

Rationale

An UNDEF-DIRECTIVE whose identifier is a

6.10.8-1 PREDEFINED-MACRO-NAME.

Behaviour is undefined.

A DEFINE-DIRECTIVE whose identifier is a

6.10.8-2 PREDEFINED-MACRO-NAME.

Behaviour is undefined.

6.10.9 Pragma operator
Parasyntax:

PRAGMA-OPERATOR-EXPRESSION =

Designated constructs:

_Pragma (string-literal) ;

DCRN Definition

Rationale

6.10.9-1 A PRAGMA-OPERATOR-EXPRESSION.

Such constructs may not be supported by
implementations conforming to earlier versions
of the base language standard and their use
impairs PORTABILITY.

6.11 Future language directions

6.11.1

6.11.2

6.11.3

6.11.4

6.11.5

6.11.6

6.11.7

6.11.8

6.11.9

Floating types (NR)

Linkages of identifiers (NR)
External names (NR)

Character escape sequences (NR)
Storage-class specifiers (NR)
Function declarators (NR)
Function definitions (NR)
Pragma directives (NR)

Predefined macro names (NR)

7 Library

7.1 Introduction

7.1.1 Definitions of terms (NR)
7.1.2 Standard headers (NR)
7.1.3 Reserved identifiers (NR)

7.1.4 Use of library functions (NR)

7.2 Diagnostics <assert .h>

7.2.1 Program diagnostics

7.2.1.1 The assert macro

Designated constructs:

DCRN Definition

Rationale

7.2.1-1 A macro-invocation whose MACRO-NAME is
assert.

Behaviour is i
freestanding implementations.

7.3 Complex arithmetic <complex.h>

Designated constructs:

DCRN Definition Rationale
The ACCURACY of function provided by this header is
An INCLUDE-DIRECTIVE that causes implementation-dependent. For critical applications
7.3-1 inclusion of the <complex . h> header. some users may wish to use mathematical libraries for
which the accuracy is well characterised.

Note. It may be that some functions provided by the <complex .h> header of a conforming implementation are of
acceptable accuracy while some are not. Accordingly users may wish to control usage at the individual function
level. Where this is a possible rationale for other DCRN’s in this clause, it is indicated by the abbreviation FSC
ACCURACY standing for “Function-specific controls for accuracy”.

7.3.1 Introduction (NR)

7.3.2 Conventions (NR)

7.3.3 Branch cuts (NR)

734 The CX_LIMITED_RANGE pragma
Parasyntax:

CX-LIMITED-RANGE-PRAGMA

Designated constructs:

#pragma STDC CX_LIMITED_RANGE

on-off-switch ;

DCRN Definition Rationale
Some users of C for numerical applications believe that
all but expert numerical programmers are prone to make
7.3.4-1 A CX-LIMITED-RANGE-PRAGMA. errors using this pragma and may wish to ban or control
its use in aid of defensive programming.

7.3.5 Trigonometric functions
Designated constructs:
DCRN Definition Rationale
7.35.1-1 The FUNCTION-DESIGNATOR cacos FSC Accuracy
73512 | The rncriovpEsiwTor cacose |] FSCaccuracy |
73513 | The rncriovpEsiwaror cacosl |] FSCaccuracy |
7.35.2-1 The FUNCTION-DESIGNATOR casin FSC Accuracy
73522 | The rncriovpesiwaror casing |] FSCaccoracy |
73523 | The rncriovpesiwror casinl |] FSCaccuracy |
7.35.3-1 The FUNCTION-DESIGNATOR catan FSC ACCURACY
""""" catant | FSCaccomacy |
73533 | The rncriovprsiovaToR cataml |) FSCaccumacy |
7.3.5.4-1 The FUNCTION-DESIGNATOR ccos FSC ACCURACY

The FUNCTION-DESIGNATOR

FSC Accuracy

The FUNCTION-DESIGNATOR

FSC ACCURACY

7.35.5-3 The FUNCTION-DESIGNATOR ¢sinl FSC Accuracy

7.3.5.6-1 The FUNCTION-DESIGNATOR ctan FSC Accuracy

7.3.5.6-2 The FUNCTION-DESIGNATOR ctanf FSC ACCURACY

7.3.5.6-3 The FUNCTION-DESIGNATOR ctanl FSC ACCURACY
7.3.6 Hyperbolic functions

Designated constructs:

DCRN Definition Rationale
7.3.6.1-1 The FUNCTION-DESIGNATOR cacosh FSC ACCURACY
" 73612 | The FUNCTION-DESIGNATOR - cacosht | 1 FSCaccuracy |
73613 | The rncriovpEsiwTor cacoshl | | FSCaccoracy |
7.3.6.2-1 The FUNCTION-DESIGNATOR casinh FSC Accuracy

7.3.6.2-3 The FUNCTION-DESIGNATOR casinhl FSC ACCURACY

7.3.6.3-1 The FUNCTION-DESIGNATOR catanh FSC Accuracy
73632 | The ANCTION-DESIGNATOR catamhf |] FSCaccumacy |
73633 | The FUNCTION-DESIGNATOR catanhl FSC ACCURACY

7.3.6.4-1 The FUNCTION-DESIGNATOR ccosh FSC Accuracy
73642 | The rncriovpEsiwaToR ccoshe |] FSCaccuracy |
73643 | The rncriovpEsiwaTor ccoshl |] FSCaccuracy |

7.3.6.5-1 The FUNCTION-DESIGNATOR c¢sinh FSC Accuracy

The FUNCTION-DESIGNATOR csinhl

FSC ACCURACY

The FUNCTION-DESIGNATOR ctanh

The FUNCTION-DESIGNATOR ctanhl

FSC ACCURACY

FSC Accuracy

7.3.7 Exponential and logarithmic functions

Designated constructs:

DCRN

Definition

Rationale

The FUNCTION-DESIGNATOR cexp

FSC AccurACY

7.3.7.1-3 The FUNCTION-DESIGNATOR cexpl FSC Accuracy

7.3.7.2-1 The FUNCTION-DESIGNATOR clog FSC AccuRrRACY
73722 | The rncriovpesiowaror cloge | FSCaccumacy |
73723 | The ncriovpesiovaTor clogl | FSCaccomacy |

7.3.8 Power and absolute-value functions

Designated constructs:

DCRN

Definition

Rationale

The FUNCTION-DESIGNATOR cabs

The FUNCTION-DESIGNATOR cabsl

FSC AccurRACY

FSC Accuracy

The FUNCTION-DESIGNATOR cpow

The FUNCTION-DESIGNATOR cpowl

FSC AccURACY

FSC Accuracy

The FUNCTION-DESIGNATOR csqrt

FSC AccurACY

The FUNCTION-DESIGNATOR csqrtl

FSC AccurRACY

7.3.9 Manipulation functions

Designated constructs:

DCRN

Definition

Rationale

The FUNCTION-DESIGNATOR carg

FSC AccURrRACY

The FUNCTION-DESIGNATOR cargl

FSC Accuracy

The FUNCTION-DESIGNATOR cimag

The FUNCTION-DESIGNATOR cimagl

FSC AccURrRACY

FSC Accuracy

The FUNCTION-DESIGNATOR con?j

FSC Accuracy

The FUNCTION-DESIGNATOR con3jl

FSC AccurAcY

The FUNCTION-DESIGNATOR

The FUNCTION-DESIGNATOR

cprojl

FSC Accuracy

FSC AccurRACY

The FUNCTION-DESIGNATOR

The FUNCTION-DESIGNATOR

creal

crealf

creall

FSC Accuracy

FSC Accuracy

7.4 Character handling <ctype .h>

Designated constructs:

DCRN Definition Rationale

The functions provided by this header may not

. . exhibit sufficient ACCURACY in reflecting the
741 An INCLUDE-DIRECTIVE that causes inclusion of the | onventions in specific locales. Accordingly
<ctype.h> header. some users may wish to use a library that does
reflect local conventions.

Note. It may be that some functions provided by the <ctype . h> header of a conforming implementation do
accurately reflect local conventions while some do not. Accordingly users may wish to control usage at the
individual function level. Where this is a possible rationale for other DCRN’s in this clause, it is indicated by the
abbreviation FSC ACCURACY standing for “Function-specific controls for accuracy”.

7.4.1 Character classification functions

Designated constructs:

DCRN Definition Rationale

74.1.1-1 The FUNCTION-DESIGNATOR isalnum FSC AccurRACY

7.4.1.12-1 | The FUNCTION-DESIGNATOR isxdigit FSC ACCURACY

74.2 Character case mapping function

Designated constructs:

DCRN Definition Rationale

7.4.2.1-1 The FUNCTION-DESIGNATOR tolower FSC ACCURACY

7.4.2.2-1 The FUNCTION-DESIGNATOR toupper FSC Accuracy

7.5 Errors <errno.h>

Designated constructs:

DCRN Definition Rationale
Many aspects of errno and the values to which it may be
An INCLUDE-DIRECTIVE that causes . . L o .
7.5-1 . N set are sufficiently I that its use
inclusion of the <errno . h> header. . . :
can impair PORTABILITY.
75-2 The identifier errno. As for 7.5-1
75-3 The MACRO-NAME errno. As for 7.5-1
75-4 The MACRO-NAME EDOM. As for 7.5-1
7.5-5 The MACRO-NAME EILSEQ. As for 7.5-1
7.5-6 The MACRO-NAME ERANGE. As for 7.5-1

7.6 Floating-point environment <fenv.h>

Designated constructs:

DCRN Definition Rationale
Many aspects of the facilities provided by <fenv.h>
) S . X are impl tation-dependent. It may also not be
76-1 AN INCLUDE-DIRECTIVE that causes inclusion | ¢o50r1ed by implementations conforming to earlier
of the <fenv. h> header. version of the base language standard so its use
impairs PORTABILITY.
7.6-2 The typedef-name fenv_t. As for 7.6-1
7.6-3 The typedef-name fexcept_t. As for 7.6-1
7.6-4 The MACRO-NAME FE_DIVBYZERO. As for 7.6-1
7.6-5 The MACRO-NAME FE_INEXACT. As for 7.6-1
7.6-6 The MACRO-NAME FE_INVALID. As for 7.6-1
7.6-7 The MACRO-NAME FE_OVERFLOW. As for 7.6-1
7.6-8 The MACRO-NAME FE_UNDERFLOW. As for 7.6-1
7.6-9 The MACRO-NAME FE_ALL_EXCEPT. As for 7.6-1
7.6-10 The MACRO-NAME FE—DOWNWARD As for 7.6-1
7.6-11 The MACRO-NAME FE_TONEAREST As for 7.6-1
7.6-12 The MACRO-NAME FE_TOWARDZERO As for 7.6-1
7.6-13 The MACRO-NAME FE_UPWARD As for 7.6-1
7.6-14 The MACRO-NAME FE_DLF_ENV As for 7.6-1
7.6.1 The FENV_ACCESS pragma
Parasyntax:
FENV-ACCESS-PRAGMA = #pragma STDC FENV_ACCESS on-off-switch ;
Designated constructs:
DCRN Definition Rationale
Some users of C for numerical applications believe
that all but expert numerical programmers are prone to
make errors using this pragma owing to the degree to
7.6.1-1 An FENV_ACCESS._PRAGMA. 'Whltih aspecls. of ll‘le ﬂoa‘lm%—poml envlronmenl'are
P Such users may wish to
ban or control its use in aid of defensive
programming.

7.6.2 Floating-point exceptions

Designated constructs:

DCRN Definition Rationale
7.6.2-1 The FUNCTION-DESIGNATOR fclearexcept As for 7.6-1
7.6.2-2 The FUNCTION-DESIGNATOR fegetexceptflag As for 7.6-1
7.6.2-3 The FUNCTION-DESIGNATOR feraiseexcept As for 7.6-1
7.6.2-4 The FUNCTION-DESIGNATOR fesetexceptflag As for 7.6-1
7.6.2-5 The FUNCTION-DESIGNATOR fetestexceptflag As for 7.6-1
7.6.3 Rounding
Designated constructs:
DCRN Definition Rationale
7.6.3-1 The FUNCTION-DESIGNATOR fegetround As for 7.6-1

The FUNCTION-DESIGNATOR fesetround

As for 7.6-1

7.6.4 Environment

Designated constructs:

DCRN Definition Rationale

7.6.4-1 The FUNCTION-DESIGNATOR fegetenv As for 7.6-1
7642 | Therucrovpesoviron seholdexcept | Asfor7el
Creas | The ruNCrION DESIGNATOR Eessteny | Asfor7el
7644 | Thercrowpescwon fevpdateeny | asfrTel

7.7 Characteristics of floating types <float .h> (NR)

This page intentionally left blank.

7.8 Format conversion of integer types <inttypes.h>

Designated constructs:

DCRN Definition Rationale
An INCLUDE-DIRECTIVE that causes The <intt¥pes .h> header Provides further support for
781 inclusion of the <inttypes.h> features prov}ded'by the <.std1'.nt . l':> header andAlhAereby
header. shares.many) ation characteristic of
<stdint.h>.
7.8-2 The typedef-name ismaxdiv_t. As for 7.8-1
7.8.1 Macros for format specifiers
Designated constructs:

DCRN Definition Rationale
7.8.1-1 The MACRO-NAME PRIAN As for 7.8-1
7.8.1-2 The MACRO-NAME PRIALEASTN As for 7.8-1
7.8.1-3 The MACRO-NAME PRIAFASTN As for 7.8-1
7.8.1-4 The MACRO-NAME PRIAMAX As for 7.8-1
7.8.1-5 The MACRO-NAME PRIAPTR As for 7.8-1
7.8.1-6 The MACRO-NAME PRIiN As for 7.8-1
7.8.1-7 The MACRO-NAME PRILLEASTN As for 7.8-1
7.8.1-8 The MACRO-NAME PRIiFASTN As for 7.8-1
7.8.1-9 The MACRO-NAME PRIiMAX As for 7.8-1
7.8.1-10 The MACRO-NAME PRIiPTR As for 7.8-1
7.8.1-11 The MACRO-NAME PRION As for 7.8-1
7.8.1-12 The MACRO-NAME PRIOLEASTN As for 7.8-1
7.8.1-13 The MACRO-NAME PRIOFASTN As for 7.8-1
7.8.1-14 The MACRO-NAME PRIOMAX As for 7.8-1
7.8.1-15 The MACRO-NAME PRIOPTR As for 7.8-1
7.8.1-16 The MACRO-NAME PRIuN As for 7.8-1
7.8.1-17 The MACRO-NAME PRIULEASTN As for 7.8-1
7.8.1-18 The MACRO-NAME PRIUFASTN As for 7.8-1
7.8.1-19 The MACRO-NAME PRIUMAX As for 7.8-1

7.8.1-20 The MACRO-NAME PRIUPTR As for 7.8-1
7.8.1-21 The MACRO-NAME PRIXN As for 7.8-1
7.8.1-22 The MACRO-NAME PRIXLEASTN As for 7.8-1
7.8.1-23 The MACRO-NAME PRIXFASTN As for 7.8-1
7.8.1-24 The MACRO-NAME PRIXMAX As for 7.8-1
7.8.1-25 The MACRO-NAME PRIXPTR As for 7.8-1
7.8.1-26 The MACRO-NAME PRIXN As for 7.8-1
7.8.1-27 The MACRO-NAME PRIXLEASTN As for 7.8-1
7.8.1-28 The MACRO-NAME PRIXFASTN As for 7.8-1
7.8.1-29 The MACRO-NAME PRIXMAX As for 7.8-1
7.8.1-30 The MACRO-NAME PRIXPTR As for 7.8-1
7.8.1-31 The MACRO-NAME SCNAN As for 7.8-1
7.8.1-32 The MACRO-NAME SCNALEASTN As for 7.8-1
7.8.1-33 The MACRO-NAME SCNAFASTN As for 7.8-1
7.8.1-34 The MACRO-NAME SCNAMAX As for 7.8-1
7.8.1-35 The MACRO-NAME SCNAPTR As for 7.8-1
7.8.1-36 The MACRO-NAME SCNiN As for 7.8-1
7.8.1-37 The MACRO-NAME SCNiLEASTN As for 7.8-1
7.8.1-38 The MACRO-NAME SCNiFASTN As for 7.8-1
7.8.1-39 The MACRO-NAME SCNiMAX As for 7.8-1
7.8.1-40 The MACRO-NAME SCNiPTR As for 7.8-1
7.8.1-41 The MACRO-NAME SCNoN As for 7.8-1
7.8.1-42 The MACRO-NAME SCNOLEASTN As for 7.8-1
7.8.1-43 The MACRO-NAME SCNoFASTN As for 7.8-1
7.8.1-44 The MACRO-NAME SCNoMAX As for 7.8-1
7.8.1-45 The MACRO-NAME SCNOoPTR As for 7.8-1
7.8.1-46 The MACRO-NAME SCNuN As for 7.8-1
7.8.1-47 The MACRO-NAME SCNuLEASTN As for 7.8-1
7.8.1-48 The MACRO-NAME SCNuFASTN As for 7.8-1

7.8.1-49

The MACRO-NAME SCNuMAX

As for 7.8-1

7.8.1-50 The MACRO-NAME SCNuPTR As for 7.8-1
7.8.1-51 The MACRO-NAME SCNxN As for 7.8-1
7.8.1-52 The MACRO-NAME SCNXLEASTN As for 7.8-1
7.8.1-53 The MACRO-NAME SCNXFASTN As for 7.8-1
7.8.1-54 The MACRO-NAME SCNXMAX As for 7.8-1
7.8.1-55 The MACRO-NAME SCNXPTR As for 7.8-1

7.8.2 Functions for greatest-width integer types

Designated constructs:

DCRN Definition Rationale

7.8.2-1 The FUNCTION-DESIGNATOR bimaxabs As for 7.8-1
7822 | Therncrowoescwron imexatv | Askersd |
7823 | Therncnowpescwron strtoimax | Asfersl |
7824 | Therncronoesiwron strtowmax | Asfr78d |
7825 | Therncrowoescwron westoimax | Aste7s1 |
7826 | Therncrowoescwron westownax | Asfr781 |

7.9 Alternative spellings <iso646.h>

Designated constructs:

DCRN Definition Rationale
This header may not be supported by
An INCLUDE-DIRECTIVE that causes inclusion of | implementation conforming to earlier version of the
79-1 the <iso646.h> header. base language standard, thereby impairing
PORTABILITY.
7.9-2 The MACRO-NAME and As for 7.9-1
Coaes | Thewscrowe and-eq | Askerol |
Crea | Thewscronawe bitand | Aske7ol |
Coes | Themaceonmwe bitor | Acr7od |
e | Thewscronawe compl | Asfr7od |
Caea | Themacrowmme not | Astr7ed
Ces | Thewscronawe not_eq | Aske791 |
e | Themscronmwe o= | Askr791
Caem0 | Themcronmwe or_eq | Aol |
Cem | Themicrowmme xor | Aol
S | Themcronwe xor_ea | A7l |

7.10 Sizes of integer types <limits.h> (NR)

This page intentionally left blank.

7.11 Localisation

Designated constructs:

DCRN

Definition

Rationale

7.11-1

An INCLUDE-DIRECTIVE that causes inclusion of
the <locale.h> header.

Most aspects of locales are
s L

dent

7.11.1 Locale control

Designated constructs:

DCRN Definition Rationale
7.11.1.1-1 | The FUNCTION-DESIGNATOR setlocale. As for 7.11-1
7.11.2 Numeric formatting convention enquiry
7.11.2.1 The localeconv function
Designated constructs:
DCRN Definition Rationale
7.11.2.1-1 | The FUNCTION-DESIGNATOR localeconv. As for 7.11-1

7.12 Mathematics <math.h>

Designated constructs:

DCRN Definition Rationale
Some of the provisions of C99 make certain
aspects of the mathematical functions significantly
impl. ion-dependent. Further, the

An INCLUDE-DIRECTIVE that causes inclusion of | mathematical functions and macros provided by

7.12-1 the <math . h> header. any particular implementation do not necessarily
exhibit sufficient ACCURACY for critical
applications.

7.12-4 The fype-name £loat_t. As for 7.12-1

7.12-5 The type-name double_t. As for 7.12-1

7.12-6 The MACRO-NAME HUGE_VAL As for 7.12-1

7.12-7 The MACRO-NAME HUGE_VALF As for 7.12-1

7.12-8 The MACRO-NAME HUGE_VALL As for 7.12-1

7.12-9 The MACRO-NAME INFINITY As for 7.12-1

7.12-10 The MACRO-NAME NAN As for 7.12-1

7.12-11 The MACRO-NAME FP_INFINITE As for 7.12-1

7.12-12 The MACRO-NAME FP_NAN As for 7.12-1

7.12-13 The MACRO-NAME FP_NORMAL As for 7.12-1

7.12-14 The MACRO-NAME FP_SUBNORMAL As for 7.12-1

7.12-15 The MACRO-NAME FP_ZERO As for 7.12-1

7.12-16 The MACRO-NAME FP_FAST_FMA As for 7.12-1

7.12-17 The MACRO-NAME FP_FAST_FMAF As for 7.12-1

7.12-18 The MACRO-NAME FP_FAST_FMAL As for 7.12-1

7.12-19 The MACRO-NAME FP_ILOGBO As for 7.12-1

7.12-20 The MACRO-NAME FP_ILOGBNAN As for 7.12-1

7.12-21 The MACRO-NAME MATH_ERRNO As for 7.12-1

7.12-22 The MACRO-NAME MATH_ERREXCEPT As for 7.12-1

7.12-23 The MACRO-NAME math_errhandling As for 7.12-1

7.12.1 Treatment of error conditions (NR)

7.12.2 The FP_CONTRACT pragma

Parasyntax:

FP-CONTRACT-PRAGMA = #pragma STDC FP_CONTRACT on-off-switch ;

Designated constructs:

DCRN Definition Rationale

7.12.2-1 An FP_CONTRACT_PRAGMA. As for 7.12-1

7.12.3 Classification macros

Designated constructs:

DCRN Definition Rationale
7.12.3.1-1 The MACRO-NAME fpclassify As for 7.12-1
7.12.3.2-1 The MACRO-NAME isfinite As for 7.12-1
7.12.33-1 The MACRO-NAME isint As for 7.12-1
7.12.34-1 The MACRO-NAME isnan As for 7.12-1
7.12.3.5-1 The MACRO-NAME isnormal As for 7.12-1
7.12.3.6-1 The MACRO-NAME signbit As for 7.12-1

7.12.4 Trigonometric functions

Designated constructs:

DCRN Definition Rationale

7.12.4.1-1 The FUNCTION-DESIGNATOR acos As for 7.12-1

7.12.4.1-3 The FUNCTION-DESIGNATOR acosl As for 7.12-1

7.12.4.2-1 The FUNCTION-DESIGNATOR asin As for 7.12-1
712422 | TherncrovpesionaTor asing | Asfor7i21l |
712423 | The rncrovpesiovaTor asinl | Asfor7i21l |

The FUNCTION-DESIGNATOR atan As for 7.12-1

7.12.4.3-3 The FUNCTION-DESIGNATOR atanl As for 7.12-1
7.12.44-1 The FUNCTION-DESIGNATOR atan2 As for 7.12-1
712442 | The FUNCTION-DESIGNATOR atan2f | Asfor7i21l |
702443 | The FUNCTION-DESIGNATOR atan2l | . Asfor7i2l |
7.12.4.5-1 The FUNCTION-DESIGNATOR coOS As for 7.12-1

GNATOR cosf

7.12.4.5-3 The FUNCTION-DESIGNATOR cosl As for 7.12-1
7.12.4.6-1 The FUNCTION-DESIGNATOR sin As for 7.12-1
12462 | The FUNCTION-DESIGNATOR sinf | Asfor7it |
702463 | The FUNCTION-DESIGNATOR sinl | Asfor7il |
7.12.4.7-1 The FUNCTION-DESIGNATOR tan As for 7.12-1

7.12.4.7-3 The FUNCTION-DESIGNATOR tanl As for 7.12-1

7.12.5 Hyperbolic functions

Designated constructs:

DCRN

Definition

Rationale

7.12.5.1-1

The FUNCTION-DESIGNATOR acosh

The FUNCTION-DESIGNATOR acoshf

As for 7.12-1

7.12.5.1-3 The FUNCTION-DESIGNATOR acoshl As for 7.12-1
7.12.5.2-1 The FUNCTION-DESIGNATOR asinh As for 7.12-1
712522 | Themwcriovoesowrok asiene | Asfor7izl |
2523 | The FUNCTION-DESIGNATOR asimhl | Asfornizt
7.12.53-1 The FUNCTION-DESIGNATOR atanh As for 7.12-1
712532 | Therwcriovoesowrok atamhe | Asfor7izl |
712533 | The FUNCTION-DESIGNATOR atamhl | | Asforzizt
7.12.54-1 The FUNCTION-DESIGNATOR cosh As for 7.12-1
712542 | Therncrovomowror coshe | Asfor7i2l |
702543 | The runcriovpesiaviTor coshl | . Asforzizt
7.12.5.5-1 The FUNCTION-DESIGNATOR sinh As for 7.12-1
702552 | The wcrovoesowator simme | . Asfor7izl
702553 | The runcriowpesiavaTor simkl | . Asfornizl
7.12.5.6-1 As for 7.12-1
702562 | The rNcriov-pEsiGwaToR tamhe | . Asforzizl
712563 | Therncrovomovror tamhl | Asforzizl |

7.12.6 Exponential and logarithmic functions

Designated constructs:

DCRN Definition Rationale
Crerd | The runcriow-pesiaTor exp | Asfornizt
Creiz | The ruxcrion-DESIGNATOR expE | Asfor7i2l |
2613 | The runcriov-pesiaTor expl | Asforrizl
7.12.6.2-1 The FUNCTION-DESIGNATOR exp2 As for 7.12-1
72622 | The rncriov-pesiowaor exp2€ | . Asfor7izl
712623 | Therncrovomowror exp2l | Asfor7izl |
7.12.6.3-1 The FUNCTION-DESIGNATOR expml As for 7.12-1
2632 | The FUNCTION-DESIGNATOR expmlf | Asfornizt
712633 | The rwcriovoesowaror expmil | Asfor7i2l |
7.12.6.4-1 The FUNCTION-DESIGNATOR frexp As for 7.12-1

The FUNCTION-DESIGNATOR frexpf

7.12.6.4-3 The FUNCTION-DESIGNATOR frexpl As for 7.12-1
7.12.6.5-1 The FUNCTION-DESIGNATOR ilogb As for 7.12-1
7.12.6.5-2 The FUNCTION-DESIGNATOR ilogbf As for 7.12-1

7.12.6.5-3 The FUNCTION-DESIGNATOR ilogbl As for 7.12-1
7.12.6.6-1 The FUNCTION-DESIGNATOR ldexp As for 7.12-1
7.12.6.6-2 The FUNCTION-DESIGNATOR ldexpf As for 7.12-1

The FUNCTION-DESIGNATOR ldexpl

As for 7.12-1

7.12.6.7-1 The FUNCTION-DESIGNATOR log As for 7.12-1
6Tz | The ruxcrio-pEsIGNATOR 1og€ | Asfor7i2l |
2673 | The runcriov-pesiaTor logl | Asforzizl
7.12.6.8-1 The FUNCTION-DESIGNATOR 10gl0 As for 7.12-1
712682 | The rwcriovoesowrok logloe | | Asfor7izl
712683 | The mwcriovoesowrok loglol | Asfor7izl |
7.12.6.9-1 The FUNCTION-DESIGNATOR loglp As for 7.12-1

7.12.6.9-2 The FUNCTION-DESIGNATOR loglpf As for 7.12-1
712693 | Themwcriovoesowrok loglpl | Asfor7izl |
7.12.6.10-1 The FUNCTION-DESIGNATOR log2 As for 7.12-1
7026102 | The runcriovpesiaviTor 1og2€ | Asforzizt
7426103 | The runcrovomsovsror log2l | Asfor7i2l |
7.12.6.11-1 The FUNCTION-DESIGNATOR logb As for 7.12-1
7026112 | The runcriovpesiaviTor logbf | Asforzizt
7026113 | The runcriovpesiaviTor logbl | Asfornizt
7.12.6.12-1 The FUNCTION-DESIGNATOR modf As for 7.12-1

7.12.6.12-3 The FUNCTION-DESIGNATOR mod £l As for 7.12-1
7.12.6.13-1 The FUNCTION-DESIGNATOR scalbn As for 7.12-1
7426132 | The ruxcriovpesioviTor scalbnf | Asfor7izl |
7426133 | The ruxcriovpesiovior sealbnl | Asfor7izl |
7.12.6.13-4 The FUNCTION-DESIGNATOR scalbln As for 7.12-1
7426135 | The runcriov-DESIGNATOR sealblng | Asfor7i2l |
7426136 | The runcriov-DESIGNATOR sealblnl | Asfor7izl |

7.12.7 Power and absolute value functions

Designated constructs:

Rationale

7.12.7.1-3 The FUNCTION-DESIGNATOR cbrtl As for 7.12-1
7.12.7.2-1 The FUNCTION-DESIGNATOR fabs As for 7.12-1
702722 | The runcriovpesiaviror £abse | Asfornizt
712723 | Therncrovomowror gabsl | Asfor7i2l |
7.12.7.3-1 The FUNCTION-DESIGNATOR hypot As for 7.12-1

The FUNCTION-DESIGNATOR hypotl

As for 7.12-1

The FUNCTION-DESIGNATOR pow

As for 7.12-1

7.12.74-3 The FUNCTION-DESIGNATOR powl As for 7.12-1

7.12.7.5-1 The FUNCTION-DESIGNATOR sqrt As for 7.12-1
72752 | Themncrovomowror sazee | Asfor7izl |
72753 | Therncrovosowror sqrel | Asfor7izl |

7.12.8 Error and gamma functions

Designated constructs:

Definition

The FUNCTION-DESIGNATOR er£fl

Rationale

As for 7.12-1

The FUNCTION-DESIGNATOR exrfc

As for 7.12-1

7.12.8.2-3 The FUNCTION-DESIGNATOR erfcl As for 7.12-1
7.12.8.3-1 The FUNCTION-DESIGNATOR lgamma As for 7.12-1
702832 | Theruxcriov-pesiowTor lgammag | . Asforzizt
702833 | Theruxcriov-pesiowTor lgammal | . Asforzizt
7.12.84-1 The FUNCTION-DESIGNATOR tgamma As for 7.12-1
712842 | Theruxcriovprsiovior tgammaf | Asforzi21 |
702843 | The ruxcriov-pESIGMATOR tgammal | . Asforzizl

7129
Designated

Nearest integer functions

constructs:

Rationale

7.12.9.1-3 The FUNCTION-DESIGNATOR ceill As for 7.12-1
7.12.9.2-1 The FUNCTION-DESIGNATOR floor As for 7.12-1
2922 | The FUNCTION-DESIGNATOR €looze | Asfornizt
712923 | Thewcriovoesowror fleorl | Asfor7izl |
7.12.9.3-1 The FUNCTION-DESIGNATOR nearbyint As for 7.12-1
702932 | The ruxcriov-pesiwTor meazbyinte | . Asforzizl

7.12.9.3-3

The FUNCTION-DESIGNATOR nearbyintl

As for 7.12-1

7.12.94-1

7.12.94-3

The FUNCTION-DESIGNATOR rint

The FUNCTION-DESIGNATOR rintl

As for 7.12-1

As for 7.12-1

7.12.9.5-1

The FUNCTION-DESIGNATOR lrint

As for 7.12-1

7.12.9.5-6 The FUNCTION-DESIGNATOR 1lrintl As for 7.12-1

7.12.9.6-1 The FUNCTION-DESIGNATOR round As for 7.12-1
2962 | The FUNCTION-DESIGNATOR oundf | Asfornizt
712963 | Thewcriovoesowror rowndl | Asfor7izl |

7.129.7 -1

The FUNCTION-DESIGNATOR lround

As for 7.12-1

7.12.9.8-3

The FUNCTION-DESIGNATOR truncl

7.12.9.7-6 The FUNCTION-DESIGNATOR 1lroundl As for 7.12-1
7.12.9.8-1 The FUNCTION-DESIGNATOR trunc As for 7.12-1
7.12.9.8-2 The FUNCTION-DESIGNATOR truncf As for 7.12-1

As for 7.12-1

7.12.10 Remainder functions

Designated constructs:

Definition

Rationale

7.12.10.1-3 The FUNCTION-DESIGNATOR fmodl As for 7.12-1
7.12.10.2-1 The FUNCTION-DESIGNATOR remainder As for 7.12-1
7021022 | The ruNcriov-vesiowron remainders | At
7121023 | The runcriov-vesuron remainderi | Astorizl
7.12.10.3-1 The FUNCTION-DESIGNATOR remquo As for 7.12-1
7121032 | The runcriowpsiovon remquot | Attt
7121033 | Theruncriowpesiovror remquol | Atz

7.12.11 Manipulation functions

Designated constructs:

DCRN Definition Rationale
JA2A114 | The roncriovoesiavaros copysign | Attt
IA21112 | The mncriovomsioviron copysigne | Attt
I2A113 | The runcriovosiovron copysignl | At
7.12.11.2-1 The FUNCTION-DESIGNATOR nan As for 7.12-1
a2M122 | Therncrovoesowros nant | Attt
7121123 | Theroncriovoesowros nanl | Attt
7.12.11.3-1 The FUNCTION-DESIGNATOR nextafter As for 7.12-1
7021132 | Theruncriovvescuron nextagters | Astorizl
7I21133 | Theruscriovveswion nextafterl | Attt
7.12.11.4-1 The FUNCTION-DESIGNATOR nexttoward As for 7.12-1
7021142 | The ncriovosionaTon nexttowazae | Attt

7.12.114-3

The FUNCTION-DESIGNATOR nexttowardl

As for 7.12-1

7.12.12 Maximum, minimum and positive difference functions

Designated constructs:

DCRN Definition Rationale
i | The runcrion-DESIGMATOR £dim | Asfor7izi
7021202 | Therucriovbesiovaror €dime | Asforrizl
021203 | Theruncrowpeiowaror fdiml | Asfor7izi
7.12.12.2-1 The FUNCTION-DESIGNATOR fmax As for 7.12-1
7021222 | The rucrion-bsivaror fmaxe | Asforrizl
771721272; The FoNcrioN-DESIGNATOR Fmaxl | A 7sili(;r7 712—1 7777777777777777777
7.12.12.2-1 The FUNCTION-DESIGNATOR fmin As for 7.12-1
7021222 | Theroncriowbesivaror fmine | Asforrizl
7021223 | Therucriowpeionaror fminl | Asfor7izi

7.12.13 Floating multiply-add

Designated constructs:

7.12.13.1-3

Definition

The FUNCTION-DESIGNATOR fmal

Rationale

As for 7.12-1

7.12.14 Comparison macros

Designated constructs:

7.12.14.6-1

Definition

The MACRO-NAME isunordered

Rationale

As for 7.12-1

7.13 Nonlocal jumps <setjmp.h>

Designated constructs:

DCRN Definition Rationale
. . Many aspects of the facilities of <set jmp . h>
An INCLUDE-DIRECTIVE that causes inclusion of the Y p . = Jmp
7.13-1 <sets h> header. are associated with undefined behaviour or can
Jmp- . impairs the ANALYSABILITY of code.
7.13-2 The typedef-name jmpbuf. As for 7.13-1.
7.13.1 Save calling environment
Designated constructs:
DCRN Definition Rationale
A MACRO-INVOCATION Whose MACRO-NAME is
set jmp but whose expansion does not occur as:
® an/F-EXPR Or 2 WHILE-EXPR, OT
e one operand of a RELATIONAL-EXPR or
EQUALITY-EXPR that is an IF-EXPR or a
7.13.1-1 WHILE-EXPR and where the other operand is an Behaviour is undefined.
integer constant expression, or
e the operand of a unary ! operator whose
closest-containing unary-expression is an
IF-EXPR OT @ WHILE-EXPR,
L4 an expresxion-statamenL
7.13.1-2 The MACRO-NAME set jmp. As for 7.13-1 (ANALYSABILITY)
A FUNCTION-DESIGNATOR that denotes set jm
7.13.1-3 e

implemented as a function..

As for 7.13-1 (ANALYSABILITY)

7.13.2 Restore calling environment

Designated constructs:

DCRN

Definition

Rationale

7.13.2-1

The FUNCTION-DESIGNATOR longjmp.

As for 7.13-1

7.14 Signal handling functions <signal.h>

Designated constructs:

DCRN Definition Rationale
714-1 An INCLUDE-DIRECTIVE that causes inclusion of Man'y aspecls_of signals are
thee <signal.h>. header. I ati dependent
7.14-2 The MACRO-NAME SIG_DFL As for 7.14-1.
7.14-3 The MACRO-NAME SIG_ERR As for 7.14-1.
7.14-4 The MACRO-NAME SIG_IGN As for 7.14-1.
7.14-5 The MACRO-NAME SIGABRT As for 7.14-1.
7.14-6 The MACRO-NAME SIGFPE As for 7.14-1.
7.14-7 The MACRO-NAME SIGILL As for 7.14-1.
7.14-8 The MACRO-NAME SIGINT As for 7.14-1.
7.14-9 The MACRO-NAME SIGSEG As for 7.14-1.
7.14.1 Specify signal handling
Designated constructs:
DCRN Definition Rationale
7.14.1-1 The FUNCTION-DESIGNATOR signal. As for 7.14-1.

7.14.2 Send signal

Designated constructs:

‘ 7.14.2-1 ‘The FUNCTION-DESIGNATOR raise.

As for 7.14-1.

7.15 Variable arguments <stdarg.h>

Designated constructs:

DCRN Definition Rationale
7151 A INCLUDE-DIRECTIVE that causes inclusion of the Marl'y aspecdl's.of VJar labli argL::gl:llls;rrzse
’ <stdarg.h>. header. impairs the ANALYSABILITY of code.
7.15-4 The typedef-name va_list. As for 7.15-1.
7.15.1 Variable argument list access macros
7.15.1.1 The va_arg macro
Designated constructs:

DCRN Definition Rationale
7.15.1.1-1 | The MACRO-NAME va_arg As for 7.15-1.
715.1.1-2 A construct lhflt denotes va_arg implemented as As for 7.15-1.

an external object.
7.15.1.2 The va_copy macro
Designated constructs:

DCRN Definition Rationale
7.15.1.2-1 | The MACRO-NAME va_copy As for 7.15-1.
7151.2-2 A construct that §enoles va_copy implemented As for 7.15-1.

as an external object.
7.15.1.3 The va_end macro
Designated constructs:

DCRN Definition Rationale

7.15.1.3-1 | The MACRO-NAME va_end. As for 7.15-1.
7.15.14 The va_start macro
Designated constructs:

DCRN Definition Rationale

7.15.1.4-1 The MACRO-NAME va_start. As for 7.15-1.

7.16 Boolean type and values <stdbool.h>

Designated constructs:

DCRN Definition Rationale

This header and its facilities may not
. . be supported by implementations
7161 An INCLUDE-DIRECTIVE that causes inclusion of the conforming to earlier version of the
<stdbool.h> header. base language standard thereby

impairing PORTABILITY.

7.16-2 The MACRO-NAME bool As for 7.16-1

7.16-3 The MACRO-NAME true As for 7.16-1

7.16-4 The MACRO-NAME false As for 7.16-1

7.16-5 The MACRO-NAME __bool_true_false are_defined As for 7.16-1

7.17 Common definitions <stddef.h>

Designated constructs:

DCRN Definition Rationale

717-1 An INCLUDE-DIRECTIVE that causes inclusion of the S bel
S <stddef.h> header. ee note below.

ANALYSABILITY (implied by rationale

7172 The type-name ptrdiff_t. against use of pointer arithmetic).

Defensive programming (implied by

7.17-3 The type-name size_t. similar rationale for the sizeof operator).

A Implied by rationale for
7.17-4 The type-name wchar_t. P ion-dependent aspects of

wide characters.

7.17-5 The MACRO-NAME NULL. See note below.

7.17-6 The MACRO-NAME of fsetof. Defensive programming.

Note: The <stddef£ . h> header provides very few facilities. Depending on the application there may be reason to
control the use of all such facilities with the exception NULL macro. Accordingly some users may prefer to provide
their own definition of NULL and ban inclusion of <stddef .h>.

7.18 Integer types <stdint.h>

Designated constructs:

DCRN Definition Rationale
718-1 An lNgLUDE—mRECTIVE_lhaL causes the Many fispecls of lh? the types pr?vided by
inclusion of the <stdint . h>. header. <stdint.h>arei depend
7.18.1 Integer types
Designated constructs:
DCRN Definition Rationale
7.18.1.1-1 The identifier intN_t As for 7.18-1
IABAL2 | Theidenifer wineNe | asrris1
7.18.1.2-1 The identifier int_leastN_t (not otherwise specified) As for 7.18-1
718122 | Theideniifer int teasts t | asfrris1 |
718123 | Theidenifer int least16 e | Asrisd |
718124 | Theideniifer ine teast3z € | asorrisi |
718125 | Theidemifer int_leastat | Asrrisd |
718126 | The idenifir wint_leastN_t (nolotherwise specificd) | Asfor7isd |
718127 | Theidemifer wine_teasts e | asorrisi |
718128 | Theideniifer wine leastis e | Asfrrisd |
718129 | Theidemifer wine_least32 € | Asrisd |
AB12A0 | Theidenifior wine leastest | Averisi |
7.18.1.3-1 The identifier int_fastN_t (nototherwise specified) As for 7.18-1

int_ fast8_ t

int_fastl6_t

int_fast32_ t

As for 7.18-1

As for 7.18-1

As for 7.18-1

7.18.14-1 | The identifier intptr_t As for 7.18-1
7a8142 | Theidemifer winepee € | Asrisd |

7.18.1.5-1 The identifier intmax_t As for 7.18-1
718152 | Theidemifer winemax € | asorrisi |

7.18.2 Limits of specified-width integer types

Designated constructs:

DCRN Definition Rationale

7.18.2.1-1 | The MACRO-NAME INTN_MIN As for 7.18-1
718212 | Themickowwe mNeNoax | Acfor7isl |
718213 | Themsckonuws oNeN x| Ator7isl |

7.18.2.2-1 The MACRO-NAME INT_LEASTN_MIN As for 7.18-1
718222 | Themckowuws INT tEASTN Mnx | Ator7isl |
718223 | Themckowune UINT tEASTN Mxx | Actor7isl |

7.18.2.3-1 | The MACRO-NAME INT_FASTN_MIN As for 7.18-1
718232 | Themsckonuws TNT EASTN MAX | Acfor7isl |
718233 | Themsckonuws UINT EASTN M | Ator7isl |

7.18.2.4-1 The MACRO-NAME INTPTR_MIN As for 7.18-1
718242 | Thewcronwe meremewx | AcforTist |
718243 | Themscrowwne umvreTR MAX | Acfor7isl |

7.18.2.5-1 | The MACRO-NAME INTMAX_MIN As for 7.18-1
718252 | Themcronune mNmexwax | Actor7isl |
718253 | Themsckonuns UmNmwx wax | Ator7isl |

7.18.3 Limits of other integer types

Designated constructs:

DCRN Definition Rationale

7.18.3-1 The MACRO-NAME PTRDIFF_MIN As for 7.18-1
71832 | Themscroww: prROTEE MAX | Actor7isl |
74833 | Thewmsckowiws Stc_atowrcwms | Acfor7isl |
a834 | Thewcrowwe ste aowrcomx | AcforTist |
4835 | Themscrowwws szzEwnx | Ator7isl |
R A Astor7isl |
U836 | Themiceowwe wemaRwnx | Acfor7isl |
1836 | Themsceowws woNewrw | Actor7isl |
836 | Themsckowuws wiNr x| Acfor7isl |

7.184 Macros for integer constants

Designated constructs:

DCRN Definition Rationale
7.18.4.1-1 | The MACRO-NAME INTN_C As for 7.18-1
718412 | Themsceowwws vmevc | Actor7isl |
718421 | Themscroniws memaxc | Ator7isl |
718422 | Themscronwme omNmex c | Actor7isl |

7.19 Input/output <stdio.h>

Designated constructs:

DCRN

Definition

Rationale

7.19-1

An include-directive that causes inclusion of the
<stdio.h> header.

Many aspects of input and output are
R ation.d dent

P

7.19.1 Introduction

Designated constructs:

DCRN Definition Rationale

7.19.1-1 The typedef-name FILE. As for 7.19-1

7.19.1-2 The typedef-name fpos_t. As for 7.19-1

7.19.1-3 The MACRO-NAME _IOFBF As for 7.19-1

7.19.1-4 The MACRO-NAME _IOLBF As for 7.19-1

7.19.1-5 The MACRO-NAME _IONBF As for 7.19-1

7.19.1-6 The MACRO-NAME BUFSIZ As for 7.19-1

7.19.1-7 The MACRO-NAME EOF As for 7.19-1

7.19.1-8 The MACRO-NAME FOPEN_MAX As for 7.19-1

7.19.1-9 The MACRO-NAME FILENAME_MAX As for 7.19-1

7.19.1-10 The MACRO-NAME L_tmpnam As for 7.19-1

7.19.1-11 The MACRO-NAME SEEK_CUR As for 7.19-1

7.19.1-12 The MACRO-NAME SEEK_END As for 7.19-1

7.19.1-13 The MACRO-NAME SEEK_SET As for 7.19-1

7.19.1-14 The MACRO-NAME TMP_MAX As for 7.19-1

7.19.1-15 The MACRO-NAME stderr As for 7.19-1

7.19.1-16 The MACRO-NAME stdin As for 7.19-1

7.19.1-17 The MACRO-NAME stdout As for 7.19-1

719.1-18 A construct wh9se E-behaviour contains an access | Effects are i d dent and can
to part of an object of type FILE. be unpredictable.

7.19.1-19 A construct that attempts to copy an object of type | Effects are i d dent and can
FILE. be unpredictable.
A FUNCTION-CALL-EXPRESSION for which the

7.19.1-20 | evaluation of an argument that denotes a file Effects are i d dent

contains a side effect.

7.19.2 Streams (NR)

7.19.3 Files (NR)

7.19.4 Operations on files

Designated constructs:

DCRN Definition Rationale
7.19.4.1-1 The FUNCTION-DESIGNATOR remove As for 7.19-1
A FUNCTION-CALL-EXPRESSION whose
7.19.4.1-2 | FUNCTION-DESIGNATOR is remove and that Behaviour is implementation-defined.
attempts to remove a file that is open.
7.19.4.2-1 The FUNCTION-DESIGNATOR rename As for 7.19-1
A FUNCTION-CALL-EXPRESSION whose
7.19.4.2-2 | FUNCTION-DESIGNATOR is remame and that Behaviour is implementation-defined.
attempts to rename a file to that of a file that
already exists.
7.19.4.3-1 The FUNCTION-DESIGNATOR tmpfile As for 7.19-1
7.19.44-1 The FUNCTION-DESIGNATOR tmpnam As for 7.19-1
7.19.5 File access functions
Designated constructs:
DCRN Definition Rationale
7.19.5-1 The FUNCTION-DESIGNATOR fclose As for 7.19-1
7.19.5-2 The FUNCTION-DESIGNATOR ££lush As for 7.19-1
7.19.5-3 The FUNCTION-DESIGNATOR fopen As for 7.19-1
A FUNCTION-CALL-EXPRESSION whose
7.19.5-4 FUNCTION-DESIGNATOR is fopen and that attempts Behaviour is implementation-defined.
to open a file when eight files are already open.
A FUNCTION-CALL-EXPRESSION whose A £ writing i d mod
7.19.5-5 FUNCTION-DESIGNATOR is £open and that attempts | Sp_ems N wtr.mngjm “PE““ mode are
to open a file in append mode. * i
7.19.5-6 A non-standard mode string. Behaviour is undefined.
7.19.5-7 The FUNCTION-DESIGNATOR freopen As for 7.19-1
A FUNCTION-CALL-EXPRESSION whose
7.19.5.8 FUNCTION-DESIGNATOR is £reopen and that The effects of re-opening with a different mode

attempts to reopen a file in mode other than that in

are implementation-defined.

which it was previously opened.

7.19.5-9 The FUNCTION-DESIGNATOR setbuf As for 7.19-1
7.19.5-10 The FUNCTION-DESIGNATOR setvbuf As for 7.19-1
A FUNCTION-CALL-EXPRESSION that is applied to a
7.19.5-11 wide-oriented stream but whose Behaviour is undefined.
FUNCTION-DESIGNATOR denotes a byte-oriented
function.
A FUNCTION-CALL-EXPRESSION that is applied to a
7.19.5-12 | byte-oriented stream but whose Behaviour is undefined.

FUNCTION-DESIGNATOR denotes a wide-oriented
function.

7.19.6 Formatted input/output functions

Designated constructs:

DCRN Definition Rationale
7.19.6- A format non-standard conversion specifier. Behaviour is undefined.
A format string containing a non-standard Lo
7.19.6- combination of conversion specifiers and flags. Behaviour is undefined.
A multibyte format string that does not both start . .
7.19.6- and end in the initial shift state. Such a construct violates a constraint.
7.19.6- An occurrence of the backspace character within a | Behaviour on a display device may be
format string. unspecified.
7.19.6- An occurrence of: the horizontal tab character Behaviour on a display device may be
within a format string. unspecified.
7.19.6- A construct whose execution causes a printable Behaviour on a display device may be
character to be written when the active position is | unspecified.
at the final position of a line.
7.19.6- An occurrence of: the vertical tab character within | Behaviour on a display device may be
a format string. unspecified.
7.19.6- A FUNCTION-CALL-EXPRESSION Whose
FUNCTION-DESIGNATOR denotes a formatted I/O As for 7.19-1
function and that has no argument-expression-list.
7.19.6- A format string that denotes a null string. Defensive programming.
A format string in which white space characters . .
7.19.6- immediately precede a new-line character. Effects on writing are unspecified.
A FUNCTION-CALL-EXPRESSION Whose
FUNCTION-DESIGNATOR denotes a formatted I/0
7.19.6- function for which the conversion specifiers in the Behaviour is undefined.

format string and the numbers and types of
arguments do not correspond.

A FUNCTION-CALL-EXPRESSION whose
FUNCTION-DESIGNATOR denotes a formatted I/O

7.19.6- function and that attempts to write a text line Behaviour is implementation-defined.
whose length exceeds 254 characters.
A FUNCTION-CALL-EXPRESSION whose
FUNCTION-DESIGNATOR denotes a formatted read o

7.19.6- function that attempts to assign values to Behaviour is undefined.

overlapping objects.

7.19.6- A scanset specifier in which the same character The repeated character is redundant.

occurs more than once.
A scanset specifier containing the — character in

7.19.6- which the value of the character preceding - Behaviour is undefined.

exceeds that of the character that follows.

7.19.6- The FUNCTION-DESIGNATOR fprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR fscanf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR printf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR scanf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR snprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR sprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR sprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vEprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vEscanf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vscanf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vsnprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vsprintf As for 7.19-1

7.19.6- The FUNCTION-DESIGNATOR vsscanf As for 7.19-1

7.19.7 Character input/output functions
Designated constructs:

DCRN Definition Rationale
7.19.7.1-1 The FUNCTION-DESIGNATOR fgetec As for 7.19-1
7.19.7.2-1 The FUNCTION-DESIGNATOR fgets As for 7.19-1
7.19.7.3-1 The FUNCTION-DESIGNATOR fputc As for 7.19-1

7.19.74-1 The FUNCTION-DESIGNATOR fputs As for 7.19-1
7.19.7.5-1 The FUNCTION-DESIGNATOR getec As for 7.19-1
7.19.7.6-1 The FUNCTION-DESIGNATOR getchar As for 7.19-1
7.19.7.7-1 The FUNCTION-DESIGNATOR gets As for 7.19-1
7.19.7.8-1 The FUNCTION-DESIGNATOR putc As for 7.19-1
7.19.7.9-1 The FUNCTION-DESIGNATOR putchar As for 7.19-1
7.19.7.10-1 The FUNCTION-DESIGNATOR puts As for 7.19-1
7.19.7.11-1 The FUNCTION-DESIGNATOR ungetc As for 7.19-1
7.19.8 Direct input/output functions
Designated constructs:

DCRN Definition Rationale
7.19.8.1-1 The FUNCTION-DESIGNATOR fread As for 7.19-1
7.19.8.2-1 The FUNCTION-DESIGNATOR fwrite As for 7.19-1

7.19.9 File positioning functions
Designated constructs:

DCRN Definition Rationale
7.19.9.1-1 The FUNCTION-DESIGNATOR f£getpos As for 7.19-1
7.19.9.2-1 The FUNCTION-DESIGNATOR fseek As for 7.19-1

A FUNCTION-CALL-EXPRESSION whose
7.19.9.2-2 | FUNCTION-DESIGNATOR denotes the fseek function
and that attempts to position to SEEK_END.

Effects are undefined.

7.19.9.3-1 The FUNCTION-DESIGNATOR f£setpos As for 7.19-1
7.19.94-1 The FUNCTION-DESIGNATOR ftell As for 7.19-1

7.19.9.5-1 The FUNCTION-DESIGNATOR rewind As for 7.19-1
7.19.10 Error-handling functions
Designated constructs:

DCRN Definition Rationale

7.19.10.1-1 The FUNCTION-DESIGNATOR clearer As for 7.19-1
7.19.10.2-1 The FUNCTION-DESIGNATOR feof As for 7.19-1

7.19.10.3-1

The FUNCTION-DESIGNATOR ferror

As for 7.19-1

7.19.10.4-1

The FUNCTION-DESIGNATOR perror

As for 7.19-1

7.20 General utilities <stdlib.h>

Designated constructs:

DCRN Definition Rationale

A) CrIvE th Most features provided by this header have
7.20-1 An lN?LUDQ-DlRLCIIVb t_ at cuases characteristics that impair one or more non-functional

inclusion of the <stdlib.h> header. -

attributes.

7.20-4 The typedef-name div_t. By implication from 7.20.6.2-1, 7.20.6.2-2
7.20-5 The typedef-name 1div_t. By implication from 7.20.6.2-1, 7.20.6.2-2
7.20-6 The typedef-name 11div_t. By implication from 7.20.6.2-3
7.20-7 The MACRO-NAME EXIT_FAILURE By implication from 7.20.4-3 and 7.20.4-4
7.20-8 The MACRO-NAME EXIT_SUCCESS By implication from 7.20.4-3 and 7.20.4-4
7.20-9 The MACRO-NAME RAND_MAX By implication from 7.20.2-1.
7.20-10 The MACRO-NAME MB_CUR_MAX :Sum.mrl for m-mub,yle Ch?r aflers '

7.20.1 Numeric conversion functions

Designated constructs:

DCRN Definition Rationale
7.20.1.1-1 The FUNCTION-DESIGNATOR atof
7.20.1.2-1 The FUNCTION-DESIGNATOR atoi
720122 | The runcriovbesiouror atoll
720123 | The runcriov-drsiovaTo atell
7.20.1.3-1 The FUNCTION-DESIGNATOR strtod

7.20.1.3-2 The FUNCTION-DESIGNATOR strtof
720133 | The runcriov-bsioniTor strtold

7.20.1.4-1 The FUNCTION-DESIGNATOR strtol
720042 | The runcriov-besionsTor strtoll
720043 | The runcriov-bsionsTor strtoul

7.20.1.4-4 The FUNCTION-DESIGNATOR strtoull

Since none of these functions is bounded they all carry
the risk of buffer overrun and thereby potentially impair
SECURITY.

7.20.2 Pseudo-random sequence generation functions

Designated constructs:

DCRN Definition Rationale

.) . The FUNCTIONALITY of rand may not be fit for purpose
7.20.2-1 The FUNCTION-DESIGNATOR rand in critical applications.
7.20.2-2 The FUNCTION-DESIGNATOR srand As for 7.20.2-1 by implication.

7.20.3 Memory management functions

Designated constructs:

DCRN Definition Rationale

7.20.3-1 The FUNCTION-DESIGNATOR calloc Useof dynamfs}:i:;}:):iffyn;elpgggye'can impair the
7.20.3-2 The FUNCTION-DESIGNATOR free As for 7.20.3-1

7.20.3-3 The FUNCTION-DESIGNATOR malloc As for 7.20.3-1

7.20.3-4 The FUNCTION-DESIGNATOR realloc As for 7.20.3-1

7.20.4 Communication with the environment

Designated constructs:

DCRN Definition Rationale

7.20.4-1 The FUNCTION-DESIGNATOR abort Comr{mni'cation \;nt h th_? enviiom‘nent is
7.20.4-2 The FUNCTION-DESIGNATOR atexit As for 7.20.4-1

72043 The FUNCTION-DESIGNATOR exit As for 7.20.4-1

7.20.4-4 The FUNCTION-DESIGNATOR _Exit As for 7.20.4-1

7.204-5 The FUNCTION-DESIGNATOR getenv As for 7.20.4-1

7.20.4-6 The FUNCTION-DESIGNATOR system As for 7.20.4-1

7.20.5 Searching and sorting utilities

Designated constructs:

DCRN Definition Rationale

If two elements of the searched array compare as equal,
7.20.5-1 The FUNCTION-DESIGNATOR bsearch wich element is matched is unspecified.

If two elements compare as equal, their order in the
7.20.5-2 The FUNCTION-DESIGNATOR gsort resulting sorted array is unspecified.

7.20.6 Integer arithmetic functions
7.20.6.1 The abs, 1labs and 11labs functions.

Designated constructs:

DCRN Definition

Rationale

7.20.6.1-1 The FUNCTION-DESIGNATOR abs

The FUNCTION-DESIGNATOR labs

7.20.6.1-2 The FUNCTION-DESIGNATOR 1labs

TIME BEHAVIOUR: Absolute value functions are used
very extensively in numerical software where efficiency
is at a premium. The implementation of such functions
as provided by a conforming implementation may not
fast enough for all requirements and users may wish to
control their use accordingly.

7.20.6.2 The div, 1div and 11div functions.

Designated constructs:

DCRN Definition

Rationale

The FUNCTION-DESIGNATOR div

7.20.6.2-1

7.20.6.2-3 The FUNCTION-DESIGNATOR 11div

Aspects of div and 1div are implementation-defined
for implementations conforming to earlier version of the
base language standard, this impairing PORTABILITY.

The 11div function may not be supported by
implementations conforming to earlier version of the
base language standard, this impairing PORTABILITY.

7.20.7 Multibyte/wide character conversion functions

Designated constructs:

DCRN Definition Rationale

7.20.7-1 The FUNCTION-DESIGNATOR mblen SuPpOﬂ. l‘or'wide arf mUI,liby © : hafaclers is
7.20.7-2 The FUNCTION-DESIGNATOR mbtowc As for 7.20.7-1

7.20.7-3 The FUNCTION-DESIGNATOR wctomb As for 7.20.7-1

7.20.8 Multibyte/wide string conversion functions

Designated constructs:

DCRN Definition

Rationale

7.20.8-1 The FUNCTION-DESIGNATOR mbstowcs

Support for wide and multibyte characters is

7.20.8-2 The FUNCTION-DESIGNATOR wcstombs

As for 7.20.8-1

7.21 String handling <string.h>

Designated constructs:

DCRN Definition Rationale
7211 An INCLUDE-DIRECTIVE that cuases inclusion of the Marl'y aSpec:f.Of sirmg hJa nd}l::rg niraey impair
- <string.h>. header. SECURITY.
7.21.1 String function conventions (NR)
7.21.2 Copying functions
Designated constructs:
DCRN Definition Rationale
Behaviour is i ley and is
7.21.2.1-1 The FUNCTION-DESIGNATOR memcpy not bounded thus impairing SECURITY.
o § -~ Behaviour is bounded but may rely on memory
7.21.2.2-1 The FUNCTION-DESIGNATOR memmove management functions thus potentially
impairing SECURITY.
Behaviour is i ley and is
7.21.2.3-1 The FUNCTION-DESIGNATOR strcpy not bounded thus impairing SECURITY.
Behaviour is impl ion d |
7.21.24-1 The FUNCTION-DESIGNATOR strncpy
Note: Implementations of string copying functions may rely on memory management functions. See 7.10.3.

7.21.3 Concatenation functions

Designated constructs:

DCRN Definition Rationale
Behaviour is i tation-dependent and is
7.21.3.1-1 The FUNCTION-DESIGNATOR strcat not bounded thus impairing SECURITY.
Behaviour is bounded but may rely on memory
7.21.3.2-1 The FUNCTION-DESIGNATOR strncat management functions thus potentially impairing

SECURITY.

Note: Implementations of string concatenation functions may rely on memory management functions. See also

7.10.3.

7.21.4 Comparison functions

Designated constructs:

DCRN Definition Rationale
o . -~ Behaviour is not bounded thereby impairing
7.214.1-1 The FUNCTION-DESIGNATOR memcmp SECURITY.
o . -~ Behaviour is not bounded thereby impairing
7.214.2-1 The FUNCTION-DESIGNATOR strcmp SECURITY.
7.214.3-1 The FUNCTION-DESIGNATOR strcoll The strcoll function is locale-dependent.
721.44-1 Other things being equal the st rnemp function
o The FUNCTION-DESIGNATOR strncmp should be preferred to the mememp function
because of stronger type checking.
7.21.4.5-1 The FUNCTION-DESIGNATOR strxfrm The strxfrm function is locale-dependent.
7.21.5 Search functions
Designated constructs:
DCRN Definition Rationale
The use of void parameters means that the
7.21.5.1-1 The FUNCTION-DESIGNATOR memchr memchr function is not type-safe and its use
impairs ANALYZABILITY.
Behaviour is not bounded thereby potentially
7.21.5.2-1 The FUNCTION-DESIGNATOR strchr impairing SECURITY.
o § - Behaviour is not bounded thereby potentially
7.21.5.3-1 The FUNCTION-DESIGNATOR strecspn impairing SECURITY.
o § - Behaviour is not bounded thereby potentially
7.21.54-1 The FUNCTION-DESIGNATOR strpbrk impairing SECURITY.
Behaviour is not bounded thereby potentially
7.21.5.5-1 The FUNCTION-DESIGNATOR strrchr impairing SECURITY.
o . - Behaviour is not bounded thereby potentially
7.21.5.6-1 The FUNCTION-DESIGNATOR strspn impairing SECURITY.
o . - Behaviour is not bounded thereby potentially
7.21.5.7-1 The FUNCTION-DESIGNATOR strstr impairing SECURITY.
o . - Behaviour is not bounded thereby potentially
7.21.58-1 The FUNCTION-DESIGNATOR strtok impairing SECURITY.

7.21.6 Miscellaneous functions

Designated constructs:

DCRN Definition Rationale

The use of void parameters means that the
7.21.6.1-1 The FUNCTION-DESIGNATOR memset memchr function is not type-safe and its use

impairs ANALYZABILITY.

The strerror function is
7.21.6.2-1 The FUNCTION-DESIGNATOR strerror . ation-d L

P P

Behaviour is not bounded thereby potentiall

7.21.6.3-1 The FUNCTION-DESIGNATOR strlen v P Y

impairing SECURITY.

7.22 Type-generic math <tgmath.h>

Designated constructs:

DCRN Definition Rationale
Several aspects of mathematical functions are
implementation-defined and mathematical
7221 An INCLUDE-DIRECTIVE that causes inclusion of the | functions may not exhibit sufficient
<tgmath.h> header. ACCURACY for critical numerical applications.

7.22-2 The MACRO-NAME @COS As for 7.22-1

7.22-3 The MACRO-NAME asin As for 7.22-1

7.22-4 The MACRO-NAME atan As for 7.22-1

7.22-5 The MACRO-NAME acosh As for 7.22-1

7.22-6 The MACRO-NAME a@asinh As for 7.22-1

7.22-7 The macro-NAME atanh As for 7.22-1

7.22-8 The MACRO-NAME COS As for 7.22-1

7.22-9 The MACRO-NAME Sin As for 7.22-1

7.22-10 The MACRO-NAME tan As for 7.22-1

7.22-11 The MACRO-NAME cOSh As for 7.22-1

7.22-12 The MACRO-NAME Sinh As for 7.22-1

7.22-13 The mMAcro-NAME tanh As for 7.22-1

7.22-14 | The MACRO-NAME €XP As for 7.22-1

7.22-15 The MACRO-NAME 1OQG As for 7.22-1

7.22-16 The MACRO-NAME POW As for 7.22-1

7.22-17 | The MACRO-NAME STt As for 7.22-1

7.22-18 The macro-NnavE fabs . As for 7.22-1

7.22-19 The MACRO-NAME atan2 As for 7.22-1

7.22-20 The MACRO-NAME cbrt As for 7.22-1

7.22-21 The MACRO-NAME ceil As for 7.22-1

7.22-22 The MACRO-NAME copysign As for 7.22-1

7.22-23 The MACRO-NAME erf As for 7.22-1

7.22-24 The MACRO-NAME exp2 As for 7.22-1

7.22-25 The MACRO-NAME expml As for 7.22-1
7.22-26 The MACRO-NAME £dim As for 7.22-1
7.22-27 The MACRO-NAME £loor As for 7.22-1
7.22-28 The MACRO-NAME fma As for 7.22-1
7.22-29 The MACRO-NAME £max As for 7.22-1
7.22-30 The MACRO-NAME fmin As for 7.22-1
7.22-31 The MACRO-NAME £mod As for 7.22-1
7.22-32 The MACRO-NAME frexp As for 7.22-1
7.22-33 The MACRO-NAME hypot As for 7.22-1
7.22-34 The MACRO-NAME ilogb As for 7.22-1
7.22-35 The MACRO-NAME ldexp As for 7.22-1
7.22-36 The MACRO-NAME lgamma As for 7.22-1
7.22-37 The MACRO-NAME 1llrint As for 7.22-1
7.22-38 The MACRO-NAME 1lround As for 7.22-1
7.22-39 The MACRO-NAME 1ogl10 As for 7.22-1
7.22-40 The MACRO-NAME loglp As for 7.22-1
7.22-41 The MACRO-NAME log2 As for 7.22-1
7.22-42 The MACRO-NAME logb As for 7.22-1
7.22-43 The MACRO-NAME lrint As for 7.22-1
7.22-44 The MACRO-NAME lround As for 7.22-1
7.22-45 The MACRO-NAME nearbyint As for 7.22-1
7.22-46 The MACRO-NAME nextafter As for 7.22-1
7.22-47 The MACRO-NAME nexttoward As for 7.22-1
7.22-48 The MACRO-NAME remainder As for 7.22-1
7.22-49 The MACRO-NAME remquo As for 7.22-1
7.22-50 The MACRO-NAME rint As for 7.22-1
7.22-51 The MACRO-NAME round As for 7.22-1
7.22-52 The MACRO-NAME scalbn As for 7.22-1
7.22-53 The MACRO-NAME scalbln As for 7.22-1

7.22-54

The MACRO-NAME tgamma

As for 7.22-1

7.22-55

The MACRO-NAME trunc

As for 7.22-1

7.23 Date and time <time.h>

Designated constructs:

DCRN Definition Rationale
723.1 An INCLUDE-DIRECTIVE that causes inclusion of the t[‘ime measur§men1 is
<time.h> header. 1 ation-dependent.
7.23.1 Components of time
Designated constructs:

DCRN Definition Rationale

7.23-1 The MACRO-NAME CLOCKS_PER_SEC As for 7.23-1

7.23-2 The typedef-name clock_t As for 7.23-1

7.23-3 The typedef-name time_t As for 7.23-1

7.23-4 The struct-or-union-specifier struct tm As for 7.23-1

7.23.2 Time manipulation functions
Designated constructs:

DCRN Definition Rationale
7.23.2.1-1 The FUNCTION-DESIGNATOR clock As for 7.23-1
7.23.2.2-1 The FUNCTION-DESIGNATOR difftime As for 7.23-1
7.23.23-1 The FUNCTION-DESIGNATOR mktime As for 7.23-1
7.23.24-1 The FUNCTION-DESIGNATOR time As for 7.23-1

7.23.3 Time conversion functions
Designated constructs:

DCRN Definition Rationale
7.23.3.1-1 The FUNCTION-DESIGNATOR asctime As for 7.23-1
7.23.3.2-1 The FUNCTION-DESIGNATOR ctime As for 7.23-1
7.23.33-1 The FUNCTION-DESIGNATOR gmt ime As for 7.23-1
7.23.34-1 The FUNCTION-DESIGNATOR localtime As for 7.23-1

7.23.3.5-1

The FUNCTION-DESIGNATOR strftime

7.24 Extended multibyte and wide character utilities <wchar .h>

Designated constructs:

DCRN Definition Rationale

An INCLUDE-DIRECTIVE that cuases inclusion of the | Wide character support is
P o d

7.24-1 <wchar.h>. header. a

7.24.1 Introduction

Designated constructs:

DCRN Definition Rationale

7.24.1-1 The typedef-name mbstate_t As for 7.24-1
7.24.1-2 The typedef-name wint_t As for 7.24-1
7.24.1-3 The MACRO-NAME weof As for 7.24-1

7.24.2 Formatted wide character input/output functions

Designated constructs:

DCRN Definition Rationale
7.24.2-1 The FUNCTION-DESIGNATOR fwprintf As for 7.24-1
7.24.2-2 The FUNCTION-DESIGNATOR fwscanf As for 7.24-1
7.24.2-3 The FUNCTION-DESIGNATOR swprintf As for 7.24-1
7.24.2-4 The FUNCTION-DESIGNATOR swscanf As for 7.24-1
7.24.2-5 The FUNCTION-DESIGNATOR vEwprintf As for 7.24-1
7.24.2-6 The FUNCTION-DESIGNATOR vEwscanf As for 7.24-1
7.24.2-7 The FUNCTION-DESIGNATOR vswprintf As for 7.24-1
7.24.2-8 The FUNCTION-DESIGNATOR vswscanf As for 7.24-1
7.24.2-9 The FUNCTION-DESIGNATOR vwprint£ As for 7.24-1

7.24.2-10 The FUNCTION-DESIGNATOR vwscanf As for 7.24-1
7.24.2-11 The FUNCTION-DESIGNATOR wprintf As for 7.24-1
7.24.2-12 The FUNCTION-DESIGNATOR wscanf As for 7.24-1

7.24.3 Wide character input/output functions

Designated constructs:

DCRN Definition Rationale
7.24.3-1 The FUNCTION-DESIGNATOR f£getwc As for 7.24-1
7.24.3-2 The FUNCTION-DESIGNATOR f£getws As for 7.24-1
7.24.3-3 The FUNCTION-DESIGNATOR fputwc As for 7.24-1
7.24.3-4 The FUNCTION-DESIGNATOR fputws As for 7.24-1
7.24.3-5 The FUNCTION-DESIGNATOR fwide As for 7.24-1
7.24.3-6 The FUNCTION-DESIGNATOR getwc As for 7.24-1
7.24.3-7 The FUNCTION-DESIGNATOR getwchar As for 7.24-1
7.24.3-8 The FUNCTION-DESIGNATOR putwe As for 7.24-1
7.24.3-9 The FUNCTION-DESIGNATOR putwchar As for 7.24-1
7.24.3-10 The FUNCTION-DESIGNATOR ungetwc As for 7.24-1
7.244 General wide string utilities
7.24.4.1 Wide string numeric conversion functions
Designated constructs:
DCRN Definition Rationale
7.244.1-1 The FUNCTION-DESIGNATOR westod As for 7.24-1
””””””””” Asfor7odl
The FUNCTION-DESIGNATOR westold | 1-\-5_ lo; -7-4_2-4-—_1 ------------------
The FUNCTION-DESIGNATOR wcstol As for 7.24-1
" he ncriovpesiovaTor westoll | Asforoal
© TherwcriovoesiowoR westoul | Asforroat
724417 | TherncriovpEsGwToR westoull | Asfor7odl
7.24.4.2 Wide string copying functions
Designated constructs:
DCRN Definition Rationale
7.24.4.2-1 The FUNCTION-DESIGNATOR WCScpy As for 7.24-1
7.244.2-2 The FUNCTION-DESIGNATOR WCSNcpy As for 7.24-1
7.24.4.2-3 The FUNCTION-DESIGNATOR wmemcpy As for 7.24-1
7.244.2-4 The FUNCTION-DESIGNATOR wmemmove As for 7.24-1

7.24.4.3 Wide string concatenation functions

Designated constructs:

DCRN Definition Rationale
7.244.3-1 The FUNCTION-DESIGNATOR wcscat As for 7.24-1
7.24.4.3-2 The FUNCTION-DESIGNATOR wesncat As for 7.24-1

7.24.44 Wide string comparison functions
Designated constructs:

DCRN Definition Rationale
7.24.4.4-1 The FUNCTION-DESIGNATOR wcscmp As for 7.24-1
7.244.4-2 The FUNCTION-DESIGNATOR wescoll As for 7.24-1
7.24.4.4-3 The FUNCTION-DESIGNATOR wesncmp As for 7.24-1
7.244.4-4 The FUNCTION-DESIGNATOR wesxfrm As for 7.24-1
7.24.44-5 The FUNCTION-DESIGNATOR wmemcmp As for 7.24-1

7.24.4.5 Wide string search functions
Designated constructs:

DCRN Definition Rationale
7.244.5-1 The FUNCTION-DESIGNATOR weschr As for 7.24-1
7.24.4.5-2 The FUNCTION-DESIGNATOR Wcscspn As for 7.24-1
7.244.5-3 The FUNCTION-DESIGNATOR wesrchr As for 7.24-1
7.244.5-4 The FUNCTION-DESIGNATOR wesspn As for 7.24-1
7.244.5-5 The FUNCTION-DESIGNATOR Wwcsstr As for 7.24-1
7.244.5-6 The FUNCTION-DESIGNATOR wecstok As for 7.24-1
7.244.5-7 The FUNCTION-DESIGNATOR wmemchr As for 7.24-1

7.24.4.6 Miscellaneous functions
Designated constructs:

DCRN Definition Rationale
7.24.4.6-1 The FUNCTION-DESIGNATOR wcslen As for 7.24-1
7.24.4.6-2 The FUNCTION-DESIGNATOR wmemset As for 7.24-1

7.24.5 Wide character time conversion functions

Designated constructs:

DCRN Definition Rationale

7.24.5-1 The FUNCTION-DESIGNATOR wesftime As for 7.24-1

7.24.6 Extended multibyte/wide character conversion utilities

7.24.6.1 Single byte/wide character conversion utilities

Designated constructs:

DCRN Definition Rationale
7.24.6.1-1 The FUNCTION-DESIGNATOR btowc As for 7.24-1
7.24.6.1-2 The FUNCTION-DESIGNATOR wctob As for 7.24-1

7.24.6.2 Conversion state functions

Designated constructs:

DCRN Definition Rationale

7.24.6.2-1 The FUNCTION-DESIGNATOR mbsinit As for 7.24-1

7.24.6.3 Restartable multibyte/wide character conversion functions

Designated constructs:

DCRN Definition Rationale
7.24.6.3-1 The FUNCTION-DESIGNATOR mbrlen As for 7.24-1
7.24.6.3-2 The FUNCTION-DESIGNATOR mbrtowc As for 7.24-1
7.24.6.3-3 The FUNCTION-DESIGNATOR wertomb As for 7.24-1

7.24.6.4 Restartable multibyte/wide string conversion functions

Designated constructs:

DCRN Definition Rationale

7.24.6.4-1 The FUNCTION-DESIGNATOR mbsrtombs As for 7.24-1

7.24.6.4-2 The FUNCTION-DESIGNATOR wcsrtombs As for 7.24-1

7.25 Wide character classification functions <wctype.h>

Designated constructs:

DCRN

Definition

Rationale

7.25-1

An INCLUDE-DIRECTIVE that causes inclusion of the
<wctype . h> header.

Support for

wide characters is

ati d dent

P

7.25.1 Introduction

Designated constructs:

DCRN Definition Rationale
7.25.1-1 The typedef-name wetrans_t As for 7.25-1
7.25.1-2 The typedef-name wetype_t As for 7.25-1

7.25.2 Wide character classification utilities

7.25.2.1 Wide character classification functions

Designated constructs:

DCRN Definition Rationale
7.25.2.1.1-1 The FUNCTION-DESIGNATOR iswalnum As for 7.25-1
7.25.2.1.2-1 The FUNCTION-DESIGNATOR iswalpha As for 7.25-1
7.25.2.1.3-1 The FUNCTION-DESIGNATOR iswblank As for 7.25-1
7.25.2.1.4-1 The FUNCTION-DESIGNATOR iswentrl As for 7.25-1
7.25.2.1.5-1 The FUNCTION-DESIGNATOR iswdigit As for 7.25-1
7.25.2.1.6-1 The FUNCTION-DESIGNATOR iswgraph As for 7.25-1
7.25.2.1.7-1 The FUNCTION-DESIGNATOR iswlower As for 7.25-1
7.25.2.1.8-1 The FUNCTION-DESIGNATOR iswprint As for 7.25-1
7.25.2.1.9-1 The FUNCTION-DESIGNATOR iswpunct As for 7.25-1

7.25.2.1.10-1 The FUNCTION-DESIGNATOR iswspace As for 7.25-1
7.25.2.1.11-1 The FUNCTION-DESIGNATOR iswupper As for 7.25-1
7.25.2.1.12-1 The FUNCTION-DESIGNATOR iswxdigit As for 7.25-1

7.25.2.2 [Extensible wide character classification functions

Designated constructs:

DCRN Definition Rationale
7.25.2.2.1-1 The FUNCTION-DESIGNATOR iswctype As for 7.25-1
7.25.2.2.2-1 The FUNCTION-DESIGNATOR wctype As for 7.25-1
7.25.3 Wide character case mapping utilities
7.25.3.1 Wide character case mapping functions
Designated constructs:

DCRN Definition Rationale
7.25.3.1.1-1 The FUNCTION-DESIGNATOR towlower As for 7.25-1
7.25.3.1.2-1 The FUNCTION-DESIGNATOR towupper As for 7.25-1
7.25.3.2 Extensible wide character case mapping functions
Designated constructs:

DCRN Definition Rationale
7.25.3.2.1-1 The FUNCTION-DESIGNATOR towctrans As for 7.25-1

7.25.3.2.2-1 The FUNCTION-DESIGNATOR wctrans As for 7.25-1

7.26 Future library directions

7.26.1 Complex arithmetic <complex.h>

Designated constructs:

An identifier that is any of the following:

DCRN Identifier

Rationale

7.26.1-1 cerf

This name may be added to the declarations in the <complex.h> header.
By avoiding its use in user-written code, users reduce the risk that programs
will behave differently under implementations that comply with future
revisions of the language standard. PORTABILITY

7.26.1-2 cerff

As for 7.26.1-1

7.26.1-3 cerfl

As for 7.26.1-1

7.26.1-4 cerfc

As for 7.26.1-1

7.26.1-5 cerfcf

As for 7.26.1-1

7.26.1-6 cerfcl

As for 7.26.1-1

7.26.1-7 cexp2

As for 7.26.1-1

7.26.1-8 cexp2f

As for 7.26.1-1

7.26.1-9 cexp2l

As for 7.26.1-1

7.26.1-10 cexpml

As for 7.26.1-1

7.26.1-11 cexpmlf

As for 7.26.1-1

7.26.1-12 cexpmll

As for 7.26.1-1

7.26.1-13 clogl0

As for 7.26.1-1

7.26.1-14 | cloglOf

As for 7.26.1-1

7.26.1-15 cloglOl

As for 7.26.1-1

7.26.1-16 | cloglp

As for 7.26.1-1

7.26.1-17 cloglpf

As for 7.26.1-1

7.26.1-18 | cloglpl

As for 7.26.1-1

726.1-19 | clog2

As for 7.26.1-1

7.26.1-20 | clog2f

As for 7.26.1-1

7.26.1-21 clog2l

As for 7.26.1-1

7.26.1-22 | clgamma

As for 7.26.1-1

7.26.1-23 clgammaf

As for 7.26.1-1

7.26.1-24 clgammal

As for 7.26.1-1

7.26.1-25 | ctgamma

As for 7.26.1-1

7.26.1-26 ctgammaf

As for 7.26.1-1

7.26.1-27 ctgammal

As for 7.26.1-1

7.26.2 Character handling <ctype .

Designated constructs:

DCRN Definition

Rationale

An identifier that begins with
is or to followed by a
lowercase letter.

7.26.2-1

Function names that begin in this manner may be added to the
<ctype. h> header. By avoiding use of the specified identifiers in
user-written code, users reduce the risk that programs will behave
differently under implementations that comply with future revisions
of the language standard. (PORTABILITY)

Note: Since, similar functions whose names begin in a similar manner may also be added to the <wctype . h>
header (7.26.13), DCRN 7.26.2-1 serves for both cases.

7.26.3 Errors <errno.h>

Designated constructs:

DCRN Definition

Rationale

An identifier that begins with
E and a digit or E and an
uppercase letter.

7.26.3-1

Macro names that begin in this manner may be added to the
<errno.h> header. By avoiding use of the specified identifiers in
user-written code, users reduce the risk that programs will behave
differently under implementations that comply with future revisions
of the language standard. (PORTABILITY)

7.26.4 Format conversion of integer

Designated constructs:

types <inttypes.h>

DCRN Definition Rationale
Macros names that begin in this manner may be added to the
72641 An identifier that begins with <inttypes.h> header. By avoiding use of the specified

PRI or SCN followed by any
lowercase letter or X.

identifiers in user-written code, users reduce the risk that programs
will behave differently under implementations that comply with
future revisions of the language standard. (PORTABILITY)

7.26.5 Localisation <locale.h>

Designated constructs:

DCRN Definition Rationale
Macro names that begin in this manner may be added to the
7.26.5-1 An identifier that begins with <locale.h> header. By avoiding use of the specified identifiers

LC_ followed by an uppercase
letter.

in user-written code, users reduce the risk that programs will behave
differently under implementations that comply with future revisions
of the language standard. (PORTABILITY)

7.26.6 Signal handling <signal.h>

Designated constructs:

DCRN Definition

Rationale

An identifier that begins with
7.26.6-1 SIG or SIG_ followed by an
uppercase letter.

Macro names that begin in this manner may be added to the
<locale.h> header. By avoiding use of the specified identifiers
in user-written code, users reduce the risk that programs will behave
differently under implementations that comply with future revisions
of the language standard. (PORTABILITY)

7.26.7 Boolean types and values <stdbool.h>

Designated constructs:

DCRN Definition

Rationale

Any of the MACRO-NAME

7.26.7-1 bool, true or false.

The ability to define and perhaps then redefine the macros bool,
true and false is an obsolescent feature. Avoidance of

constructs that effect such definitions or redefinitions reduces the
risk that a program will behave differently under implementations
that comply with future revisions of the standard. (PORTABILITY)

7.26.8 Integer types <stdint .h>

Designated constructs:

DCRN Definition

Rationale

An identifier that begins with

7.26.8-1 int oruint and ends in _t.

Typedef names that begin and end in this manner may be added to
the <stdint .h> header. By avoiding use of the specified
identifiers in user-written code, users reduce the risk that programs
will behave differently under implementations that comply with
future revisions of the language standard. (PORTABILITY)

An identifier that begins with
7.26.8-2 INT or UINT and ends with
_MAX, MINor_C.

Macro names that begin and end in this manner may be added to the

<stdint . h> header. By avoiding use of the specified identifiers

in user-written code, users reduce the risk that programs will behave

differently under implementations that comply with future revisions
of the language standard. (PORTABILITY)

7.26.9 Input/output <stdio.h>

Designated constructs:

DCRN Definition

Rationale

A FUNCTION-DESIGNATOR
denoting the ungetc function
at a point where the file
position indicator is zero.

7.26.9-1

Such usage has been designated an obsolescent feature. Its
occurrence in user-written code increases the risk that a program
may fail under implementations that conform to future revisions of
the language standard. (PORTABILITY)

7.26.10 General utilities <stdlib.h>

Designated constructs:

DCRN Definition Rationale

Function names that begin in this manner may be added to the

An identifier that begins with | <stdlib.h> header. By avoiding use of the specified identifiers
7.26.10-1 str, followed by a lowercase | in user-written code, users reduce the risk that programs will behave
letter. differently under implementations that comply with future revisions
of the language standard. (PORTABILITY)

Note: Since, similar functions whose names begin in a similar manner may also be added to the <string.h>
header, DCRN 7.26.10-1 serves for both cases.

7.26.11 String handling <string.h>

Designated constructs:

DCRN Definition Rationale

Function names that begin in this manner may be added to the

An identifier that begins with <string.h> header. By avoiding use of the specified identifiers
mem followed by a lowercase | in user-written code, users reduce the risk that programs will behave
letter. differently under implementations that comply with future revisions
of the language standard. (PORTABILITY)

7.26.11-1

7.26.12 Extended multibyte and wide character utilities <wchar.h>

Designated constructs:

DCRN Definition Rationale

Function names that begin in this manner may be added to the

An identifier that begins with | <wchar.h> header. By avoiding use of the specified identifiers in
7.26.12-1 | wes, followed by a lowercase | user-written code, users reduce the risk that programs will behave
letter. differently under implementations that comply with future revisions
of the language standard. (PORTABILITY)

Note: Since, similar functions whose names begin in a similar manner may also be added to the <string.h>
header, DCRN 7.26.12-1 serves for both cases.

7.26.13 Wide character classification and mapping utilities <wctype . h>
Designated constructs:
See 7.26.2.

8 Annex A - Orthosyntax and Parasyntax Summary

8.1 Lexical grammar

8.1.1 Lexical elements

Orthosyntax:

token

preprocessing-token

Parasyntax:
LETTER

WORD-TOKEN

8.1.2 Keywords
Orthosyntax:
keyword =

8.1.3 Identifiers
Orthosyntax:

identifier

identifier-nondigit

keyword
identifier
constant
string-literal
punctuator |

header-name

identifier

pp-number

character-constant

string-literal

operator

punctuator

each non-white-space character that cannot be one of the
above ;

= identifier-nondigit \ _;

= LETTER
WORD-TOKEN < LETTER;

auto | break | case | char | const | continue |
default | do | double | else | enum | extern |

float | for | goto | if | inline | int | long |
register | restrict | return | short | signed |
sizeof | static | struct | switch | typedef |
union | unsigned | void | volatile | while | _Bool |
_Complex | _Imaginary;

identifier-nondigit
identifier < identifier-nondigit
identifier < digit

_lalblecldlelflglhliljlkllim
nlolplglrlsltliulviwlxlylz
AIBICIDIEIFIGIHIIIJIKILIM
NIOIPIQIRISITIUIVIWIXIYI|Z

digit

0111213141516171819;

8.1.4 Universal character names

Orthosyntax:
universal-character-name = \u < hex-quad
\U < hex-quad ;
hex-quad = hexadecimal-digit < hexadecimal-digit <

8.1.5 Constants
Orthosyntax:

constant

Orthosyntax:

integer-constant

decimal-constant

octal-constant

hexadecimal-constant

hexadecimal-constant
nonzero-digit
octal-digit

hexadecimal-digit

integer-suffix

unsigned-suffix

long-suffix

hexadecimal-digit < hexadecimal-digit ;

floating-constant
integer-constant
enumeration-constant
character-constant

decimal-constant < [integer-suffix |
octal-constant < [integer-suffix]
hexadecimal-constant < [integer-suffix] ;

= nonzero-digit
decimal-constant < digit ;

= 0
| octal-constant < octal-digit ;

= hexadecimal-prefix < hexadecimal-digit
| hexadecimal-constant < hexadecimal-digit ;

= 0x | 0X;
= 11213141516171819;

0l11121314151617;

|
PR
wo N
now
oe s
Mo o
[T

unsigned-suffix < [long-suffix]
unsigned-suffix < long-long suffix
long-suffix < [unsigned-suffix]
long-long-suffix < [unsigned-suffix] ;

ul U;

1|L;

long-long-suffix = 11 | LL;

Orthosyntax:

Sfloating-constant =

decimal-floating-constant =

hexadecimal-floating-constant =

[fractional-constant =

exponent-part =

sign =

digit-sequence =

hexadecimal-fractional-constant

binary-exponent-part

hexadecimal-digit-sequence =

Sfloating-suffix

Orthosyntax:

decimal-floating-constant
hexadecimal-floating-constant ;

fractional-constant
< [exponent-part | < [floating-suffix]
digit-sequence < exponent-part < [floating-suffix] ;

hexadecimal-prefix

< hexadecimal-fractional-constant

< binary-exponent-part

< [floating-suffix]
hexadecimal-prefix

< hexadecimal-digit-sequence

< binary-exponent-part

< [floating-suffix] ;

[digit-sequence | < . < digit-sequence
digit-sequence ;

e < [sign] < digit-sequence
E < [sign] < digit-sequence ;

+ 1=

digit
digit-sequence < digit ;
= [hexadecimal-digit-sequence | <
< hexadecimal-digit-sequence
hexadecimal-digit-sequence < . ;

= p < [sign] < digit-sequence
I P < [sign] < digit-sequence ;

hexadecimal-digit
hexadecimal-digit-sequence < hexadecimal-digit ;

= fI1IFIL;

enumeration-constant = identifier ;

Orthosyntax:

character-constant =

character-constant =

Y < c-char-sequence < ' ;
L < ' < c-char-sequence < ' ;

' < c-char-sequence < '
L < ' < c-char-sequence < ' ;

c-char-sequence = c-char
c-char-sequence < c-char;

c-char = escape-sequence
any member of the source character set except the
single-quote ', backslash \, or new-line character ;

simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name |,

escape-sequence

N IE\N"IT\N?21\\I\al\b
\El\nl\cl\t!|\v ;

simple-escape-sequence

\ < octal-digit
\ < octal-digit < octal-digit
\ < octal-digit < octal-digit < octal-digit ;

()ctal-escape-sequem'e

hexadecimal-escape-sequence = \x < hexadecimal-digit
| hexadecimal-escape-sequence < hexadecimal-digit ;

Parasyntax:
character-constant = INTEGER-CHARACTER-CONSTANT

| WIDE-CHARACTER-CONSTANT
INTEGER-CHARACTER-CONSTANT = Y < c-char-sequence < ' ;
WIDE-CHARACTER-CONSTANT = L < ' < c-char-sequence < ' ;
VALUE-ESCAPE-SEQUENCE = escape-sequence

& OCT-OR-HEX-ESCAPE-SEQUENCE ;
OCT-OR-HEX-ESCAPE-SEQUENCE = \ < OCTAL-ESC-DIGITS

I \ < HEXADECIMAL-ESC-DIGITS ;
OCTAL-ESC-DIGITS octal-digit
octal-digit < octal-digit
octal-digit < octal-digit < octal-digit ;

HEXADECIMAL-ESC-DIGITS = hexadecimal-digit
HEXADECIMAL-ESC-DIGITS < hexadecimal-digit ;

8.1.6 String literals
Orthosyntax:
string-literal = " < [s-char-sequence] < "

L" < [s-char-sequence] < " ;

s-char-sequence = s-char

s-char =
Parasyntax:
CHARACTER-STRING-LITERAL

WIDE-STRING-LITERAL

8.1.7 Punctuators

Orthosyntax:
punctuator = [
I ~ |
|
I >>=
| %:%
Parasyntax:

SUBSTITUTE-PUNCTUATOR
8.1.8 Header names

Orthosyntax:

header-name =

h-char-sequence =

h-char =

g-char-sequence =

q-char =

Parasyntax:

STD-HEADER-NAME
USER-HEADER-NAME
STD-HU-CHAR-SEQUENCE

STD-HU-BEFORE-PERIOD

STD-HU-CHAR

s-char-sequence < s-char;

escape-sequence
any member of the source character set except the

double-quote ", backslash \, or new-line character ;

= " < [s-char-sequence] < " ;

L" < [s-char-sequence] < " ;

= <: |l >l <% 1% | %: 1 %:%: ;

< < h-char-sequence < >
" < g-char-sequence < " ;

h-char
h-char-sequence < h-char;

any member of the source character set
except the new-line character and >

q-char
g-char-sequence < q-char

any member of the source character set
except the new-line character and "

= < < STD-HU-CHAR-SEQUENCE < >
= " < STD-HU-CHAR-SEQUENCE < " ;
= STD-HU-BEFORE-PERIOD < . < LETTER ;

= STD-HU-CHAR & LETTER

STD-HU-BEFORE-PERIOD < STD-HU-CHAR

= LETTER

5

{1yl .l=>l4++l—-—=1l&l*|+1-
<< [> | <>l <=|>=|==] 4]
ceadl=l*=1 /=1 %=1 4= | == | <<=
=1, T #1## 1 <: 1 :>1 <51 %> 1 %:

| &&

digit ;

8.1.9 Preprocessing numbers

Orthosyntax:

pp-number = digit
I < digit
| pp-number < digit
| pp-number < nondigit
| pp-number < e < sign
| pp-number < E < sign
| pp-number < p < sign
| pp-number < P < sign
I pp-number < . ;

Parasyntax:

ALL-DIGIT-PP-NUMBER = digit

| ALL-DIGIT-PP-NUMBER < digit ;

8.2 Phrase structure grammar

8.2.1 Expressions

Parasyntax:

SIDE-EFFECTIVE-OPERATOR = =l ==1*=|/=]%= | +=|
—=|<<=|>>=|&=|*=]||=

Orthosyntax:

primary-expr identifier

string-literal

| constant
|
| (expression)

Orthosyntax:

postfix-expr primary-expr

postfix-expr [expression]

postfix-expr ([argument-expression-list])
postfix-expr identifier

postfix-expr —=> identifier

postfix-expr ++

postfix-expr ==

argument-expression-list:
assignment-expr
argument-expression-list , assignment-expr

Parasyntax:

postfix-expr = primary-expr
| SUBSCRIPT-EXPRESSION

FUNCTION-CALL-EXPRESSION
DIRECT-ACCESS-EXPRESSION
INDIRECT-ACCESS-EXPRESSION
POST-INCREMENT-EXPRESSION
POST-DECREMENT-EXPRESSION

SUBSCRIPT-EXPRESSION
FUNCTION-CALL-EXPRESSION
DIRECT-ACCESS-EXPRESSION
INDIRECT-ACCESS-EXPRESSION
POST-INCREMENT-EXPRESSION
POST-DECREMENT-EXPRESSION

argument-expression-list

ARGUMENT

Orthosyntax:

unary-expr

unary-operator =

Parasyntax:

unary-expr

PRE-INCREMENT-EXPRESSION
PRE-DECREMENT-EXPRESSION

UNARY-OP-EXPR

= postfix-expr [expression] ;

= postfix-expr ([argument-expression-list]) ;
= postfix-expr identifier ;

= postfix-expr => identifier ;

= postfix-expr ++ ;

= postfix-expr ——

= ARGUMENT
argument-expression-list , ARGUMENT ;

= assignment-expr

postfix-expr

++ unary-expr

—=— unary-expr
unary-operator cast-expr
sizeof unary-expr
sizeof (type-name) ;

&l x|+ =1~11;

postfix-expr
PRE-INCREMENT-EXPRESSION
PRE-DECREMENT-EXPRESSION
UNARY-OP-EXPR
SIZEOF-UNARY-EXPR
SIZEOF-TYPE-NAME ;,

= ++ unary-expr ;

—— unary-expr;

AMPERSAND-EXPR
ASTERISK-EXPR
UPLUS-EXPR
UMINUS-EXPR
TILDE-EXPR
SHRIEK-EXPR |

SIZEOF-UNARY-EXPR
SIZEOF-TYPE-EXPR
AMPERSAND-EXPR
ASTERISK-EXPR
UPLUS-EXPR
UMINUS-EXPR
TILDE-EXPR

SHRIEK-EXPR

Orthosyntax:

cast-expr

Parasyntax:

cast-expr

EXPLICIT-CAST-EXPR

Orthosyntax:

multiplicative-expr

Parasyntax:

EXPLICIT-MULT-EXPR

EXPLICIT-DIVIDE-EXPR

Orthosyntax:

additive-expr

Parasyntax:

additive-expr

= sizeof unary-expr

= sizeof (type-name) ;
= & cast-expr ;

= * cast-expr

= + cast-expr ;

= - cast-expr ;

= ~ cast-expr ;

= ! cast-expr ;

unary-expr
(type-name) cast-expr ;

unary-expr
EXPLICIT-CAST-EXPR

(type-name) cast-expr ;

cast-expr

multiplicative-expr * cast-expr
multiplicative-expr / cast-expr
multiplicative-expr % cast-expr

multiplicative-expr * cast-expr
EXPLICIT-DIVIDE-EXPR |

multiplicative-expr / cast-expr
multiplicative-expr % cast-expr ;

multiplicative-expr
additive-expr + multiplicative-expr
additive-expr — multiplicative-expr

= multiplicative-expr
EXPLICIT-ADDITIVE-EXPR |

EXPLICIT-ADDITIVE-EXPR

EXPLICIT-PLUS-EXPR

EXPLICIT-MINUS-EXPR

Orthosyntax:
shift-expr

Orthosyntax:

relational-expr

Parasyntax:

relational-expr

EXPLICIT-REL-EXPR

EXPLICIT- LT-EXPR =

Orthosyntax:
equality-expr

Parasyntax:

equality-expr

EXPLICIT-EQUALITY-EXPR

Orthosyntax:
AND-expr =

Parasyntax:

= EXPLICIT-PLUS-EXPR
EXPLICIT-MINUS-EXPR

= additive-expr + multiplicative-expr ;

= additive-expr — multiplicative-expr ;

additive-expr
shift-expr << additive-expr
shift-expr >> additive-expr

shift-expr

relational-expr < shift-expr
relational-expr > shift-expr
relational-expr <= shift-expr
relational-expr >= shift-expr ;

shift-expr
EXPLICIT-REL-EXPR

EXPLICIT- LT-EXPR
relational-expr > shift-expr
relational-expr <= shift-expr
relational-expr >= shift-expr ;

relational-expr < shift-expr ;

relational-expr
equality-expr == relational-expr
equality-expr V= relational-expr ;

= relational-expr
| EXPLICIT-EQUALITY-EXPR

| equality-expr == relational-expr
| equality-expr = relational-expr ;

equality-expr
AND-expr & equality-expr ;

AND-expr

EXPLICIT-AND-EXPR

Orthosyntax:

exclusive-OR-expr

Parasyntax:

exclusive-OR-expr

EXPLICIT-XOR-EXPR

Orthosyntax:

inclusive-OR-expr

Parasyntax:

inclusive-OR-expr

EXPLICIT-IOR-EXPR

Orthosyntax:
logical-AND-expr

Parasyntax:

logical-AND-expr

EXPLICIT-LAND-EXPR

Orthosyntax:
logical-OR-expr

Parasyntax:

logical-OR-expr

EXPLICIT-LOR-EXPR

Orthosyntax:

equality-expr
EXPLICIT-AND-EXPR

AND-expr & equality-expr ;

AND-expr
exclusive-OR-expr ~ AND-expr ;

AND-expr
EXPLICIT-XOR-EXPR ;

exclusive-OR-expr ~ AND-expr ;

exclusive-OR-expr
inclusive-OR-expr | exclusive-OR-expr ;

exclusive-OR-expr
EXPLICIT-IOR-EXPR

inclusive-OR-expr | exclusive-OR-expr ;

inclusive-OR-expr
logical-AND-expr && inclusive-OR-expr

inclusive-OR-expr
EXPLICIT-LAND-EXPR

logical-AND-expr && inclusive-OR-expr ;

logical-AND-expr
logical-OR-expr | | logical-AND-expr

logical-AND-expr
EXPLICIT-LOR-EXPR

logical-OR-expr | | logical-AND-expr ;

conditional-expr =

Parasyntax:

conditional-expr =

EXPLICIT-COND-EXPR =

Orthosyntax:

assignment-expr =

assignment-operator =

Parasyntax:

assignment-expr

EXPLICIT-ASSIGNMENT-EXPR

EXPLICIT-SIMPLE-ASSIGNMENT-EXPR
EXPLICIT-MULT-ASSIGNMENT-EXPR
EXPLICIT-DIVIDE-ASSIGNMENT-EXPR
EXPLICIT-MOD-ASSIGNMENT-EXPR
EXPLICIT-PLUS-ASSIGNMENT-EXPR
EXPLICIT-MINUS-ASSIGNMENT-EXPR

EXPLICIT-SHIFT-ASSIGNMENT-EXPR

EXPLICIT-LSHIFT-ASSIGNMENT-EXPR
EXPLICIT-RSHIFT-ASSIGNMENT-EXPR

EXPLICIT-BITWISE-ASSIGNMENT-EXPR

logical-OR-expr
logical-OR-expr ? expr : conditional-expr ;

logical-OR-expr
EXPLICIT-COND-EXPR

logical-OR-expr ? expr : conditional-expr ;

conditional-expr

unary-expr assignment-operator assignment—expr;

= %= /=1%=|+=|-=

<<= | >>=]g=|*=]| |=;

5

conditional-expr
EXPLICIT-ASSIGNMENT-EXPR

EXPLICIT-SIMPLE-ASSIGNMENT-EXPR
EXPLICIT-MULT-ASSIGNMENT-EXPR
EXPLICIT-DIVIDE-ASSIGNMENT-EXPR
EXPLICIT-MOD-ASSIGNMENT-EXPR
EXPLICIT-PLUS-ASSIGNMENT-EXPR
EXPLICIT-MINUS-ASSIGNMENT-EXPR
EXPLICIT-SHIFT-ASSIGNMENT-EXPR
EXPLICIT-SHIFT-ASSIGNMENT-EXPR
EXPLICIT-BITWISE-ASSIGNMENT-EXPR
unary-expr = assignment-expr ;
unary-expr *= assignment-expr ;
unary-expr /= assignment-expr ;
unary-expr %= assignment-expr ;
unary-expr += assignment-expr ;

unary-expr —= assignment-expr ;

EXPLICIT-LSHIFT-ASSIGNMENT-EXPR
EXPLICIT-RSHIFT-ASSIGNMENT-EXPR |

unary-expr <<= assignment-expr ;
unary-expr >>= assignment-expr ;

EXPLICIT-AND-ASSIGNMENT-EXPR
EXPLICIT-XOR-ASSIGNMENT-EXPR

EXPLICIT-IOR-ASSIGNMENT-EXPR |

EXPLICIT-AND-ASSIGNMENT-EXPR = unary-expr &= assignment-expr ;
EXPLICIT-XOR-ASSIGNMENT-EXPR = unary-expr ~= assignment-expr ;
EXPLICIT-IOR-ASSIGNMENT-EXPR = unary-expr | = assignment-expr ;
Orthosyntax:

comma-expression = assignment-expr

expression , assignment-expr ;

Parasyntax:
comma-expression = assignment-expr

| EXPLICIT-COMMA-EXPRESSION
EXPLICIT-COMMA-EXPRESSION= expression , assignment-expr ;
Orthosyntax:
constant-expr = conditional-expr ;

8.2.2 Declarations

Orthosyntax:

declaration declaration-specifiers [init-declarator-list];

declaration-specifiers = storage-class-specifier | declaration-specifiers |
| type-specifier | declaration-specifiers |
| type-qualifier [declaration-specifiers] ;

init-declarator
init-declarator-list , init-declarator ;

init-declarator-list

init-declarator = declarator
declarator = initializer ;

Orthosyntax:
storage-class-specifier = typedef
| extern
| static
| auto
| register;
Orthosyntax:
type-specifier = void
I char
I short
| int
I

long

float

double

signed

unsigned

_Bool

_Complex
_Imaginary
struct-or-union-specifier
enum-specifier
typedef-name ;

Orthosyntax:
struct-or-union-specifier = [struct-or-union identifier] { struct-declaration-list }
| struct-or-union identifier ;
struct-or-union = struct
union;
struct-declaration-list = struct-declaration
struct-declaration-list struct-declaration ;
struct-declaration = specifier-qualifier-list struct-declarator-list ;
specifier-qualifier-list = type-specifier [specifier-qualifier-list]
type-qualifier [specifier-qualifier-list] ;
struct-declarator-list = struct-declarator
struct-declarator-list , struct-declarator ;
struct-declarator = declarator
[declarator] : constant-expr ;
Parasyntax:
struct-or-union-specifier = [struct-or-union SU-IDENTIFIER | { struct-declaration-list }
| struct-or-union SU-IDENTIFIER ;
SU-IDENTIFIER = identifier ;
struct-declarator = declarator
BIT-FIELD-DECLARATOR
BIT-FIELD-DECLARATOR = [declarator] : constant-expr ;
Orthosyntax:

enum-specifier enum [identifier | { enumerator-list }
enum [identifier | { enumerator-list , }

enum identifier ;

enumerator
enumerator-list , enumerator ;

enumerator-list

enumerator = enumeration-constant
enumeration-constant = constant-expressi()n)

Parasyntax:

enum-specifier enum [ENUM-IDENTIFIER | { enumerator-list }
enum [ENUM-IDENTIFIER | { enumerator-list ,

enum ENUM- IDENTIFIER

ENUM-IDENTIFIER = identifier ;
Orthosyntax:
type-qualifier = const

I restrict

I volatile;
Orthosyntax:
Sfunction-specifier = inline;

Orthosyntax:

declarator [pointer] direct-declarator

direct-declarator identifier

(declarator)

direct-declarator [[constant-expr]]
direct-declarator (parameter-type-list)

direct-declarator ([identifier-list]) ;

Parasyntax:

declarator = POINTER-DECLARATOR
NON-POINTER-DECLARATOR

POINTER-DECLARATOR = pointer direct-declarator ;

NON-POINTER-DECLARATOR

direct-declarator ;
direct-declarator DD-IDENTIFIER
DEC-IN-PAREN
ARRAY-DECLARATOR
FUNCTION-DECLARATOR

DD-IDENTIFIER = identifier ;

DEC-IN-PAREN = (declarator) ;
ARRAY-DECLARATOR = direct-declarator ARRAY-BOUND ;
ARRAY-BOUND = [[constant-expr]1] ;
FUNCTION-DECLARATOR = FUNCTION-PROTOTYPE

K-AND-R-FUNCTION-DECLARATOR ;

FUNCTION-PROTOTYPE = direct-declarator (parameter-type-list) ;

K-AND-R-FUNCTION-DECLARATOR = direct-declarator ([identifier-list]) ;
Orthosyntax:
pointer = * [type-qualifier-list]

* [type-qualifier-list] pointer ;

type-qualifier-list type-qualifier

type-qualifier-list type-qualifier ;

Orthosyntax:
parameter-type-list = parameter-list
parameter-list , ... ;
parameter-list = parameter-declaration
parameter-list , parameter-declaration ;
parameter-declaration = declaration-specifiers declarator
declaration-specifiers [abstract-declarator] ;
identifier-list = identifier
identifier-list , identifier ;
Parasyntax:
parameter-declaration = declaration-specifiers PARAMETER-DECLARATOR
declaration-specifiers | abstract-declarator] ;
PARAMETER-DECLARATOR = declarator ;
Orthosyntax:
type-name = specifier-qualifier-list [abstract-declarator] ;
abstract-declarator = pointer
| [pointer] direct-abstract-declarator ;
direct-abstract-declarator = (abstract-declarator)
| [direct-abstract-declarator] [[constant-expression]]
| [direct-abstract-declarator] ([parameter-type-list]) ;
Orthosyntax:
typedef-name = identifier ;
Orthosyntax:
initializer assignment-expr

{ initializer-list }
{ initializer-list , '} ;

initializer-list

8.2.3 Statements
Orthosyntax:

statement

Orthosyntax:

labeled-statement

Parasyntax:

labeled-statement

initializer
initializer-list , initializer ;

labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
Jjump-statement ;

identifier : statement
case constant-expr : statement
default : statement ;

IDENTIFIER-LABELED-STATEMENT
CASE-LABELED-STATEMENT
DEFAULT-LABELED-STATEMENT

IDENTIFIER-LABELED-STATEMENT = identiﬁer : Statement ;

CASE-LABELED-STATEMENT

DEFAULT-LABELED-STATEMENT

Orthosyntax:

compound—statement

declaration-list

statement-list

Orthosyntax:

expression—statement

Orthosyntax

selection-statement

Parasyntax

selection-statement

= case constant-expr : statement ;

= default : statement ;

{ [declaration-list | [statement-list]} ;

declaration
declaration-list declaration ;

statement
statement-list statement ;

[expression] ;

= if (expression) statement
| if (expression) statement else statement
| switch (expression) statement;

= BINARY-SELECTION
SWITCH-STMT ;

BINARY-SELECTION = PLAIN-IF-STMT
IF-ELSE-STMT ;

PLAIN-IF-STMT = if (IF-EXPR) TRUE-STMT;
IF-ELSE-STMT = if (IF-EXPR) TRUE-STMT else FALSE-STMT;
IF-EXPR = expression ;

EXPLICIT-LOGICAL-EXPR EXPLICIT-REL-EXPR
EXPLICIT-EQUALITY-EXPR
EXPLICIT-LAND-EXPR
EXPLICIT-LOR-EXPR

! (EXPLICIT-LOGICAL-EXPR) ;

TRUE-STMT = Sstatement ;

FALSE-STMT = Statement

SWITCH-STMT = switch (SWITCH-EXPR) SWITCH-BODY;
SWITCH-EXPR = expression ;

SWITCH-BODY = Statement

STRUC-SWITCH-STMNT = switch (SWITCH-EXPR) STRUC-SWITCH-BODY
STRUC-SWITCH-BODY = { CASE-CLAUSES ; DEFAULT-CLAUSE } ;
CASE-CLAUSES = CASE-CLAUSE

CASE-CLAUSES ; CASE-CLAUSE

CASE-CLAUSE = case constant-expr : CASE-GROUP |
DEFAULT-CLAUSE = default : CASE-GROUP ;
CASE-GROUP = { statement-list ; break } ;
Orthosyntax:

iteration-statement while (expression) statement
do statement while (expression) ;

for (clause-1 ; expression-2 ; expression-3) statement ;

Parasyntax:

iteration-statement WHILE-STATEMENT
DO-WHILE-STATEMENT

FOR-STATEMENT

WHILE-STATEMENT = while (WHILE-EXPRESSION) BODY ;

DO-WHILE-STATEMENT = do BODY while (WHILE-EXPRESSION) ;

FOR-STATEMENT = for (clause-1 ; expression-2 ; expression-3) BODY ;

WHILE-EXPRESSION = expression ;
BODY = Sstatement ;
Orthosyntax:

Jjump-statement goto identifier ;
continue ;
break ;

return [expression] ; ;

Parasyntax:

GOTO-STATEMENT
CONTINUE-STATEMENT
BREAK-STATEMENT
RETURN-STATEMENT ;

Jump-statement

GOTO-STATEMENT = goto identifier ; ;

CONTINUE-STATEMENT continue ; ;

BREAK-STATEMENT = break ; ;

RETURN-STATEMENT = PLAIN-RETURN-STMNT
| EXPR-RETURN-STMNT

PLAIN-RETURN-STMNT = return ; ;

EXPR-RETURN-STMNT = return [expression] ; ;

8.2.4 External definitions
Orthosyntax:

external-declaration
| translation-unit external-declaration ;

translation-unit

external-declaration = Sfunction-definition
| declaration
Orthosyntax:
function-definition = [declaration-specifiers] declarator [declaration-list]

compound—statement N

declaration
declaration-list declaration;

declaration-list

Parasyntax:

8.3 Preprocessing directives

Orthosyntax:

preprocessing-file

group

group-part

if-section

if-group

elif-groups

elif-group
else-group
endif-line

control-line

Iparen
replacement-list
pp-tokens
new-line

Parasyntax:

if-group

IF-DIRECTIVE

Lgroup];

group-part
group group-part ;

[pp-tokens | new-line
if-section
control-line ;

if-group [elif-groups] [else-group | endif-line ;

if constant-expr new-line [group |
ifdef identifier new-line [group |
ifndef identifier new-line [group |;

elif-group
elif-groups elif-group ;

elif constant-expr new-line [group | ;
else new-line [group];
endif new-line ;

include pp-tokens new-line

define identifier replacement-list new-line

define identifier Iparen [identifier-list]
replacement-list new-line

undef identifier new-line

line pp-tokens new-line

error [pp-tokens] new-line

#

#

£

pragma [pp-tokens] new-line
new-line ;

a left-parentheses without preceding white space ;
[pp-tokens] ;

preprocessing-token
pp-tokens preprocessing-token ;

the new-line character ;

IF-DIRECTIVE [group | ;
IFDEF-DIRECTIVE [group |;
IFNDEF-DIRECTIVE [group | ;

= # if constant-expr new-line ;

IFDEF-DIRECTIVE
IFNDEF-DIRECTIVE
elif-group
ELIF-DIRECTIVE

else-group

ELSE-DIRECTIVE

endif-line

ENDIF-DIRECTIVE

control-line

INCLUDE-DIRECTIVE
PLAIN-DEFINE-DIRECTIVE

FLIKE-DEFINE-DIRECTIVE

DEFINE-DIRECTIVE

PAREN-REPLACEMENT-LIST
UNDEF-DIRECTIVE
LINE-DIRECTIVE
ERROR-DIRECTIVE
PRAGMA-DIRECTIVE

NULL-DIRECTIVE

DIRECTIVE

ifdef identifier new-line ;

ifndef identifier new-line ;

ELIF-DIRECTIVE [group | ;

elif constant-expr new-line ;

ELSE-DIRECTIVE [group] ;

else new-line;

ENDIF-DIRECTIVE

endif new-line ;

INCLUDE-DIRECTIVE
PLAIN-DEFINE-DIRECTIVE
FLIKE-DEFINE-DIRECTIVE
UNDEF-DIRECTIVE
LINE-DIRECTIVE
ERROR-DIRECTIVE
PRAGMA-DIRECTIVE
NULL-DIRECTIVE ;

include pp-tokens new-line ;
define identifier replacement-list new-line ;

define identifier < ([identifier-list]
replacement-list new-line ;

PLAIN-DEFINE-DIRECTIVE
FLIKE-DEFINE-DIRECTIVE

(replacement-list) ;

undef identifier new-line ;

line pp-tokens new-line ;

error [pp-tokens] new-line ;
pragma [pp-tokens| new-line ;

new-line;

IF-DIRECTIVE
IFDEF-DIRECTIVE
IFNDEF-DIRECTIVE
ELIF-DIRECTIVE

ELSE-DIRECTIVE
ENDIF-DIRECTIVE
INCLUDE-DIRECTIVE
PLAIN-DEFINE-DIRECTIVE
FLIKE-DEFINE-DIRECTIVE
UNDEF-DIRECTIVE
LINE-DIRECTIVE
ERROR-DIRECTIVE
PRAGMA-DIRECTIVE
NULL-DIRECTIVE ;

9 Annex B - Library summary (NR)

This page intentionally left blank

10 Annex C - Sequence points

This page intentionally left blank

11 Annex D - Universal character names for identifiers

This page intentionally left blank

12 Annex E — Implementation limits

This page intentionally left blank

13 Annex F — IEC 60559 floating-point arithmetic

This page intentionally left blank

14 Annex G - IEC 60559-compatible complex arithmetic

This page intentionally left blank

15 Annex H - Language-independent arithmetic

This page intentionally left blank

16 Annex I - Common warnings

This page intentionally left blank

17 Annex J — Portability issues

This page intentionally left blank

	ISO/IEC JTC 1/SC 22/OWGV N 0228

