6.41+ Library Signature [NSQ]

6.41+.0 Status and history

2008-01-28: Reviewed bv Editors and editorial changes made. Benito will revise and differentiate from other vulnerability on mismatched signatures.
2008-10-05: Revised draft provided by Dan Nagle

2008-09: Considered at Stuttgart meeting

6.41+.1 Description of application vulnerability

Some older libraries were coded before the value of subprogram

signatures was recognized and added to language standards.

Programs written in modern languages may use libraries written

in other languages.

If the library is large, the effort of adding those signatures

by hand may be tedious and error-prone. Portable cross-language signatures

may require detailed understanding of both languages, which

one programmer may lack.
[Clive notes that being in a different language is not the root concern but merely a complicating factor.]
6.41+.2 Cross reference

6.41+.3 Mechanism of failure

When an older software library lacks the language-specified signatures,

due to its being prepared prior to the requirement that signatures

be used, the signature must be created. If this is done manually,

it may be tedious and error-prone. Furthermore, if the library

and the application in which it is to be used are written in different

languages, the specification of signatures is complicated by interlanguage

issues as well.

As used in this vulnerability description, the term library includes

the interface to the operating system, which may be specified only

for the language used to code the operating system itself. In this case,

any program written in any other language faces the interlanguage

interoperability issue of creating a fully-functional signature.

Automated methods may exist or translators may have options

to create the signatures as they compile the older library.

However, neither of these remedies might be required

by the language standard and so may not be universally available.

If the application language and the library language are different,

then the ability to specify signatures according to either standard

may not exist. Thus, a translator-by-translator solution may be needed,

which maximizes the probability of incorrect signatures (since

the solution must be recreated for each translator pair). Incorrect

signatures may or may not be caught during the linking phase.

6.41+.4 Applicable language characteristics

Languages where older versions of the language standard did not specify

that subprogram signatures be supplied for all subprogram references.

Languages that do not specify how to describe signatures for subprograms

written in other languages.

6.41+.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability

or mitigate its ill effects in the following ways:

- Use translator options to create the needed signatures

 when compiling the library

- Use tools to create the signatures

- Avoid using translator options or language features

 to reference library subprograms without proper signatures

- Try to find a later version of the library that has the signatures

6.41+.6 Implications for standardization

Language standards should:

- Require translators to create signatures when needed when translating

 older libraries that lack them.

- Provide correct linkage even in the absence of correctly specified

 procedure signatures. (Note that this may be very difficult

 where the original source code is unavailable.)[Seems to be impossible.]
- Provide specified means to describe the signatures of subprograms

 written using other languages.

6.41+.7 Bibliography
