New Vulnerability Description DTK

Prepared by Jim Moore

Based on Dan Nagel’s proposal in N 0164

23 January 2009
6.39+ Distinguished Values in Data Types [DTK]

6.39+.0 Status and history

2009-01-28 – Editors meeting: Should be moved to Clause 7. JWM to reformat accordingly. John will assign a new 3-letter code.
2009-01-23 – Revised by JWM

2008-10-01 and 08 – Generalized by JWM based on conclusions of Meeting #9

2008-09 – Proposed by Dan Nagle

6.39+.1 Description of application vulnerability

Sometimes, in a type representation, certain values are distinguished as not being members of the type, but rather as providing auxiliary information. Examples include special characters used as string terminators, distinguished values used to indicate out of type entries in SQL database fields, and sentinels used to indicate the bounds of queues or other data structures. When the usage pattern of code containing distinguished values is changed, it may happen that the distinguished value happens to coincide with a legitimate in-type value. In such a case, the value is no longer distinguishable from an in-type value and the software will no longer produce the intended results.

6.39+.2 Cross reference
[Look around CWE for possibilities. Also check JSF, MISRA, and CERT. Clive says there is probably nothing in MISRA, except for possibly named constants rather than magic numbers.]
6.39+.3 Mechanism of failure

A “distinguished value” or a "magic number" in the representation of a data type might be used to represent out-o- type information. Some examples include the following:

· The use of a special code, e.g. “00”, to indicate the termination of a coded character string.

· The use of a special value, e.g “999…9”, as the indication that the actual value is either not known or is invalid.

If the use of the software is later generalized, the once-special value can become indistinguishable from valid data. Note that the problem may occur simply if the pattern of usage of the software is changed from that anticipated by the software’s designers. It may also occur if the software is reused in other circumstances.
An example of a change in the pattern of usage is this: An organization logs visitors to its buildings by recording their names and national identity numbers or social security numbers in a database. Of course, some visitors legitimately don’t have or don’t know their social security number, so the receptionists enter numbers to “make the computer happy.” Receptionists at one building have adopted the convention of using the code “555-55-5555” to designate children of employees. Receptionists at another building have used the same code to designate foreign nationals. When the databases are merged, the children are reclassified as foreign nationals or vice-versa depending on which set of receptionists are using the newly merged database.

An example of an unanticipated change due to reuse is this: Suppose a software component analyzes radar data, recording data every degree of azimuth from 0 to 359. Packets of data are sent to other components for processing, updating displays, recording, and so on. Since all degree values are non-negative, a distinguished value of -1 is used as a signal to stop processing, compute summary data, close files, and so on. Many of the components are to be reused in a new system with a new radar analysis component. However the new component represents direction by numbers in the range -180 degrees to 179 degrees. When an azimuth value of -1 is provided, the downstream components will interpret that as the indication to stop processing. If the magic value is changed to, say, -999, the software is still at risk of failing when future enhancements (say, counting accumulated degrees on complete revolutions) bring -999 into the range of valid data.

Distinguished values should be avoided. Instead, the software should be designed to use distinct variables to encode the desired out-of-type information. For example, the length of a character string might be encoded in a dope vector and validity of data entries might be encoded in distinct Boolean values.
6.39.4 Applicable language characteristics

This vulnerability is probably present in all programming languages, but the ability to succinctly encode out-of-type information varies widely among them.
6.39.5 Avoiding the vulnerability or mitigating its effects

Use auxiliary variables (perhaps enclosed in variant records) to encode out-of-type information.
Use enumeration types to convey category information. Do not rely upon large ranges of integers, with distinguished values having special meanings.
Use named constants to make it easier to change distinguished values.
6.39.6 Implications for standardization

6.39.7 Bibliography 

