6.X Incomplete Specification of Library Routines [HJW]
6.X.0 Status and History

2009-01-28 – Clive revise

2009-01-05 – Proposed by Clive Pygott

(Dan appears to be working on something similar related to a specific Fortran issue, it may be appropriate to merge the two)

6.X.1 Description of application vulnerability

A library in this context is taken to mean a set of software routines produced outside the control of the main application developer, usually by a third party, and where the application developer may not have access to the source. In such circumstances the application developer has limited knowledge of the library functions, other than from their behavioural interface.

For high integrity applications, there are a number of properties one would like to establish for any library function that it is proposed to use:
· is the routine functionally correct, with respect to its intended use?

· how has the library software been constructed?

· might the routine exhibit any undesirable behaviour?

The first issue, functional correctness, is not going to be considered further here. It is assumed that either through previous experience or black-box testing it can be established that a particular function is acceptable for the intended use.

Similarly, how the software has been constructed is largely outside the scope of this vulnerability. However, the reason it is of concern is that many coding standards (for safety related systems in particular) require that any incorporated libraries are developed to the same standard as the rest of the application. This is impossible to establish after the event, without the co-operation of the library developer.

The focus of this vulnerability is any undesirable behaviour that a library routine may exhibit, and in particular, the use of dynamic memory allocation and the generation of exceptions.

6.X.2 Cross reference

MISRA C++: To Be Supplied (I didn’t take this on holiday with me!) [Needs cross-reference]

 (libraries to follow MISRA, no dynamic memory, catch-all handler)

JSF++:

To Be Supplied [Needs cross-reference]

 (library related rules, no dynamic memory after start-up, no exceptions)

6.X.3 Mechanism of failure

Many coding standards for real-time systems ban the allocation of dynamic memory during normal operation (It may be permitted during an initialisation phase.), due to temporal uncertainty over how long the allocation, or release, will take and due to uncertainty if the allocation request will be granted at all. If a library routine could cause dynamic memory to be allocated, this may not be apparent from its specification.

The concern regarding exceptions is that in some languages unhandled exceptions lead to implementation-dependent behaviour. Whilst ultimately an unhandled exception is likely to lead to the application terminating, this may be an immediate termination, or may be a ‘clean’ close down, where for example allocated resources are released before termination. The latter is preferable. [A bit more explanation of the problem is needed. The problem in C++ may be theoretical rather than practical.]
6.X.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
· can link previously developed library code (where the developer and compiler doesn’t have access to the library source)
6.X.5 Avoiding the vulnerability or mitigating its effects

All library calls should be wrapped within a ‘catch-all’ exception handler (if the language supports such a construct), so that any unanticipated exceptions can be caught and handled appropriately. This wrapping may be done for each library function call or for the entire behaviour of the program (e.g. having the exception handler in main for C/C++)

6.X.6 Implications for standardization

Languages that provide exceptions should provide a mechanism for catching all possible exceptions (i.e. a ‘catch-all’ handler). Alternatively, the behaviour of the program when encountering an unhandled exception should be fully defined.
Some mechanism should be provided to determine which exceptions might be thrown by a particular function.
6.X.7 Bibliography

[None]
