ISO/IEC JTC 1/SC 22/
OWGV N0140

OWG: Vulnerability

ISO working group on Guidance for Avoiding
Vulnerabilities through language selection and use

John Benito, Convener

Jim Moore, Secretary

19 June 2008

OWG: Vulnerability Summary

0 We are making progress!
meetings scheduled out over a year

Participation is good and is made up of a wide
variety of technical expertise.

Q Have passed initial SC22 ballot.
Q On track to publish in 2009.
Q HOWEVER...

We need the assistance of language working groups
to develop language-specific annexes

The Problem

0 Any programming language has constructs that
are imperfectly defined, implementation
dependent or difficult to use correctly.

Q As a result, software programs sometimes
execute differently than intended by the writer.

d In some cases, these vulnerabilities can be
exploited by hostile parties.
— Can compromise safety, security and privacy.
— Can be used to make additional attacks.

Complicating Factors

Q The choice of programming language for a
project is not solely a technical decision and is
not made solely by software engineers.

0 Some vulnerabilities cannot be mitigated by
better use of the language but require mitigation
by other methods, e.g. review, static analysis.

An example

Q While buffer overflow examples can be rather complex, it is possible
to have very simple, yet still exploitable, stack based buffer
overflows:

0 An Example in the C programming language:

#include <string.h>
#define BUFSIZE 256

int main(int argc, char **argv) {
char buf[BUFSIZE];

strcpy(buf, argv[1l]):;
¥

Example

0 Buftfer overflows generally lead to the
application halting or crashing.

Q Other attacks leading to lack of availability are
possible, that can include putting the program
into an infinite loop.

Q Buffer overflows often can be used to execute
arbitrary code, which is usually outside the
scope of a program's implicit security policy.

OWG:Vulnerability Product

Q A type III Technical Report

A document containing information of a different kind from that which
is normally published as an International Standard

Q Project is to work on a set of common mode
failures that occur across a variety of languages

Not all vulnerabilities are common to all languages, that is, some
manifest in just a language

Q The product will not contain normative
statements, but information and suggestions

OWG:Vulnerability Product

A No single programming language or family of
programming languages is to be singled out

As many programming languages as possible should
be involved

Need not be just the languages defined by ISO
Standards

Approach to Identifying Vulnerabilities

Q Empirical approach: Observe the vulnerabilities
that occur in the wild and describe them, e.g.
buffer overrun, execution of unvalidated remote
content

Q Analytical approach: Identity potential
vulnerabilities through analysis of programming
languages

This just might help in identifying tomorrows
vulnerabilities.

Audience

Q Safety: Products where it is critical to prevent behavior
which might lead to human injury, and it is justified to
spend additional development money

Q Security: Products where it is critical to secure data or
access, and it is justified to spend additional
development money

Q Mission-Critical: Products where it is important to
prevent behaviour that can lead to losses

Q Modeling and Simulation: Products which require unusual
reliability because the cost of computation is high

10

OWG: Vulnerability Progress

0 Eight meetings have been held, hosted by
Us
Italy
Canada
UK
Netherlands

O Meetings planned through 2008, hosted by
US (editors meeting)
Germany

Q E-Mail reflector, Wiki and Web site are used during and between

meetings

Q More information

http://aitc.aitcnet.org/isai/

11

(R Ty Iy Iy Ny Dy Dy Iy Iy I Iy Iy I

OWG: Vulnerability Participants

Canada

Germany

Italy

Japan

France

United Kingdom

USA - CT 22

SC 22/WG 9

SC 22/WG14

MDC (Mumps)

SC 22/WG 5, INCITS J3 (Fortran)
SC 22/WG 4, INCITS J4 (Cobol)
ECMA (C#, C++CLI)

RT/SC Java

MISRA C/C++

CERT

12

OWG: Vulnerability Status

0 Response to NP Ballot comments is completed,
see SC 22 N4027

Q Project is organized and on schedule to produce
a document in 2009

Q Current draft passed the first SC 22 ballot (PDTR
registration)
Q The project has two officers

— Convener/Project Editor, John Benito
— Secretary, Jim Moore

13

Measure of Success

Q Provide guidance to users of programming languages
that:

Assists them in improving the predictability of the execution of
their software even in the presence of an attacker

Informs their selection of an appropriate programming language
for their job
Q Provide feedback to programming language
standardization groups, resulting in the improvement of
programming language standards.

14

Vulnerability Template

Q The body of Technical Report describes vulnerabilities in
a generic manner, including:
Brief description of application vulnerability

Cross-reference to enumerations and other classifications, e.g.
CWE

Description of failure mechanism, i.e. how coding problem
relates to application vulnerability

Applicable language characteristics
Avoiding or mitigating the vulnerability
Implications for standardization

0 Annexes will provide language-specific treatments of
each vulnerability.

Q The following slides provide an example using XZH, the
Off-by-One Error

15

Description of application vulnerability

Q A product uses an incorrect maximum or minimum value
that is 1 more or 1 less than the correct value. This
usually arises from one of a number of situations where
the bounds as understood by the developer differ from

the design, such as;
Confusion between the need for “<” and “<=" or “>" and “>=" In a test.

Confusion as to the index range of an algorithm, such as beginning an
algorithm at 1 when the underlying structure is indexed from O,
beginning an algorithm at O when the underlying structure is indexed
from 1 (or some other start point) or using the length of a structure as
the bounds instead of the sentinel values.

Failing to allow for storage of a sentinel value, such as the \0’ string
terminator that is used by the C and C++ programming languages.

16

Continued...

A These issues arise from mistakes in mapping the design into
a particular language, in moving between languages (such as
between C-based languages where all arrays start at O and
other languages where arrays often start at 1), and when
exchanging data between languages with different default
array sentinel values.

QO The issue also can arise in algorithms where relationships
exist between components, and the existence of a sentinel
value changes the conditions of the test.

A The existence of this possible flaw can also be a serious
security hole as it can permit someone to surreptitiously
provide an unused location (such as O or the last element)
that can be used for undocumented features or hidden
channels).

17

Cross-reference to enumerations

Q CWE:
193. Off-by-one Error

Q [May add MISRA C and C++, CERT, JSF, others]

18

Mechanism of Failure

a An off-by-one error could lead to.
an out-of bounds access to an array (buffer overflow),
an incomplete comparisons and calculation mistakes,
a read from the wrong memory location, or
an incorrect conditional.
Q Such incorrect accesses can cause cascading errors or
references to illegal locations, resulting in potentially
unbounded behaviour.

Q Off-by-one errors are not often exploited in attacks
because they are difficult to identify and exploit
externally, but the cascading errors and boundary-
condition errors can be severe.

19

Applicable Language Characteristics

a As this vulnerability arises because of an
algorithmic error by the developer, it can Iin
principle arise in any language; however, it Is
most likely to occur when:

the language relies on the developer having implicit
knowledge of structure start and end indices (e.g.,
knowing whether arrays start at O or 1 — or indeed
some other value)

where the language relies upon explicit sentinel
values to terminate variable length arrays

20

Avoiding the Vulnerability or Mitigating
its Effects

Q Software developers can avoid the vulnerabillity or
mitigate its ill effects in the following ways:

Off-by-one errors are a common bug that is also a code quality
Issue. As with most quality issues, a systematic development
process, use of development/analysis tools and thorough testing
are all common ways of preventing errors, and in this case, off-
by-one errors.

21

Continued...

Where references are being made to structure indices and the
languages provide ways to specify the whole structure or the
starting and ending indices explicitly (e.g., Ada provides xxx'First
and xxx'Last for each dimension), these should be used always.
Where the language doesn't provide these, constants can be
declared and used in preference to numeric literals.

Where the language doesn’t encapsulate variable length arrays,
encapsulation should be provided through library objects and a
coding standard developed that requires such arrays to only be
used via those library objects, so the developer does not need to
be explicitly concerned with managing sentinel values

22

Implications for Standardization

a Languages should provide encapsulation for arrays that:
Prevent the need for the developer to be concerned with explicit
sentinel values.

Provide the developer with symbolic access to the array start,
end and iterators.

23

OWG: Vulnerability Summary

0 We are making progress!
meetings scheduled out over a year

Participation is good and is made up of a wide
variety of technical expertise.

Q Have passed initial SC22 ballot.
Q On track to publish in 2009.
Q HOWEVER...

We need the assistance of language working groups
to develop language-specific annexes

24

Discussion

QO Should not go to ballot without language-specific annexes because the
presence of the annexes would change the main document:
Examples might move to annexes.

There may be resistance to changing the main document after it has been
successfully balloted.

Adding annexes after the initial TR is approved would give the impression of
instabllity.
Q Doing prototype of language-specific annexes
Select a subset of descriptions and write a sample annex
To experiment with formats
To look at what kind of changes to the main document would be appropriate

a The OWGYV should probably provide a template as a starting point for a
language-specific annex.

a Alan Burns will provide leadership. Participants: Barnes, Ploedereder,
Vardanega, Michell, Schonberg, Rosen.

a August review should be cc-ed to working groups as well as the November
PDTR.

25

