6.x Inheritance [RIP]
6.x.0 Status and history

2008-06-26 Contributed by Pat Benito, MITRE
6.x.1 Description of application vulnerability

Inheritance, both single and multiple, increases code complexity. As the levels of inheritance increases, so does code complexity. This causes maintenance and verification activities to become increasingly more difficult. This is especially true for code reviews, structural coverage and flow analysis which are key activities in identifying malicious code and code that can negatively impact system safety. Children classes that reside deeper in the class hierarchy are much more fault-prone and harder to predict behavior due to the large number of definitions it inherits from its ancestors.

6.x.2 Cross reference

None

6.x.3 Mechanism of failure

The use of inheritance can lead to an exploitable application vulnerability or negatively impact system safety in several ways:

· Developers may not be aware of, or fully understand, the functionality the child class inherits from one or more of its ancestors. This will likely increase the probability that the code has unanticipated and unintended behavior that may be easy to exploit or that has behavior that negatively impacts system safety.

· It will be more difficult to detect malicious code or code that can contribute to a safety hazard during the development of the software. Heavy use of inheritance will make code reviews harder and will also make it infeasible to perform certain types of structural coverage and flow analysis.

· Each class within the hierarchy will likely have some characteristics that shared with the ancestor classes and some characteristics that are unique to it. Keeping track of the unique vs. common characteristics make software maintenance difficult and increase the chances that an error will be introduce during maintenance.

6.x.4 Applicable language characteristics
This is applicable to all languages that allow single and multiple inheritances.

6.x.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Avoid the use of multiple inheritance in a critical applications. If inheritance must be used, thoroughly document the inherited characteristics that the child class inherits from its ancestors.

· Merge the super class(es) and the child class so that all methods and variables are within the child class. This essentially eliminates inheritance.

6.x.6 Implications for standardization

Inheritance should be limited to one level or be eliminated in critical subsets of a language.

6.x.7 Bibliography
[1] P. V. Bhansali, A systematic approach to identifying a safe subset for safety-critical software, ACM SIGSOFT Software Engineering Notes, v.28 n.4, July 2003

[2] Ghassan, A., & Alkadi, I. (2003). Application of a Revised DIT Metric to Redesign an OO Design. Journal of Object Technology , 127-134.

[3] Subramanian, S., Tsai, W.-T., & Rayadurgam, S. (1998). Design Contraint Violation Detection in Safety-Critical Systems. The 3rd IEEE International Symposium on High-Assurance Systems Engineering , 109 - 116.
