6.x AMV Overlapping memory
6.x.0 Status and history

2007-12-05: revised by Moore

2007-11-24: drafted by Moore
2007-10-15: OWGV meeting 6 decided: Write a new description, AMV. Overlapping or reuse of memory provides aliasing effects that are extremely difficult to analyze. Attempt to use alternative techiques when possible. If essential to the function of the program, document it clearly and use the clearest possible approach to implementing the function. (This includes C unions, Fortran common.) Discuss the difference between discriminating and non-discriminating unions. Discuss the possibility of computing the discriminator from the undiscriminated part of the union. Deal with unchecked conversion (as in Ada) and reinterpret casting (in C++). Deal with MISRA 2004 rules 18.2, 18.3, 18.4; JSF rules 153, 183.
[For easy reference by reviewers, I have quoted the relevant JSF rules below:

[AV Rule 153 (MISRA Rule 110, Revised) Unions shall not be used. 

[AV Rule 183 Every possible measure should be taken to avoid type casting. ]
6.x.1 Description of application vulnerability

In most cases, objects in programs are assigned locations in processor storage to hold their value. If the same storage space is assigned to more than one object, a form of aliasing, then a change in the value of one object will have an effect on the value of the other. 
6.x.2 Cross reference

CWE:
MISRA 2004: 18.2, 18.3, 18.4

JSF: 153, 183
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

Sometimes there is a legitimate need for computer codes to place different interpretations upon the same stored representation of data. The most fundamental example is a program loader that treats a binary image of program as data by loading it, and then treats it as a program by invoking it. It's probably the case that every programming language permits aliasing, however, some offer safer alternatives for commonly encountered situations.
The aliasing of storage presents obstacles to human understanding of the code, the ability of tools to perform effective static analysis, and the ability of code optimizers to do their job.
Examples of aliasing include:

· Providing alternative mappings of objects into blocks of storage, performed either statically (Fortran Common) or dynamically (pointers).

· Union types, particularly unions that do not have a discriminant stored as part of the data structure.

· Operations, such as type casting [Is this stated correctly?] or unchecked conversion, that permit a stored value to be interpreted in different ways.

Another form of aliasing occurs in languages that permit call by reference because supposedly distinct parameters might refer to the same storage area, or a parameter and a non-local object might refer to the same storage area. This vulnerability is described in CSJ.

In all of these cases, the mechanism of failure is simple. A change to an object produces an unanticipated change in the value of a supposed independent object.

6.x.5 Range of language characteristics considered

This vulnerability probably applies to every procedural programming language.
6.x.6 Avoiding the vulnerability or mitigating its effects

This vulnerability cannot be completely avoided because some software codes necessarily view their stored data in alternative manners. However, these situations are unusual. Programmers should avoid aliasing performed as a matter of convenience—for example, using pointers to access array elements. When aliasing is necessary, it should be carefully documented in the code.
When using union types it is preferable to use discriminated unions. This is a form of a union where a stored value indicates which interpretation is to be placed upon the data. Some languages (e.g. variant records in Ada) enforce the view of data indicated by the value of the discriminant. If the language does not enforce the interpretation (e.g. equivalence in Fortran and union in C and C++), then the code should explicitly check the discriminant before accessing the data in the union. Some languages (e.g. Java and C#) do not provide union types.

Operations that reinterpret the same stored value as representing a different type should be avoided. The simplest case occurs in languages where the conversion is easily recognized as such. For example, the name of Ada's Unchecked_Conversion function explicitly warns of the problem. A much more difficult situation occurs when pointers are used for the same purpose. Some languages perform type-checking of pointers and place restrictions on the ability of pointers to access arbitrary locations in storage. Others permit the free use of pointers. In such cases, code must be carefully reviewed in a search for unintended reinterpretation of stored values. Therefore it is important to explicitly comment upon intended reinterpretations.
Static analysis tools may be helpful in locating situations where unintended aliasing occurs. On the other hand, the presence of aliasing greatly complicates static analysis for other problems.
6.x.7 Implications for standardization

Because the ability to perform aliasing is necessary, but the need for it is rare, programming language designers might consider putting caution labels on operations that permit aliasing. For example, the operation in Ada that permits unconstrained type casting is called "Unchecked_Conversion".
6.x.8 Bibliography
[1] Robert W. Sebesta, Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0, ISBN-10: 0-321-49362-1, Pearson Education, Boston, MA, 2008

[2] Carlo Ghezzi and Mehdi Jazayeri, Programming Language Concepts, 3rd edition, ISBN-0-471-10426-4, John Wiley & Sons, 1998
