6.<x> XYN Privilege Management

[This one, and a few others, are really application security problems. They should be put into a different template appropriate for their treatment and provided in a distinct clause of the TR. We should also mine them for proposals to be made to the language WGs and the API WGs for improved library capabilities.]

6.x.0 History and status

Pending (perhaps Clause 7)


2007-07-20, Edited by Jim Moore
2007-07-13, Edited by Larry Wagoner

6.<x>.1 Description of application vulnerability

Failure to adhere to the principle of least privilege amplifies the risk posed by other vulnerabilities.

6.<x>.2 Cross reference

CWE: 

250. Often Misused: Privilege Management

6.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.<x>.4 Mechanism of failure

This vulnerability type refers to cases in which an application grants greater access rights than necessary. Depending on the level of access granted, this may allow a user to access confidential information. For example, programs that run with root privileges have caused innumerable Unix security disasters. It is imperative that you carefully review privileged programs for all kinds of security problems, but it is equally important that privileged programs drop back to an unprivileged state as quickly as possible in order to limit the amount of damage that an overlooked vulnerability might be able to cause. Privilege management functions can behave in some less-than-obvious ways, and they have different quirks on different platforms. These inconsistencies are particularly pronounced if you are transitioning from one non-root user to another. Signal handlers and spawned processes run at the privilege of the owning process, so if a process is running as root when a signal fires or a sub-process is executed, the signal handler or sub-process will operate with root privileges. An attacker may be able to leverage these elevated privileges to do further damage. To grant the minimum access level necessary, first identify the different permissions that an application or user of that application will need to perform their actions, such as file read and write permissions, network socket permissions, and so forth. Then explicitly allow those actions while denying all else.

6.<x>.5 Possible ways to avoid the vulnerability

Very carefully manage the setting, management and handling of privileges. Explicitly manage trust zones in the software.

Follow the principle of least privilege when assigning access rights to entities in a software system. 

6.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 

