6.9
OTR Subprogram Signature Mismatch
[For the convenience of reviewers, I have paraphrased the relevant rules from JSF C++:
[108: Functions with variable numbers of arguments are forbidden.
[110: Avoid functions with more than 7 arguments.]
[For the convenience of reviewers, I have paraphrased the relevant rules from MISRA 2004 below:
[8.1: Provide prototype declarations for functions that are visible at both the function definition and the call of the function.
[8.2: Declare and/or define the type of any function.
[8.3: The type of each parameters and the return type must be identical in the function declaration and definition.
[16.1: Do not define functions that take a variable number of arguments.
[16.3: Give names to all of the parameters in a function prototype declaration.
[16.4: Use the same parameter names in the declaration and definition of a function.
[16.5: Functions that don't take any parameters must be declared with a parameter type of void. Same for the return type.
[16.6: Always pass the same number of arguments to a function as appear in the prototype declaration and the definition.]
6.9.0
Status and history

2007-12-21, Jim Moore: Drafted as a merger of XYG and XZM.
6.9.1
Description of application vulnerability

If a subprogram is called with a different number of parameters than it expects, or with parameters of different types than it expects, then the results will be incorrect. Depending on the language, the operating environment, and the implementation, the error might be as benign as a diagnostic message or as extreme as a program continuing to execute with a corrupted stack. The possibility of a corrupted stack provides opportunities for penetration.

6.9.2
Cross reference

CWE:

230. Missing Value Error

231. Extra Value Error
234. Missing Parameter Error
MISRA 2004: 8.1, 8.2, 8.3, 16.1, 16.3, 16.4, 16.5, 16.6
JSF C++: 108, 110[?]
6.9.3
Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

6.9.4
Mechanism of failure

When a subprogram is called, the actual arguments of the call are pushed on to the execution stack. When the subprogram terminates, the formal parameters are popped off the stack. If the number and type of the actual arguments does not match the number and type of the formal parameters, then the push and the pop will not be commensurable and the stack will be corrupted. Stack corruption can lead to unpredictable execution of the program and can provide opportunities for execution of unintended or malicious code.

The compilation systems for many languages and implementations can check to ensure that the list of actual parameters and any expected return match the declared set of formal parameters and return value (the subprogram signature) in both number and type. (In some cases, programmers should observe a set of conventions to ensure that this is true.) However, when the call is being made to an externally compiled subprogram, an object-code library, or a module compiled in a different language, the programmer must take additional steps to ensure a match between the expectations of the caller and the called subprogram.

6.9.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to implementations or languages with the following characteristics:
·
· Languages that do not ensure automatically that the number and types of actual arguments are equal to the number and types of the formal parameters.

· Implementations that permit programs to call subprograms that have been externally compiled (without a means to check for a matching subprogram signature), subprograms in object code libraries, and subprograms compiled in other languages.
6.9.6
Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Take advantage of any mechanism provided by the language to ensure that parameter signatures match.

· Avoid any language features that permit variable numbers of actual arguments without a method of enforcing a match for any instance of a subprogram call.
·
· Take advantage of any language or implementation feature that would guarantee matching the subprogram signature in linking to other languages or to separately compiled modules.
· Intensively review and subprogram calls where the match is not guaranteed by tooling.
6.9.7
Implications for standardization

Language specifiers could ensure that the signatures of subprograms match within a single compilation unit and could provide features for asserting and checking the match with externally compiled subprograms.
6.9.8
Bibliography

[None]
