7.3
XYP Hard-coded Password

7.3.0
History and status

2008-01-02, Updated by Clive Pygott

2007-12-14, considered at OWGV meeting 7

2007-08-04, Edited by Benito
2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore
2007-07-13, Edited by Larry Wagoner
7.3.1
Description of application vulnerability

Two sorts of hard coded password need to be considered:

· default or factory installed passwords that can be overridden by the user

· fixed passwords that cannot be changed by the user, e.g. for bespoke applications

As far as the majority of this vulnerability is concerned ‘password’ could be extended to include any sensitive information, such as credit card details.

Hard coded passwords may compromise system security in a way that cannot be easily remedied.  Not only does hard coding a password allow all of the project's developers to view the password, once the code is in production the password cannot be changed without patching the software.  If the account protected by the password is compromised, the owners of the system will be forced to choose between security and availability.
Also, it is not infeasible that an attacker may be able to determine the password or other sensitive data by reverse engineering the executable, e.g. looking for the dialog call that requests the password from the user, and then looking what is done with the returned value.
7.3.2
Cross reference

CWE: 

259. Hard-coded Password 

7.3.3
Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

7.3.4
Mechanism of failure

Where the program has a default password that can be overridden by the user, there are two vulnerabilities:

· the user fails to change the password and uses the default, which is likely to be known to an attacker

· the attacker find some way of forcing the system to revert to the known default password. This can be a particular problem with portable devices

Where the password is fixed, it must be assumed that either: 

· an attacker will learn the password from someone with access to the source, or

· an attacker with access to the executable will be able to find the password by reverse engineering

The use of a hard-coded password has many negative implications -- the most significant of these being a failure of authentication measures under certain circumstances.  On many systems, a default administration account exists which is set to a simple default password which is hard-coded into the program or device.  This hard-coded password is the same for each device or system of this type and often is not changed or disabled by end users.  If a malicious user comes across a device of this kind, it is a simple matter of looking up the default password (which is freely available and public on the Internet) and logging in with complete access.  In systems which authenticate with a back-end service, hard-coded passwords within closed source or drop-in solution systems require that the back-end service use a password which can be easily discovered.  Client-side systems with hard-coded passwords propose even more of a threat, since the extraction of a password from a binary is exceedingly simple.  If hard-coded passwords are used, it is almost certain that malicious users will gain access through the account in question.
7.3.5
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Rather than hard code a default username and password for first time logins, utilize a "first login" mode which requires the user to enter a unique strong password.
· The developer should consider under what circumstances the system can be regressed to the "first login" mode, and whether this provides a practical attack
· For front-end to back-end connections, there are three solutions that may be used.

· Use of generated passwords which are changed automatically and must be entered at given time intervals by a system administrator.  These passwords will be held in memory and only be valid for the time intervals.

· The passwords used should be limited at the back end to only performing actions valid to for the front end, as opposed to having full access.

· The messages sent should be tagged and check summed with time sensitive values so as to prevent replay style attacks.
· For sensitive information, other than passwords, <I’ll take suggestions at this point! I’m tempted to say ‘don’t include sensitive information without some form of encryption’, to stop the attacker scanning the binary for potentially valuable character strings, but given the comments about how easy it is the reverse engineer the password, I’m not sure that this is a significant help. The advantage may be that there is less likely to be an obvious use of the information to identify its location, c.f. the password challenge dialog call.>.

7.3.6
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

7.3.7
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004
