6.x
EWD Structured Programming

6.x.0
Status and history
2008-02-12, edited by Benito

2007-12-12, edited at OWGV meeting 7

2007-11-19, edited by Benito

2007-10-15, decided at OWGV meeting #6: “Write a new description, EWD about the use of structured programming that discusses goto, continue statement, break statement, single exit from a function. Discuss in terms of cost to analyzability and human understanding. Include setjmp and longjmp.”
6.x.1
Description of application vulnerability

Programs that have a convoluted control structure are likely to be more difficult to be human readable, less understandable, harder to maintainable, more difficult to modify, harder to statically analyze, and more difficult to match the allocation and release of resources.

6.x.2
Cross reference

JSF: none
MISRA: 14.4 through 14.7 and 20.7
6.x.3
Categorization

See clause 5.?.
6.x.4
Mechanism of failure

· Memory or resource leaks

· Maintenance is error prone

·

· Validation of the design is difficult.

· Difficult to statically analyze.

6.x.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Languages that allow goto statements.

· Languages that allow leaving a loop without consideration for the loop control.

· Languages that allow local jumps (the goto statement).

· Languages that allow non-local jumps (setjmp/longjmp in the ‘C’ programming language).

· Languages that support multiple entry and exit points from a function, procedure, subroutine or method.

6.x.6
Avoiding the vulnerability or mitigating its effects

Use only those features of the programming language that enforces a logical structure on the program. The program flow follows a simple hierarchical model that employs looping constructs such as for, repeat, and while.
· Avoid using language features such as goto.
· Avoid using language features such as continue and break in the middle of loops.

· Avoid using language features that transfer control of the program flow via a jump.

· Avoid multiple exit points to a function/procedure/method/subroutine.

· Avoid multiple entry points to a function/procedure/method/subroutine.

6.x.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

6.x.8
Bibliography
Holtzmann-1

