6.x EOJ Demarcation of control flow (was Surprise in Control Flow)
6.x.0 Status and history

REVISE: Tom Plum

2007-12-12, edited at OWGV meeting 7

2007-11-22, edited by Plum

[Cross reference to the vulnerability description of pre-processors]

6.x.1 Description of application vulnerability

Some programming languages explicitly mark the end of an if statement or a loop, whereas other languages mark only the end of a block of statements. Languages of the latter category are prone to oversights by the programmer, causing unintended sequences of control flow.
6.x.2 Cross reference

Hatton 18: Control flow – if structure [move to bibliography]
MISRA C: 14.9, 14.10
JSF AV rules 59, 192

6.x.3 Categorization

[tbd].

6.x.4 Mechanism of failure

[tbd]
6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Loops and conditional statements are not explicitly terminated by an “end” construct.
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Adopt a convention for marking the closing of a construct that can be checked by a tool, to ensure that program structure is apparent.

· Adopt programming guidelines (preferably augmented by static analysis analysis). For example, consider the rules itemized above from Hatton, JSF AV, or MISRA C.
· Other means of assurance might include proofs of correctness, analysis with tools, verification techniques, etc.
· Pretty-printers and syntax-aware editors may be helpful in finding such problems, but sometimes disguise them.
6.x.7 Implications for standardization

Specifiers of languages might consider explicit termination of loops and conditional statements. Specifiers might consider features to terminate named loops and conditionals and determine if the structure as named matches the structure as inferred.
6.x.8 Bibliography

