6.x STR Bit Representations
6.x.0 Status and history

OK: Larry Wagoner is responsible

2007-12-15: minor editorial cleanup, Jim Moore

2007-11-01 Edited by Larry Wagoner

2007-10-15: Decided at OWGV Meeting #6: Write a new vulnerability description, STR, that deals with bit representations. It would say that representations of values are often not what the programmer believes they are. There are issues of packing, sign propagation, endianness and others. Boolean values are a particular problem because of packing issues. Programmers who depend on the bit representations of values should either utilize language facilities to control the representation or document that the code is not portable. MISRA 2004 rules 6.4, 6.5, add-in 3.5, 12.7.

6.x.1 Description of application vulnerability

Computer languages frequently provide a variety of sizes for integer variables. Languages may support short, integer, long, and even big integers. Interfacing with protocols, device drivers, embedded systems, low level graphics or other external constructs may require each bit or set of bits to have a particular meaning. Those bit sets may or may not coincide with the sizes supported by a particular language. When they do not, it is common practice to pack all of the bits into one word. Masking and shifting of the word using powers of two to pick out individual bits or using sums of powers of 2 to pick out subsets of bits (e.g. using 28=2^2+2^3+2^4 to create the mask 11100 and then shifting 2 bits) provides a way of extracting those bits. Knowledge of the underlying bit storage is usually not necessary to accomplish simple extractions such as these. Problems can arise when programmers mix their techniques to reference the bits or output the bits. The storage ordering of the bits may not be what the programmer expects when writing out the integers which contain the words.
6.x.2 Cross reference

CWE:

JSF:

MISRA: 3.5, 6.4, 6.5, 12.7
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

Packing of bits in an integer is not inherently problematic. However, an understanding of the intricacies of bit level programming must be known. One problem arises when assumptions are made when interfacing with outside constructs and the ordering of the bits or words are not the same as the receiving entity. Programmers may inadvertently use the sign bit in a bit field and then may not be aware that an arithmetic shift (sign extension) is being performed when right shifting causing the sign bit to be extended into other fields. Alternatively, a left shift can cause the sign bit to be one. Some computers or other devices store the bits left to right while others store them right to left. The type of storage can cause problems when interfacing with outside devices that expect the bits in the opposite order. Bit manipulations can also be problematic when the manipulations are done on binary encoded records that span multiple words. The storage and ordering of the bits must be considered when doing bitwise operations across multiple words as bytes may be stored in big endian or little endian format.
6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Languages that allow bit manipulations
· Languages that are commonly used for protocol encoding/decoding, device drivers, embedded system programming, low level graphics or other low level programming
· Language that permit bit fields
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Bit meanings should be explicitly documented along with any assumptions about bit ordering

· Understand the way bit ordering is done both on the host system and on the systems with which the bit manipulations will be interfaced

· Use bit fields in languages that support them

· Do not use bit operators on signed operands
6.x.7 Implications for standardization

· For languages that are commonly used for bit manipulations, an API for bit manipulations that is independent of word length and machine instruction set should be defined and standardized.
6.x.8 Bibliography
[1] Hogaboom, Richard, A Generic API Bit Manipulation in C, Embedded Systems Programming, Vol 12, No 7, July 1999 http://www.embedded.com/1999/9907/9907feat2.htm
