6.6
XYL Memory Leak

6.6.0
Status and history

PENDING

2008-01-14, Edited by Stephen Michell

2007-08-03, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.6.1
Description of application vulnerability

[Note: Possibly separate item: Attempting to allocate storage and not checking if it is successful.]

The software does not sufficiently track and release allocated memory after it has been used, which slowly consumes remaining memory. This is often triggered by improper handling of malformed data or unexpectedly interrupted sessions. This can be used by attackers to generate denial-of-service attacks and can cause premature shutdown for safety-related systems..
6.6.2
Cross reference

CWE:

401. Memory Leak

6.6.3
Categorization

See clause 5.?.

Group: Dynamic Allocation

6.6.4
Mechanism of failure

As a process or system runs, any memory taken from dynamic memory and not returned or reclaimed (by the runtime system or a garbage collector) becomes unusable, causing constantly more memory to be used with each iteration. Alternatively, memory claimed and partially returned can cause the heap to fragment, which will eventually result in an inability to take the necessary size storage. Either condition will result in a memory exhaustion exception, and program termination or a system crash.

If an attacker can determine the cause of the memory leak, an attacker may be able to cause the application to leak quickly and therefore cause the application to crash.

In any long running systems and systems with a safety component,storage leaks should invariably cause the running system to terminate.

6.6.5
Applicable Language Characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

· All general purpose languages have mechanisms to dynamically allocate memory and reclaim memory.

· Some languages, such as Ada, provide mechanisms to create specialized pools for the management of limited types and objects without corrupting a general heap.

· Some languages, such as Java, have the capability for garbage collection to collect dynamically allocated memory that is no longer reachable, but the reclamation computation is in general hard and may consume excessive system resources.

· Most languages provide a complete paradigm to manage space via global mechanisms without the need to resort to dynamic memory.

·
·
6.6.6
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Garbage collectors attempts to reclaim memory that will never be used by the application again. Some garbage collectors are part of the language while others are add-ons. This is not a complete solution as it is not 100% effective, but it can significantly reduce the number of memory leaks.

· Allocating and freeing memory in different modules and levels of abstraction burdens the programmer and any static analysis tools with tracking the lifetime of that block of memory. This may cause confusion regarding when and if a block of memory has been allocated or freed, leading to memory leaks. To avoid these situations, it is recommended that memory be allocated and freed at the same level of abstraction, and ideally in the same code module.

· Storage pools are a specialized memory mechanism where all of the memory associated with a class of objects is allocated from a specific bounded region. When used with strong typing one can ensure a strong relationship between pointers and the space accessed such that storage exhaustion in one pool does not affect the code operating on other memory.

· Memory leaks can be eliminated by avoiding the use of dynamically allocated storage entirely, or by doing initial allocation exclusively and never allocating once the main execution commences.

· For safety-related systems and long running systems, the use of dynamic memory is almost always prohibited, or restricted to the initialization phase of execution.

6.6.7
Implications for standardization

Languages can provide syntax and semantics to guarantee program-wide that dynamic memory is not used (such as Ada's configuration pragmas).

Languages can document or can specify that implementations must document choices for dynamic memory management algorithms, to help designers decide on appropriate usage patterns and recovery techniques as necessary.

6.6.8
Bibliography

