6.11
XYQ Dead and Deactivated Code
<It's possible that this should be retitled as "Dead Code". There should be a separate item for code that executes with no effect. It is indicative of a programming error.>
<The vulnerability as currently written – 2008-01-02 – also talks about dead code that is inadvertently or unexpectedly executed. Whilst this is clearly closely related to dead code, consideration might be given to making it a new vulnerability>
6.11.0
Status and history
2008-01-02, Updated by Clive Pygott

2007-12-13, OWGV Meeting 7 considered the draft: This should be merged with the proposal regarding dead code in N0108. Also the decision made at meeting 6 should be implemented.

2007-12-13, OWGV Meeting 7 renamed this from "Expression Issues" to "Dead and Deactivated Code"

2007-10-15, OWG Meeting 6 decided: " XYQ concerns code that cannot be reached. That is somewhat different than code that executes with no result. The latter is a symptom of poor quality code but may not be a vulnerability. We should introduce a new item, KOA, for code that executes with no result because it is a symptom of misunderstanding during development or maintenance. (Note that this is similar to unused variables.) We probably want to exclude cases that are obvious, such as a null statement, because they are obviously intended. It might be appropriate to require justification of why this has been done. These may turn out to be very specific to each language. The rule needs to be generalized."

Also: Deal with reachability of staement – MISRA rules 14.1 and 2.4. JSF rule 127.
2007-10-01, Edited at OWGV Meeting #6

2007-08-04, Edited by Benito

2007-07-30, Edited by Larry Wagoner

2007-07-19, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.11.1
Description of application vulnerability

Dead and Deactivated code (the distinction is addressed in 6.11.4) is code that exists in the executable, but which can never be executed, either because there is no call path that leads to it (e.g. a function that is never called), or the path is semantically infeasible (e.g. its execution depends on the state of a conditional that can never be achieved).

Dead and Deactivated code is undesirable because it indicates the possibility of a coding error and because it may provide a "jump" target for an intrusion.

Also covered in this vulnerability is code which is believed to be dead, but which is inadvertently executed.

6.11.2
Cross reference

BVQ: Unspecified functionality. Unspecified functionality is unnecessary code that exists in the binary which may be executed. Dead and deactivated code is unnecessary code that exists in the binary but can never be executed.
570. Expression is Always True
571. Expression is Always False

MISRA C 2004: 14.1, 2.4
MISRA C++ 0-1-1 0-1-2 0-1-9 0-1-10

DO178B/C
6.11.3
Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.11.4
Mechanism of failure
DO-178B defines Dead and Deactivated code as:

Dead code – Executable object code (or data) which... cannot be executed (code) or used (data) in an operational configuration of the target computer environment and is not traceable to a system or software requirement.
Deactivated code – Executable object code (or data) which by design is either (a) not intended to be executed (code) or used (data), for example, a part of a previously developed software component, or (b) is only executed (code) or used (data) in certain configurations of the target computer environment, for example, code that is enabled by a hardware pin selection or software programmed options.]

Dead code is code that exists in an application, but which can never be executed, either because there is no call path to the code (e.g. a function that is never called) or because the execution path to the code is semantically infeasible, e.g. in

if (true) A; else B;

B is dead code, as only A can ever be executed.

The presence of dead code is not in itself an error, but begs the question why is it there? Is its presence an indication that the developer believed it to be necessary, but some error means it will never be executed? Or is there a legitimate reason for its presence, for example:

· as defensive code, only executed as the result of a hardware failure

· as part of a library not required in this application

· as diagnostic code not executed in the operational environment

Such code may be referred to as “deactivated”. That is, dead code that is there by intent.

There is a secondary consideration for dead code in languages that permit overloading of functions etc. and use complex name resolution strategies. The developer may believe that some code is not going to be used (deactivated), but its existence in the program means that it appears in the namespace, and may be selected as the best match for some use that was intended to be of an overloading function. That is, although the developer believes it is never going to be used, in practice it is used in preference to the intended function.

6.11.5
Range of language characteristics considered

This vulnerability description is intended to be applicable to all languages, as any program may have:

· code that exists in the executable that can never be executed

· code that exists in the executable that was not expected to be executed, but is.

6.11.6
Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· as a first resort, the developer should endeavour to remove, as far as is practical, dead code from an application.

· where code is dead because a conditional always evaluates to the same value, this could be indicative of an earlier bug and additional testing may be needed to ascertain why the same value is occurring

· notwithstanding the above, the developer should identify any dead code in the application, and provide a justification (if only to themselves) as to why it is there
· the developer should also ensure that any code that was expected to be unused is actually recognised as dead
6.11.7
Implications for standardization

<Recommendations for other working groups will be recorded here. For example, we might record suggestions for changes to language standards or API standards.>

6.11.8
Bibliography
<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004
Hatton 2003

MISRA C 2004
