6.<x> EWF Undefined Behaviour

6.x.0 Status and history

2008-02-11, Revised by Derek Jones

2007-12-12, Considered at OWGV meeting 7: Clarify that different languages use different terminology. Also consider Tom Plum's paper N0104.
2007-10-15, Jim Moore added notes from OWGV Meeting #6: "So-called portability issues should be confined to EWF, BQF, and FAB. The descriptions should deal with MISRA 2004 rules 1.2, 3.1, 3.2, 3.3, 3.4 and 4.a; and JSF C++ rules 210, 211, 212, 214. Also discuss the role of pragmas and assertions."

2007-07-19, Edited by Jim Moore

2007-06-30, Created by Derek M. Jones, derek@knosof.co.uk

6.<x>.1 Description of application vulnerability

The external behaviour of a program containing an instance of a construct having undefined behaviour, as defined by the language specification, is not predictable.

6.<x>.2 Cross reference

Ada: Clause 1.1.5 Classification of Errors (the term “bounded error” is used in a way that is comparable with undefined behavior).
C: Clause 3.4.3 undefined behaviour
C++: Clause 1.3.12 undefined behaviour

Fortran: ??? [The terms 'undefined behavior', 'illegal', 'non-conforming', and 'non-standard' do not appear in the Fortran Standard. 'Undefined' is used in the context of a variable having an undefined value. Does Fortran have any concept of undefined behavior? Need to talk to Fortran people.]

Also see guideline recommendations: BQF-071212-unspecified-behavior and FAB-implementation-defined-behavior.
6.<x>.3 Categorization

See clause 5.1.3.

6.<x>.4 Mechanism of failure

Language specifications may categorize the behavior of a language construct as undefined rather than as a semantic violation (I.e., an erroroneous use of the language) because of the potentially high implementation cost of detecting and diagnosing all occurrences of it. In this case no specific behaviour is required and the translator or runtime system is at liberty to do anything it pleases (which may include issuing a diagnostic).

The behavior of a program built from successfully translated source code containing an instance of a construct having undefined behavior is not predictable.
6.<x>.5 Interrupting the failure mechanism

This vulnerability can be avoided by not using any construct that has undefined behavior or by using the construct in a way that guarantees that the domain of its operation (e.g., the value of the right operand of a division operator is never zero) does not fall into undefined behaviour.

6.<x>.6 Assumed variations among languages

Languages vary in the extent to which they specify the use of a particular construct to be a violation of the specification or undefined behavior. They also vry on whether the behavior is said to occur during translation, link-time, or during prgram execution.

·
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Ensuring that the language construct is not used.

· Ensuring that a use of a construct having undefined behaviour does not operate within the domain in which the behaviour is undefined. When it is not possible to completely verify the domain of operation during translation a run-time check may need to be performed.
When developing coding guidelines for a specific language all constructs that have undefined behavior shall be documented. The items on this list might be classified by the extent to which the behavior is likely to have some critical impact on the external behavior of a program (the criticality may vary between different implementations, e.g., whether conversion between object and function pointers has well defined behavior).
·

