6.x KOA Code that executes with no result (change to: Likely incorrect expressions)

6.x.0 Status and history

2007-10-29 Edited by Larry Wagoner

2007-10-15 OWGV Meeting 6 decided that: “We should introduce a new item, KOA, for code that executes with no result because it is a symptom of misunderstanding during development or maintenance. (Note that this is similar to unused variables.) We probably want to exclude cases that are obvious, such as a null statement, because they are obviously intended. It might be appropriate to require justification of why this has been done. These may turn out to be very specific to each language. The rule needs to be generalized. Perhaps it should be phrased as statements that execute with no effect on all possible execution paths. It should deal with MISRA rules 13.1, 14.2, 12.3 and 12.4. Also MISRA rule 12.13. It is related to XYQ but different. "

6.x.1 Description of application vulnerability

Certain expressions are symptomatic of what is likely a mistake by the programmer. The statement is legal, but most likely the programmer meant to do something else. The statement may have no effect and effectively be a null statement or may introduce an unintended vulnerability. A common example is the use of “=” in an if expression in C where the programmer meant to do an equality test using the “==” operator. Other easily confused operators in C are the logical operators such as && for the bitwise operator &. It is legal and possible that the programmer intended to do an assignment within the if expression, but due to this being a common error, a programmer doing so would be using a poor programming practice. A less likely occurrence, but still possible is the substitution of “==” for “=” in what is supposed to be an assignment statement, but which effectively becomes a null statement. These mistakes may survive testing only to manifest themselves or even be exploited as a vulnerability under certain conditions.

6.x.2 Cross reference

CWE: 480, 481, 482, 570, 571
JSF:

MISRA: 12.3, 12.4, 12.13, 13.1, 14.2

6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>

6.x.4 Mechanism of failure

Some of the failures are simply a case of programmer carelessness. Substitution of “=” instead of “==” in a Boolean test is easy to do and most C/C++ programmers have made this mistake at one time or another. Other instances can be the result of intricacies of compilers that affect whether statements are optimized out. For instance, having an assignment expression in a Boolean statement is likely making an assumption that the complete expression will be executed in all cases. However, this is not always the case as sometimes the truth value of the Boolean expression can be determined after only executing some portion of the expression. For instance:

if ((a == b) || (c = (d-1)))

There is no guarantee which of the two subexpressions (a == b) or (c=(d-1)) will be executed first. Should (a==b) be determined to be true, then there is no need for the subexpression (c=(d-1)) to be executed and as such, the assignment (c=(d-1)) will not occur.

Embedding expressions in other expressions can yield unexpected results. Putting an expression as the argument for a function call will likely not execute the expression, but simply use it as the value to be passed to the function. Increment and decrement operators (++ and - -) can also yield unexpected results when mixed into a complex expression.

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· All languages are susceptible to likely incorrect expressions.

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Simplify expressions. Attempting to perform very sophisticated expressions that contain many subexpressions can look very impressive. It can also be a nightmare to maintain and to understand for subsequent programmers who have to maintain or modify it. Striving for clarity and simplicity may not look as impressive, but it will likely make the code more robust and definitely easier to understand and debug.

· Do not use assignment expressions as function parameters. Sometimes the assignment may not be executed as expected. Instead, perform the assignment before the function call.

· Do not perform assignments within a Boolean expression. This is likely unintended, but if not, then move the assignment outside of the Boolean expression for clarity and robustness.

· On some rare occasions, some statements intentionally do not have side effects and do not cause control flow to change. These should be annotated through comments and made obvious that they are intentionally no-ops with a stated reason. If possible, such reliance on null statements should be avoided. In general, except for those rare instances, all statements should either have a side effect or cause control flow to change.

6.x.7 Implications for standardization

None.

6.x.8 Bibliography

<Insert numbered references for other documents cited in your description. These will eventually be collected into an overall bibliography for the TR. So, please make the references complete. Someone will eventually have to reformat the references into an ISO-required format, so please err on the side of providing too much information rather than too little. Here [1] is an example of a reference:

[1] Greg Hoglund, Gary McGraw, Exploiting Software: How to Break Code, ISBN-0-201-78695-8, Pearson Education, Boston, MA, 2004

>

