6.<x> XYF Numeric Truncation Error
[Consider combining with XYE.]
6.x.0 Status and history

PENDING

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.<x>.1 Description of application vulnerability

Truncation errors occur when a primitive is cast to a primitive of a smaller size and data is lost in the conversion.

6.<x>.2 Cross reference

CWE: 

197. Numeric Truncation Error

6.<x>.3 Categorization

See clause 5.?. 
Group: Arithmetic
6.<x>.4 Mechanism of failure

When a primitive is cast to a smaller primitive, the high order bits of the large value are lost in the conversion.  If the old value was large enough, the new value will have lost some of the value of the original primitive, resulting in a value that could cause unintended consequences.  This value may be required as an index into a buffer, a loop iterator, or simply necessary state data. In any case, the value cannot be trusted and the system will be in an undefined state. While this method may be employed viably to isolate the low bits of a value, this usage is rare, and truncation usually implies that an implementation error has occurred.

6.<x>.5 Possible ways to avoid the vulnerability

Ensure that no casts, implicit or explicit, take place that move from a larger size primitive or a smaller size primitive.  Should the isolation of smaller bits of a value be desired, masking of the original value is safer and more predictable.

6.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 

