The following text is proposed for an introductory section to support the vulnerability description.
The standard for each programming language provides definitions for that language’s constructs. This Technical Report will in general use the terminology that is most natural to the description of each individual vulnerability, relying upon the individual standards for terminology details. In general, the reader should be aware that “method”, “function”, "subprogram" and “procedure” denote similar constructs in different languages; as do “pointer”, "access", and “reference”. Situations described as “undefined behavior” in some languages are known as “unbounded behavior” in others [double-check this one]. [This has been included in a recent draft of the language.]
6.x HFC Pointer casting and pointer type changes
6.x.0 Status and history

REVISE to deal with comments: Tom Plum
2007-12-13, additional thoughts from OWGV meeting 7. This description may be more tractable if we separate several cases: pointers used for union-like aliasing (already treated adequately in AMV?); pointers used to synthesize pass by reference; pointers used to pass parameters to generic subprograms; pointers used to address and manipulate data; pointers used to address subprograms.
2007-12-12, edited by OWGV meeting 7

2007-11-24, edited by Moore

2007-11-24, edited by Plum

2007-10-28, edited by Plum

6.x.1 Description of application vulnerability

Define “access via a data pointer” to mean “fetch or store indirectly through that pointer”; define “access via a function pointer” to mean “invocation indirectly through that pointer”. The code produced for access via a pointer requires that the type of the pointer is appropriate for the data or function being accessed; otherwise undefined behavior can occur. (The detailed requirements for “appropriate” type vary among languages.)
Even if the type of the pointer is appropriate for the accesserroneous pointer operations can still cause a bug. Here is an example from CWE 188:

void example() {

 char a; char b; *(&a + 1) = 0;

}

Here, b may not be one byte past a. It may be one byte in front of a. Or, they may have three bytes between them because they get aligned to 32-bit boundaries.

6.x.2 Cross reference

CWE 136: Type Errors
CWE 188: Reliance on Data Layout
Hatton 13: Pointer casts [Move to bibliography]
MISRA C 11.1, 11.2, 11.3, 11.4, add-in 11.5: Pointer casts
JSF AV 182, 183: Pointer casts
CERT/CC guidelines EXP05-A, 08-A, 32-C, 34-C and 36-C

6.x.3 Categorization

[tbd].

6.x.4 Mechanism of failure

[This section needs to be rewritten.]

Arrays are defined, perhaps statically, perhaps dynamically, to have given bounds. In order to access an element of the array, index values for one or more dimensions of the array must be computed. If the index values does not fall within the defined bounds of the array, then access might occur to the wrong element of the array, or access might occur to storage that is outside the array. A write to a location outside the array may change the value of other data variables or may even change program code.

The vulnerability can be avoided by not using arrays, by using whole array operations, by checking and preventing access beyond the bounds of the array, or by catching erroneous accesses when they occur. The compiler might generate appropriate code, the run-time system might perform checking, or the programmer might explicitly code appropriate checks.

6.x.5 Range of language characteristics considered

This vulnerability description is intended to be applicable to languages with the following characteristics:

· Pointers (and/or references) can be converted to different types.
· Pointers to functions can be converted to pointers to data.

· Addresses of specific elements can be calculated.

· Integers can be added to, or subtracted from, pointers, thereby designating different objects.

6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
Proposal: Pointers can be converted only if objects of their designed types are legitimately convertible by type changes that retain the underlying bit representation.
· Treat the compiler’s pointer-conversion warnings as serious errors.
· Adopt programming guidelines (preferably augmented by static analysis) that restrict pointer conversions. For example, consider the rules itemized above from JSF AV, CERT/CC, Hatton, or MISRA C.

· Other means of assurance might include proofs of correctness, analysis with tools, verification techniques, etc.
Treat the pointer as being equally strongly typed as the data it points to.
Function signatures?
6.x.7 Implications for standardization

[tbd]
6.x.8 Bibliography

