6.x CSJ Passing parameters and return values
6.x.0 Status and history

2007-12-01: first draft by Jim Moore
2007-10-15: Decided at OWGV Meeting 6: Write a new description, CSJ, to deal with passing parameters and return values. Deal with passing by reference versus value; also with passing pointers. Distinguish mutable from non-mutable entities whenever possible. 
[For reference by reviewers, the relevant JSF rules are quoted below:
[AV Rule 111 A function shall not return a pointer or reference to a non-static local object. 

[AV Rule 116 Small, concrete-type arguments (two or three words in size) should be passed by value if changes made to formal parameters should not be reflected in the calling function. 

[AV Rule 117 Arguments should be passed by reference if NULL values are not possible: 

[AV Rule 117.1 An object should be passed as const T& if the function should not change the value of the object. 

[AV Rule 117.2 An object should be passed as T& if the function may change the value of the object. 

[AV Rule 118.1 An object should be passed as const T* if its value should not be modified. 

[AV Rule 118.2 An object should be passed as T* if its value may be modified. 

[AV Rule 69 A member function that does not affect the state of an object (its instance variables) will be declared const. Member functions should be const by default. Only when there is a clear, explicit reason should the const modifier on member functions be omitted.]
6.x.1 Description of application vulnerability

Nearly every procedural language provides some method of process abstraction permitting decomposition of the flow of control into routines, functions, subprograms, or methods. (For the purpose of this description, the term subprogram will be used.) To have any effect on the computation, the subprogram must change data visible to the calling program. It can do this by changing a non-local variable, changing a parameter, or, in the case of a function, providing a return value. Because different languages use different mechanisms for passing parameters, a programmer using an unfamiliar language may obtain unexpected results.
6.x.2 Cross reference

CWE: (none)
MISRA 2004: 16.2, 16.8, 16.10

JSF: 69, 111, 116, 117, 118
6.x.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.x.4 Mechanism of failure

There are three mechanisms for parameter passing: pass by value, pass by reference, and pass by name. (The last is so specialized that it will not be treated in this description.) In pass by value, the value of any input parameter is copied to the formal parameter used by the subprogram and the changed value of any output parameter is copied back to the corresponding actual parameter; if the subprogram is a function, the return value is copied back. The obvious disadvantage is that extra copy operations are needed and execution time is required to produce the copies. Particularly if parameters represent sizable objects, such as large arrays, the cost of pass by value can be high. For this reason, many languages provide the pass by reference mechanism. In this case, addresses of data are passed resulting in the program and the subprogram sharing the same actual data in storage. The disadvantage of this mechanism is that the calling program cannot be assured that the subprogram hasn't changed data that was intended to be unchanged. For example, if an array is passed by reference to a subprogram intended to sum its elements, the subprogram might also change the values of one or more elements of the array.
To deal with this problem, some languages provide labels—such as in, out, or inout—that can be added to the formal parameters to control the access to shared data by the subprogram.

A more difficult problem with pass by value is unintended aliasing. It is possible that the address of one formal parameter is the same as another formal parameter. A subprogram, assuming the two parameters to be distinct, may treat them inappropriately. For example, if one codes a subprogram to swap two values using the exclusive-or method, then a call to swap (x,x) will zero the value of x. Aliasing can also occur between parameters and non-local objects. For example, is a subprogram modifies a non-local object as a side-effect of its execution, referencing that object by a formal parameter will result in aliasing and, possibly, unintended results.
Some languages provide only simple mechanisms for passing data via parameters, leaving it to the coder to synthesize appropriate mechanisms. Often, the only available mechanism is to use pass by value to pass small scalar values or pointer values containing addresses of data structures. Of course, the latter amounts to using pass by reference with no checking whatsoever provided by the language compiler. In such cases, subprograms can pass back pointers to anything whatsoever, including data that is corrupted or absent.
6.x.5 Range of language characteristics considered

A summary of the parameter passing mechanisms available in some common languages:

· Ada 95 (and afterwards): Scalars are passed by value and structured parameters are passed by reference. Formal parameters are labeled as in, out, or inout.

· C: All parameters are passed by value. Pointers may be used to synthesize pass by reference. Formal parameters can be typed as pointers to constants, preventing changes by the subprogram.

· C++: In addition to the mechanisms provided by C, C++ provides a special pointer type—a reference type—that is implicitly dereferenced in the subprogram, providing the semantics of pass by reference.

· C#: The default mechanism is pass by value but pass by reference can be specified by the calling program.

· Fortran 95: Similar to Ada 95

· Java: All parameters are passed by value, but since objects are accessed only through reference variables, they are, in effect passed by reference.

· Perl: The language provides a primitive mechanism of placing parameters into a predefined array that is available to subprograms.

· PHP, Python and Ruby: The description in this section is not applicable to these languages.

This vulnerability description is intended to be applicable to languages with the following characteristics:
· Procedural languages that provide mechanisms for defining subprograms where the data passes between the calling program and the subprogram via parameters and return values. This includes methods in many popular object-oriented languages.
6.x.6 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
· Use available mechanisms to label parameters as constants or with modes like in, out, or inout.

· Pass small simple objects by value.

· Pass larger objects by value, when feasible considering the computational cost of copying.

· [I don't know how to generalize JSF rules 117 and 118.]

· Take care to ensure that objects returned from functions via pointer values are accessible to the calling program. [This seems lame.]
· Avoid side-effects of subprograms on non-local objects; when side-effects are coded, ensure that the affected non-local objects are not passed as parameters.
6.x.7 Implications for standardization

None
6.x.8 Bibliography
[1] Robert W. Sebesta, Concepts of Programming Languages, 8th edition, ISBN-13: 978-0-321-49362-0, ISBN-10: 0-321-49362-1, Pearson Education, Boston, MA, 2008

[2] Carlo Ghezzi and Mehdi Jazayeri, Programming Language Concepts, 3rd edition, ISBN-0-471-10426-4, John Wiley & Sons, 1998
