6.x BQF Unspecified Behaviour

6.x.0 Status and History

PENDING (rewrite needed)
2007-07-18, Edited by Jim Moore

2007-06-30, Created by Derek M. Jones, derek@knosof.co.uk

6.x.1 Description of application vulnerability

A change of external behaviour [at execution time] can occur when source code containing a construct having unspecified behaviour is recompiled.

[... or relinked? ... or executed under different circumstances ?]

6.x.2 Cross reference

Ada: Clause 1.1.5 Bounded error; Clause 3.4.4 unspecified behavior

[Bounded error is probably a distinct category.]

[Michell thinks that 3.4.4 is a wrong clause number. The correct one is probably 1.1.3-conformity of an implementation with the standard]

C: Clause 3.17.3 unspecified behavior

[Benito says this clause should be 3.4.4. Also Annex J.1.]

C++: Clause 1.3.13 unspecified behavior

Fortran: ???

[Dan thinks this corresponds to processor dependency in Fortran 1.5]

CWE: Nothing applicable

6.x.3 Categorization

See clause 5.1.1.

6.x.4 Mechanism of failure

Language specifications do not always uniquely define the behavior of a construct. When they translate [or execute?] a instance of a construct that is not uniquely defined implementations are permitted to choose from the set of behaviors allowed by the language specification. The term 'unspecified behavior' is sometimes applied to such behaviors, and language specific guidelines need to analyse and document the terms used by their respective language.

It is possible that a developer uses a construct in a way that depends on a subset of the possible behaviors occurring. The behavior of a program containing such a usage is dependent on the translator used to compile it always selecting the 'expected' behavior.

6.x.5 Interrupting the Failure Mechanism

Many language constructs may have unspecified behavior [in general] and [categorically] recommending against use of these constructs may be [] impractical. For instance, in many languages the order of evaluation of the operands appearing on the left- and right-hand side of an assignment statement is unspecified.

The important attribute is not the internal behavior exhibited by a construct (e.g., the sequence of machine code generated by a translator) but its external behavior (i.e., the one visible to a user [?] of a program). If the set of possible unspecified behaviors permitted for a specific use of a construct in source code all produce the same external effect, then a recompilation [?] cannot result in a change of behavior for that specific usage of the construct.

For instance, while the following assignment statement contains unspecified behavior in many languages:

A = B;
in most cases the order in which A and B are evaluated does not effect the external behavior of a program containing them.

[Replace example with something like: In many languages, even an operation as apparently simple as assignment can involve unspecified behavior under some circumstances.]

6.x.6 Assumed variations among languages

This vulnerability is intended to be applicable to languages with the following characteristics:

· All languages whose specification allows some variation in how a translator handles some construct, where this variation can result in differences in external behavior.

6.x.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

· Ensuring that a specific use of a construct having unspecified behavior produces a result that is the same, for that specific use, for all of possible behaviors permitted by the language specification.

·

[In developing a coding guideline for a specific language, one should consider the list of unspecified behaviours specific to that language and develop appropriate usage guidelines.]

