6.<x> XZC Equivalent Special Element Injection

[Group XYU, XYV, XZC, XZD, XZE, XZF, XZG, XZJ into one item and place it in Clause 7.]
6.x.0 Status and history

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner
6.<x>.1 Description of application vulnerability

The software allows the injection of special elements that are non-typical but equivalent to typical special elements with control implications into the dataplane. This frequently occurs when the product has protected itself against special element injection. 

6.<x>.2 Cross reference

CWE: 

76. Equivalent Special Element Injection 

6.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.<x>.4 Mechanism of failure

Many injection attacks involve the disclosure of important information -- in terms of both data sensitivity and usefulness in further exploitation.  In some cases injectable code controls authentication; this may lead to a remote vulnerability.  Injection attacks are characterized by the ability to significantly change the flow of a given process, and in some cases, to the execution of arbitrary code.
Data injection attacks lead to loss of data integrity in nearly all cases as the control-plane data injected is always incidental to data recall or writing.  Often the actions performed by injected control code are unlogged.

6.<x>.5 Possible ways to avoid the vulnerability

As so many possible implementations of this weaknes exist, it is best to simply be aware of the weakness and work to ensure that all control characters entered in data are subject to black-list style parsing. 

6.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 

