6.<x> XZB Buffer Overflow in Heap
6.x.0 Status and history

PENDING

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner
6.<x>.1 Description of application vulnerability

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as the POSIX malloc() call. 

6.<x>.2 Cross reference

CWE: 

122. Heap Overflow 

6.<x>.3 Categorization

See clause 5.?. 
Group: Array Bounds
6.<x>.4 Mechanism of failure

Heap overflows are usually just as dangerous as stack overflows. Besides important user data, heap overflows can be used to overwrite function pointers that may be living in memory, pointing it to the attacker's code. Even in applications that do not explicitly use function pointers, the run-time will usually leave many in memory. For example, object methods in C++ are generally implemented using function pointers. Even in C programs, there is often a global offset table used by the underlying runtime.

Availability: Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are possible, including putting the program into an infinite loop.

Access control (memory and instruction processing): Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope of a program's implicit security policy.

Other: When the consequence is arbitrary code execution, this can often be used to subvert any other security service.

6.<x>.5 Interrupting the failure mechanism

Use a language or compiler that performs automatic bounds checking.

Use an abstraction library to abstract away risky APIs. Not a complete solution.

Canary style bounds checking, library changes which ensure the validity of chunk data, and other such fixes are possible, but should not be relied upon.

Use OS-level preventative functionality. Not a complete solution.

6.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 

