6.<x> XYX Boundary Beginning Violation
[Perhaps this should be subsumed by XYZ.]
6.x.0 Status and history

PENDING

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner
6.<x>.1 Description of application vulnerability

A buffer underwrite condition occurs when a buffer is indexed with a negative number, or pointer arithmetic with a negative value results in a position before the beginning of the valid memory location.

6.<x>.2 Cross reference

CWE: 

124. Boundary Beginning Violation ("buffer underwrite")
6.<x>.3 Categorization

See clause 5.?. 
Group: Array Bounds
6.<x>.4 Mechanism of failure

Buffer underwrites will very likely result in the corruption of relevant memory, and perhaps instructions, leading to a crash.  If the memory corrupted memory can be effectively controlled, it may be possible to execute arbitrary code.  If the memory corrupted is data rather than instructions, the system will continue to function with improper changes, ones made in violation of a policy, whether explicit or implicit.

6.<x>.5 Interrupting the failure mechanism

The choice could be made to use a language that is not susceptible to these issues. [Make this politically correct.]
[Some languages have facilities that can automatically check array indexes. Use them.]

[Add-on tools, including static analyzers, are a possibility. There are coding techniques that improve the analyzability of the code; they are a good idea.]
Sanity checks should be performed on all calculated values used as index or for pointer arithmetic.

6.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 

