6.<x> XZO Authentication Logic Error
[Clause 7]
6.x.0 Status and history

PENDING

2007-07-20, Edited by Jim Moore

2007-07-13, Edited by Larry Wagoner

6.<x>.1 Description of application vulnerability

The software does not properly ensure that the user has proven their identity.

6.<x>.2 Cross reference

CWE:
288. Authentication Bypass by Alternate Path/Channel
289. Authentication Bypass by Alternate Name
290. Authentication Bypass by Spoofing
294. Authentication Bypass by Replay

301. Reflection Attack in an Authentication Protocol
302. Authentication Bypass by Assumed-Immutable Data

303. Authentication Logic Error
305. Authentication Bypass by Primary Weakness

6.<x>.3 Categorization

See clause 5.?. <Replace this with the categorization according to the analysis in Clause 5. At a later date, other categorization schemes may be added.>
6.<x>.4 Mechanism of failure

Authentication bypass by alternate path or channel occurs when a product requires authentication, but the product has an alternate path or channel that does not require authentication. Note that this is often seen in web applications that assume that access to a particular CGI program can only be obtained through a "front" screen, but this problem is not just in web apps.

Authentication bypass by alternate name occurs when the software performs authentication based on the name of the resource being accessed, but there are multiple names for the resource, and not all names are checked.

Authentication bypass by capture-replay occurs when it is possible for a malicious user to sniff network traffic and bypass authentication by replaying it to the server in question to the same effect as the original message (or with minor changes).
Messages sent with a capture-relay attack allow access to resources which are not otherwise accessible without proper authentication.  Capture-replay attacks are common and can be difficult to defeat without cryptography. They are a subset of network injection attacks that rely listening in on previously sent valid commands, then changing them slightly if necessary and resending the same commands to the server. Since any attacker who can listen to traffic can see sequence numbers, it is necessary to sign messages with some kind of cryptography to ensure that sequence numbers are not simply doctored along with content.

Reflection attacks capitalize on mutual authentication schemes in order to trick the target into revealing the secret shared between it and another valid user. In a basic mutual-authentication scheme, a secret is known to both the valid user and the server; this allows them to authenticate. In order that they may verify this shared secret without sending it plainly over the wire, they utilize a Diffie-Hellman-style scheme in which they each pick a value, then request the hash of that value as keyed by the shared secret. In a reflection attack, the attacker claims to be a valid user and requests the hash of a random value from the server. When the server returns this value and requests its own value to be hashed, the attacker opens another connection to the server. This time, the hash requested by the attacker is the value which the server requested in the first connection. When the server returns this hashed value, it is used in the first connection, authenticating the attacker successfully as the impersonated valid user.

Authentication bypass by assumed-immutable data occurs when the authentication scheme or implementation uses key data elements that are assumed to be immutable, but can be controlled or modified by the attacker, e.g. if a web application relies on a cookie "Authenticated=1"

Authentication logic error occurs when the authentication techniques do not follow the algorithms that define them exactly and so authentication can be jeopardized. For instance, a malformed or improper implementation of an algorithm can weaken the authorization technique.

An authentication bypass by primary weakness occurs when the authentication algorithm is sound, but the implemented mechanism can be bypassed as the result of a separate weakness that is primary to the authentication error. 

6.<x>.5 Possible ways to avoid the vulnerability

Funnel all access through a single choke point to simplify how users can access a resource.  For every access, perform a check to determine if the user has permissions to access the resource.  Avoid making decisions based on names of resources (e.g. files) if those resources can have alternate names.

Canonicalize the name to match that of the file system's representation of the name. This can sometimes be achieved with an available API (e.g. in Win32 the GetFullPathName function).

Utilize some sequence or time stamping functionality along with a checksum which takes this into account in order to ensure that messages can be parsed only once.

Use different keys for the initiator and responder or of a different type of challenge for the initiator and responder.

Assume all input is malicious. Use an appropriate combination of black lists and white lists to ensure only valid and expected input is processed by the system. For example, valid input may be in the form of an absolute pathname(s). You can also limit pathnames to exist on selected drives, have the format specified to include only separator characters (forward or backward slashes) and alphanumeric characters, and follow a naming convention such as having a maximum of 32 characters followed by a '.' and ending with specified extensions.

6.<x>.6 Assumed variations among languages

This vulnerability description is intended to be applicable to languages with the following characteristics:

<Replace this with a bullet list summarizing the pertinent range of characteristics of languages for which this discussion is applicable. This list is intended to assist readers attempting to apply the guidance to languages that have not been treated in the language-specific annexes.>
6.<x>.7 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

<Replace this with a bullet list summarizing various ways in which programmers can avoid the vulnerability or contain its bad effects. Begin with the more direct, concrete, and effective means and then progress to the more indirect, abstract, and probabilistic means. 

