
ISO/IEC JTC 1/SC 22/OWGV N 0082
James W. Moore and Robert Seacord, "Secure Coding becomes Standard," presentation
to Systems and Software Technology Conference (SSTC), June 19, 2007

Date 2 July 2007
Contributed by James W. Moore and Robert Seacord
Original file name SSTC2007 rcs jwm 2a fullf.pdf
Notes

Moore and Seacord,
SSTC 2007 - 1

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Secure Coding
Becomes Standard

James W. Moore, F-IEEE, CSDP
Robert C. Seacord

Moore and Seacord,
SSTC 2007 - 2

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Agenda
Why Care about Software Security?
CERT Secure Coding Standards
SC22 OWGV

Moore and Seacord,
SSTC 2007 - 3

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Why Care about Software Security?
Vulnerabilities allow attackers to compromise information security

• confidentiality
• integrity
• availability

Accurate risk assessment requires knowledge
about vulnerabilities

• prerequisite conditions
• technical details
• impacts and mitigation strategies

Increased risk to information and communication systems
• critical infrastructures are affected (and often unprepared to respond)
• software used by control systems vulnerable to attack
• convergence of common technologies
• adversaries leverage failures in technology and people to conduct criminal activity
• economic and physical consequences of cyber attacks

Moore and Seacord,
SSTC 2007 - 4

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Increasing Vulnerabilities
Reacting to vulnerabilities in
existing systems is not working

Moore and Seacord,
SSTC 2007 - 5

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Most Vulnerabilities caused by
Programming Errors
64% of the vulnerabilities in NVD in 2004 are due to
programming errors

• 51% of those due to classic errors like buffer overflows, cross-site-
scripting, injection flaws

• Heffley/Meunier (2004): Can Source Code Auditing Software Identify
Common Vulnerabilities and Be Used to Evaluate Software Security?

Cross-site scripting, SQL injection at top of the
statistics (CVE, Bugtraq) in 2006

"We wouldn't need so much network security if we
didn't have such bad software security"

--Bruce Schneier

Moore and Seacord,
SSTC 2007 - 6

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Information Warriors
8 nations have developed cyber-warfare capabilities comparable to that
of the United States.
More than 100 countries are trying to develop them. 23 nations have
targeted U.S. systems.
North Korea, Libya, Iran, and Syria reportedly have some capability.
Russia, China, India, and Cuba have acknowledged policies of preparing
for cyber-warfare and are rapidly developing their capabilities.
China is moving aggressively toward incorporating cyber-warfare into its
military lexicon, organization, training, and doctrine. It has the capability
to penetrate poorly protected U.S. computer systems and potentially
could use computer network attacks to strike specific U.S. civilian and
military infrastructures.

Moore and Seacord,
SSTC 2007 - 7

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Agenda
Why Care about Software Security?
CERT Secure Coding Standards
SC22 OWGV

Moore and Seacord,
SSTC 2007 - 8

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Unexpected Integer Values

Unexpected values are a common source of software
vulnerabilities.

An unexpected value is one
you would not expect to get
using a pencil and paper

Moore and Seacord,
SSTC 2007 - 9

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Fun with Integers
char x, y;
x = -128;
y = -x;

if (x == y) puts("1");
if ((x - y) == 0) puts("2");
if ((x + y) == 2 * x) puts("3");
if (((char)(-x) + x) != 0) puts("4");
if (x != -y) puts("5");

Moore and Seacord,
SSTC 2007 - 10

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

CERT Secure Coding Standards

Identify coding practices that can be used to improve
the security of software systems under development

Coding practices are classified as either rules or
recommendations

• Rules need to be followed to claim compliance.
• Recommendations are guidelines or suggestions.

Development of Secure Coding Standards is a
community effort

Moore and Seacord,
SSTC 2007 - 11

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Scope
The secure coding standards proposed by CERT are based
on documented standard language versions as defined by
official or de facto standards organizations.
Secure coding standards are under development for:

• C programming language (ISO/IEC 9899:1999)
• C++ programming language (ISO/IEC 14882-2003)

Applicable technical corrigenda and documented language
extensions such as the ISO/IEC TR 24731 extensions to the C
library are also included.

Moore and Seacord,
SSTC 2007 - 12

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Secure Coding Web Site (Wiki)

http://www.securecoding.cert.org

Moore and Seacord,
SSTC 2007 - 13

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Rules
Coding practices are defined as rules when

• Violation of the coding practice will result in a security
flaw that may result in an exploitable vulnerability.

• There is an enumerable set of exceptional conditions (or
no such conditions) where violating the coding practice is
necessary to ensure the correct behavior for the
program.

• Conformance to the coding practice can be verified.

Moore and Seacord,
SSTC 2007 - 14

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Moore and Seacord,
SSTC 2007 - 15

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

MEM31-C. Compliant Solution

Moore and Seacord,
SSTC 2007 - 16

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Recommendations
Coding practices are defined as recommendations
when

• Application of the coding practice is likely to improve
system security.

• One or more of the requirements necessary for a coding
practice to be considered as a rule cannot be met.

Moore and Seacord,
SSTC 2007 - 17

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

MEM00-A. Allocate and free memory in the same
module, at the same level of abstraction
Allocating and freeing memory in different modules and levels
of abstraction burdens the programmer with tracking the
lifetime of that block of memory.
This may cause confusion regarding when and if a block of
memory has been allocated or freed, leading to programming
defects such as double-free vulnerabilities, accessing freed
memory, or writing to unallocated memory.
To avoid these situations, it is recommended that memory be
allocated and freed at the same level of abstraction, and
ideally in the same code module.
Freeing memory in different modules resulted in a vulnerability
in MIT Kerberos 5 MITKRB5-SA-2004-002 .

Moore and Seacord,
SSTC 2007 - 18

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Community Development Process

Published as candidate rules and recommendations
on the CERT Wiki at:
www.securecoding.cert.org

Rules are solicited
from the community

Threaded discussions used for public vetting

Candidate coding practices
are moved into a secure
coding standard when
consensus is reached

Moore and Seacord,
SSTC 2007 - 19

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Priorities and Levels

L3 P1-P4

L1 P12-P27

L2 P6-P9

High severity,
likely,
inexpensive to
repair flaws

Low severity,
unlikely,
expensive to
repair flaws

Med severity,
probable, med
cost to repair
flaws

Moore and Seacord,
SSTC 2007 - 20

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Risk-Based Triage of Rules

Moore and Seacord,
SSTC 2007 - 21

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Risk Assessment
FIO30-C. Exclude user input from format strings

Moore and Seacord,
SSTC 2007 - 22

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Relating Vulnerability Notes to Secure Coding Rules

US CERT Technical Alerts

CERT Secure Coding Standard

Examples of vulnerabilities
resulting from the violation
of this recommendation can
be found on the CERT
website .

Vulnerability Note VU#649732
This vulnerability occurred as a
result of failing to comply with rule
FIO30-C of the CERT C
Programming Language Secure
Coding Standard.

Moore and Seacord,
SSTC 2007 - 23

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Applications
Establish secure coding practices within an organization

• may be extended with organization-specific rules
• cannot replace or remove existing rules

Train software professionals
Certify programmers in secure coding
Establish base-line requirements for software analysis tools
Certify software systems’ compliance with secure coding rules

Moore and Seacord,
SSTC 2007 - 24

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Agenda
Why Care about Software Security?
CERT Secure Coding Standards
SC22 OWGV

Moore and Seacord,
SSTC 2007 - 25

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

International Standards Project
Project title: Avoiding Vulnerabilities in Programming
Languages through Language Selection and Use
Initiated in September 2005
Assigned to a cross-cutting group, OWGV (ISO
jargon for Other Working Group on Vulnerability)

• Intended to work collaboratively with language-specific
working groups of SC 22

• May provide recommendations to language-specific
working groups for changing language specifications

Product will be an ISO Technical Report – not a
standard
Publication of report is planned for January 2009.

Moore and Seacord,
SSTC 2007 - 26

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Participating National Bodies

Roman GrahleDINGermany (observing)

Rex JaeschkeINCITS CT22USA

Derek JonesBSI IST-5UK

Kiyoshi IshihataJSAJapan

Tullio VardanegaUNIItaly

Franco GasperoniAFNORFrance

Steve MichellSCCCanada

Moore and Seacord,
SSTC 2007 - 27

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Other Participants
Ben Brosgol RT/SC Java
Hal Burch CERT
Paul Caseley UK MOD
Rod Chapman SPARK
Cesar Gonzalez-Perez JTC 1/SC 7/WG 19
Barry Hedquist
Chris Hills MISRA C
Fred Long CERT
Bob Martin CVE, CWE
Ed de Moel MDC (MUMPS)
Olwen Morgan
Dan Nagle WG5 (Fortran), J3 (Fortran)
Erhard Ploedereder WG9 (Ada), Ada-Europe
Tom Plum WG14 (C), ECMA TC39 / TG2 (C#)
Clive Pygott MISRA C++
Robert Seacord CERT
Bill Spees FDA
Barry Tauber WG4 (Cobol), J4 (Cobol)
Tucker Taft SIGAda
Larry Wagoner
Brian Wichmann

Moore and Seacord,
SSTC 2007 - 28

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Four Audiences
Safety: Products where it is critical to prevent
behavior which might lead to human injury, and it is
justified to spend additional development money
Security: Products where it is critical to secure data
or access, and it is justified to spend additional
development money
Predictability: Products where high confidence in the
result of the computation is desired
Assurance: Products to be developed for
dependability or other important characteristics

Moore and Seacord,
SSTC 2007 - 29

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

OWG: Vulnerability Status 1
The project has two officers

• Convener, John Benito
• Secretary, Jim Moore
• Still need an Editor

A skeleton document has been completed.
A template for vulnerability descriptions has been
completed.
An initial set of vulnerabilities has been proposed for
treatment.

Moore and Seacord,
SSTC 2007 - 30

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

OWG: Vulnerability Status 2
The body of Technical Report describes
vulnerabilities in a generic manner, including:

• Brief description of application vulnerability
• Cross-reference to enumerations, e.g. CWE
• Categorizations by selected characteristics
• Description of failure mechanism, i.e. how coding

problem relates to application vulnerability
• Points at which the causal chain could be broken
• Assumed variations among languages
• Ways to avoid the vulnerability or mitigate its effects

Annexes provide language-specific treatments of
each vulnerability.

Moore and Seacord,
SSTC 2007 - 31

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

OWG: Vulnerability Status 3
OWGV maintains a web site for its work:
http://aitc.aitcnet.org/isai/
Meeting schedule:

• OWGV #5 2007-07-18/20 SCC, Ottawa, Canada
• OWGV #6 2007-10-1/3 Kona, Hawaii, USA
• OWGV #7 2007-12 (during week of 10 - 14) SEI,

Pittsburgh, PA, USA

Moore and Seacord,
SSTC 2007 - 32

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

OWG:Vulnerability Product
A type 3 Technical Report

• A document containing information of a different kind from that which
is normally published as an International Standard

Scope:
• The TR describes a set of common mode failures that occur across

a variety of languages.
• The document will not contain normative statements, but information

and suggestions.

No single programming language or family of programming
languages is to be singled out

• As many programming languages as possible should be involved
• Need not be just the languages defined by ISO Standards

Moore and Seacord,
SSTC 2007 - 33

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Dual Approach to Identifying Vulnerabilities

Empirical approach: Observe the vulnerabilities that
occur in the wild and describe them, e.g. buffer
overrun, execution of unvalidated remote content
Analytical approach: Identify potential vulnerabilities
through analysis of programming languages

The second approach may help us
identify tomorrow’s vulnerabilities.

Moore and Seacord,
SSTC 2007 - 34

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Analytical Approach
Vulnerabilities occur when software behaves in a manner that
was not predicted by a competent developer. Sources of such
vulnerabilities include:

• Issues arising from lack of knowledge
— Complex language features or interactions of features that may be

misunderstood

— Portions of the language left unspecified by the standard

— Portions of the language that are implementation-defined

— Portions of the language that are specified as undefined

• Issues arising from human cognitive limitations, i.e, exceeding the
human ability to understand

• Issues arising from non-standard extensions of languages

Moore and Seacord,
SSTC 2007 - 35

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Language-Independent Vulnerability Description Example 1

6.1 SM-004 Out of bounds array element access
6.1.1 Description of application vulnerability
Unpredictable behaviour can occur when accessing the elements of an array
outside the bounds of the array.
6.1.2 Cross reference
CWE: 129
6.1.3 Categorization
Section 5.1.2
6.1.4 Mechanism of failure
Arrays are defined, perhaps statically, perhaps dynamically, to have given bounds. In order to access an element of the array, index values for one or
more dimensions of the array must be computed. If the index values do not fall within the defined bounds of the array, then access might occur to the
wrong element of the array, or access might occur to storage that is outside the array. A write to a location outside the array may change the value of
other data variables or may even change program code.

6.1.5 Possible ways to avoid the failure
The vulnerability can be avoided by not using arrays, by using whole array operations, by checking and preventing access beyond the bounds of the
array, or by catching erroneous accesses when they occur. The compiler might generate appropriate code, the run-time system might perform checking,
or the programmer might explicitly code appropriate checks.

Moore and Seacord,
SSTC 2007 - 36

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Language-Independent Vulnerability Description Example 2

6.1.6 Assumed variations among languages
This vulnerability description is intended to be applicable to languages with the
following characteristics:

• The size and bounds of arrays and their extents might be statically determinable or dynamic. Some languages provide both capabilities.

• Language implementations might or might not statically detect out of bound
access and generate a compile-time diagnostic.

• At run-time the implementation might or might not detect the out of bounds access and provide a notification at run-time. The notification
might be treatable by the program or it might not be.

• Accesses might violate the bounds of the entire array or violate the bounds of a particular extent. It is possible that the former is checked
and detected by the implementation while the latter is not.

• The information needed to detect the violation might or might not be available depending on the context of use. (For example, passing an
array to a subroutine via a pointer might deprive the subroutine of information regarding the size of the array.)

• Some languages provide for whole array operations that may obviate the
need to access individual elements.

• Some languages may automatically extend the bounds of an array to accommodate accesses that might otherwise have been beyond the
bounds. (This may or may not match the programmer's intent.)

Moore and Seacord,
SSTC 2007 - 37

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Language-Independent Vulnerability Description Example 3

6.1.7 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the
following ways:

• If possible, utilize language features for whole array operations that obviate the need to access individual
elements.

• If possible, utilize language features for matching the range of the index variable to the dimension of the array.
• If the compiler can verify correct usage, then no mitigation is required beyond performing the verification.

• If the run-time system can check the validity of the access, then appropriate action may
depend upon the usage of the system (e.g. continuing degraded operation in a safety-critical system versus immediate termination of a
secure system).

• Otherwise, it is the responsibility of the programmer:
— to use index variables that can be shown to be constrained within the extent of the array;
— to explicitly check the values of indexes to ensure that they fall within the bounds of the corresponding dimension of the array;
— to use library routines that obviate the need to access individual elements; or
— to provide some other means of assurance that arrays will not be accessed beyond their bounds. Those other means of assurance

might include proofs of correctness, analysis with tools, verification techniques, etc.

Moore and Seacord,
SSTC 2007 - 38

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Desired Outcomes
Provide guidance to users of programming
languages that :

• Assists them in improving the predictability of the
execution of their software even in the presence of an
attacker

• Informs their selection of an appropriate programming
language for their job

Provide feedback to language standardizers,
resulting in the improvement of programming
language standards.

Moore and Seacord,
SSTC 2007 - 39

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

For More Information
Visit web sites:

https://www.securecoding.cert.org/
http://aitc.aitcnet.org/isai/

Contact presenters:
Robert C. Seacord
rcs@cert.org
James Moore
moorej@mitre.org

