Contents

1 Abstract

2 Revision history

3 Analysis

4 Wording

5 Acknowledgements

6 References

Restoring Private Module Fragments

Document #:
Date:
Project:
Audience:
Reply-to:

P3838R0

2025-08-13

Programming Language C++
Core Working Group

Alisdair Meredith
<ameredith1@bloomberg.net>

mailto:ameredith1@bloomberg.net

1 Abstract

This paper restores the preprocessor grammar that permits the declaration of private module fragments during
translation phase 7.

2 Revision history

RO August 2025 (pre-Kona mailing)
Initial draft of this paper.

3 Analysis

Paper [P3034R1] amended the grammar for pp-module directives to forbid macro names in the identifiers that
will become the module name and partition in translation phase 7. In amending the grammar, the module-name
before the module-partition became non-optional. However, this change then makes a private module fragment
ill-formed in translation phase 4:

module : private;

Note the keyword private is not a partition name in phase 7, even though that is the grammar position it
occupies in phase 4. Most importantly though, observe the lack of a module name.

The fix seems simple, just make the module-name optional. However, once we make this change we can simplify
the presentation considerably. In order to ensure that the module-name is a non-optional part of the optional
pp-tokens following the identifier module, we moved the grammar decomposing the module name and partition
into a separate specification that redundantly defines how to parse a sequence of preprocessor tokens. Now that
all parts are optional we can integrate the grammar where the rules of the language solve those concerns more
easily.

In addition, the first paragraph is entirely redundant after the application of [P2843R2] that makes all use of
the specified identifiers as macro names ill-formed. We propose turning that paragraph into a note as part of
the simplification of this clause.

4 Wording

Make the following changes to the C++ Working Draft. All wording is relative to [N5008], the latest draft at
the time of writing.

15.5 [cpp.module] Module directive

pp-module:

export,,, module pp-module-name,,, pp-module-partition,,, pp-tokens new-line

opt H

1A pp-module shall not appear in a context where module or (if it is the first preprocessing token of the pp-module)
export is an identifier defined as an object-like macro.
2 The pp-tokens, if any, of a pp-module shall be of the form:
pp-module-name pp-module-partition,,, pp-tokens,,
where the pp-tokens (if any) shall not begin with a (preprocessing token and the grammar non-terminals are
defined as:

pp-module-name:

pp-module-name-qualifier, identifier

pp-module-partition:
i pp-module-name-qualifier,, identifier

pp-module-name-qualifier:
identifier .
pp-module-name-qualifier identifier .

No identifier in the pp-module-name or pp-module-partition shall currently be defined as an object-like macro.

3 Any preprocessing tokens after the module preprocessing token in the module directive are processed just as in
normal text.

1 No identifier in the pp-module-name or pp-module-partition shall currently be defined as an object-like macro.
[Note: The identifiers export and module are not valid macro names. — end note]

2 The pp-tokens, if any, of a pp-module shall not begin with a (preprocessing token and are processed just as in
normal text.

[Note: Each identifier currently defined as a macro name is replaced by its replacement list of preprocessing
tokens. — end note |

43. The module and export (if it exists) preprocessing tokens are replaced by the module-keyword and export-
keyword preprocessing tokens respectively.

[Note: This makes the line no longer a directive so it is not removed at the end of phase 4. — end note |

https://wg21.link/cpp.module

5 Acknowledgements

Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from Mark-
down. Thanks to Michael Spencer for the original work on this feature, and to David Herring for confirming my
understanding of the issue.

6 References
[N5008] Thomas Képpe. 2025-03-15. Working Draft, Programming Languages — C++.
https://wg21.link /n5008

[P2843R2] Alisdair Meredith. 2025-03-17. Preprocessing is never undefined.
https://wg21.link /p2843r2

[P3034R1] Michael Spencer. 2024-03-21. Module Declarations Shouldn’t be Macros.
https://wg21.link /p3034r1

https://wg21.link/n5008
https://wg21.link/p2843r2
https://wg21.link/p3034r1

	Abstract
	Revision history
	Analysis
	Wording
	Acknowledgements
	References

