
NB-Commenting is Not a Vehicle for

Redesigning inplace_vector

Document number: P3830R0
Date: 2025-09-04
Project: Programming Language C++, Library Evolution Working Group
Reply-to: Nevin “☺” Liber, nliber@anl.gov

Table of Contents

Introduction .. 1

Motivation and Scope ... 1
Allocators ..2

Library Evolution Telecon 2024-01-30 ... 2
2024 Tokyo ... 2
2025 Hagenberg (which, according to P1000R6, “C++26 design is feature-complete”) .. 3

Comparisons ..3
2025 post-Hagenberg pre-Sofia telecon .. 3

optional<T&> ..4

Conclusion .. 5

Introduction

inplace_vector is not broken. Ever since the design of inplace_vector was approved

in 2023 in Varna, there have been many attempts to redesign it. It appears there are
last minute attempts to keep doing so, this time under the guise of “fixing” it via NB-
comments.

Motivation and Scope

inplace_vector is not broken.

The return type of inplace_vector::try_push_back(x) is not broken.

The return type of inplace_vector::try_emplace_back(…) is not broken.

mailto:nliber@anl.gov

The design of inplace_vector was approved in the last LEWG session in Varna. Since

then, there have been various attempts to redesign it in the small and in the large,
none of which have passed LEWG. We understand that not everyone is 100% happy

with the final design of inplace_vector, but that is true about almost anything that

needs to be approved via consensus by committee.

Allocators
We debated allocator support multiple times.

Library Evolution Telecon 2024-01-30
LWG wanted LEWG to re-litigate the exception type thrown when adding an element

to a full inplace_vector as well as allocator support. Allocator discussions were

essentially delayed until a paper describing it was available from its proponents. For
completeness, here is the other poll:

POLL: We want to revisit the status quo in the paper: “Inplace_vector throw a “bad_alloc”
when exceeding max_size”.

SF F N A SA

3 4 2 5 4

Attendance: 18

Authors’ position: SAx2

Outcome: No consensus for a change

2024 Tokyo

P3160R0: An Allocator-aware inplace_vector

POLL: We should promise more committee time to pursuing "An Allocator-aware

inplace_vector", knowing that our time is scarce and this will leave less time for other

work.

SF WF N WA SA

6 6 4 5 6

Attendance: 25+9

https://wg21.link/P3160R0

of Authors: 1

Author Position: SF

Outcome: No consensus to pursue

2025 Hagenberg (which, according to P1000R6, “C++26 design is feature-complete”)

P3160R2 An allocator-aware inplace_vector

POLL: Knowing our time is scarce we would like to pursue allocator

support for inplace_vector for C++26

(during this meeting)

SF F N A SA

3 5 1 9 11

Attendance: 32 (IP) + 10 (R)

Author's Position: SF

Outcome: Consensus against.

Let me repeat that: Consensus against. Still, one of the advocates for allocator support
is now trying to get that redesign in under the façade of an NB-comment. But that NB-

comment has no new information. inplace_vector may not meet their exact needs, but

that isn’t a sufficient reason to re-litigate this a third time, nor is it a reason to litigate
this as a “bug fix”. Plus, at this late date such a major design change would more likely

get inplace_vector pulled from C++26 than such a drastic redesign approved in time

by LEWG and LWG.

Comparisons

Library Evolution Telecon 2025-06-03 (post-Hagenberg)

P3698R0 Cross-capacity comparisons for inplace_vector

While some of the inplace_vector authors thought this might be fine, after deeper

ruminations it was discovered that it violated one of the original design principles for

inplace_vector: that of regularity (comparability and constructability go hand in

hand). There were also concerns about the risk in making these changes for C++26
so late in the cycle. While there was weak consensus in favor of this change, no
updated paper appeared in Sofia, and it is unknown if this redesign will be attempted
by NB-comment, or if its authors will wait until the C++29 cycle.

https://wg21.link/P3160R2
https://wg21.link/P3698R0

In summary: initially this change was superficially acceptable, but after deeper
thought brought up more reservations. It may go through for C++29, but we need the
time to think it through. Last minute design changes are risky.

optional<T&>

The return types for try_push_back(x) and try_emplace_back(…) are not broken.

History: In P0843R6 static_vector, they were initially specified to return an

optional<T> (not an optional<T&>). This ended up being undesirable. I was added

as an author on P0843R7 inplace_vector. We authors internally debated whether to

return a bool or a pointer, and I convinced the other authors that returning a pointer

was better because

1. It supported the same use case as bool.

2. It provides more useful information than bool, by giving access to the newly

constructed element.

3. It had no extra overhead (either compile time or run time) over a bool.

We then polled it in LEWG in Varna:

POLL: The signatures and semantics that D0843R7 provides for push_back, emplace_back,

try_push_back,

try_emplace_back, and the unchecked versions are acceptable.

Strongly

Favor

Weakly

Favor
Neutral

Weakly

Against

Strongly

Against

9 7 0 0 0

Attendance: 23 (room) + 3 (remote)

of Authors: 3

Author Position: 3sf

Outcome: Unamimous consensus.

https://wg21.link/P0843R6
https://wg21.link/P0843R7

P3739: Standard Library Hardening – using std::optional<T&>

This is a brand-new design, showing up under the pretense of being an NB-comment.
Even ignoring the hijacking of the term “Hardening” (in the C++26 CD hardening
refers to what happens with hardened preconditions under a hardened
implementation), there are some novel things here, such as returning a const

optional<T&>. Why const? There is no motivation. That makes it novel design, which

is not something one wants to do at the last moment for a stable library.

The paper states that changing the return type of try_*_back(…) from T* to

optional<T&> was discussed. While that may be true (the paper provides no

information on when it was discussed, making it next to impossible to do the
archeology to find the meeting notes of the discussion), it was never polled, nor

mentioned in P0843 inplace_vector, nor mentioned in P2988 optional<T&>.

Because optional<T&> was adopted so late in the cycle (Sofia), we’ve already run into

a number of issues with it: LWG4299, LWG4300 and LWG4308.

Moreso, one of my design principles behind using T* is that it is trivially copyable,

which is important in my work. optional<T&> is not currently guaranteed to be

trivially copyable. Did that fall through the cracks? Probably (given that a typical
implementation is a wrapper around a pointer). Will it get fixed? Probably (I have
filed an NB-comment on it). But how many more things will come up between now
and the final ballot for C++26? It is hard to evaluate the applicability of using

optional<T&> as it is still a moving target. And like comparisons, adopting this

redesign requires much deeper thought.

In my experience, it is fairly rare to use to return value of try_*_back(…) in anything

but a Boolean context, and we shouldn’t be adding more overhead to what is likely to
be an object briefly used as a temporary and thrown away.

Conclusion

inplace_vector is not broken.

The return type of inplace_vector::try_*_back(…) is not broken.

The time for redesign has passed.

https://wg21.link/P3739
https://wg21.link/P0843
https://wg21.link/P2988
https://wg21.link/LWG4299
https://wg21.link/LWG4300
https://wg21.link/LWG4308

	Introduction
	Motivation and Scope
	Allocators
	Library Evolution Telecon 2024-01-30
	2024 Tokyo
	P3160R0: An Allocator-aware inplace_vector

	2025 Hagenberg (which, according to P1000R6, “C++26 design is feature-complete”)
	P3160R2 An allocator-aware inplace_vector

	Comparisons
	Library Evolution Telecon 2025-06-03 (post-Hagenberg)
	P3698R0 Cross-capacity comparisons for inplace_vector

	optional<T&>
	P3739: Standard Library Hardening – using std::optional<T&>

	Conclusion

