
Remove evaluation_exception() from
contract-violation handling for C++26

Peter Bindels (dascandy@gmail.com)
Timur Doumler (papers@timur.audio)
Joshua Berne (jberne4@bloomberg.net)

Eric Fiselier (eric@efcs.ca)
Iain Sandoe (iain@sandoe.co.uk)

Document #: P3819R0
Date: 2025-09-02
Project: Programming Language C++
Audience: LEWG

Abstract

For C++26, we propose to remove the member function evaluation_exception() from the
type std::contracts::contract_violation. On some platforms, an implementation of this
function may require user code execution after a contract violation but before the contract-
violation handler, which may pose a security risk. We can add this function back in future
versions of C++ if it can be shown that the security risk is fully avoidable. In the meantime,
the functionality it offers is available through other means.

1 The status quo
The standard library API for contract-violation handling, added to the C++26 working draft [N5014]
via [P2900R14], contains the type std::contracts::contract_violation. When the program
has a user-defined contract-violation handler, and a contract violation occurs, the implementation
constructs an object of this type and passes a reference to it into the contract-violation handler.
The purpose of the type std::contracts::contract_violation is to provide access to information
about the contract violation that occurred. This includes the source location of the violated assertion
and the failure mode: did the contract predicate evaluate to false, or did evaluation of the predicate
exit via an exception? All information is provided via a set of const member functions.
One of these member functions is evaluation_exception(). It is specified as follows:

exception_ptr evaluation_exception() const noexcept;

If the contract violation occurred because evaluation of the predicate exited via an exception, this
function returns an exception_ptr to that exception; otherwise, it returns a null pointer.
The functionality offered by evaluation_exception() is also available through other means. To
determine whether evaluation of the predicate exited via an exception, we can check whether a call
to the member function detection_mode() returns the enum value evaluation_exception. If it
does, we can call std::current_exception() to obtain an exception_ptr to that exception:

1

mailto:dascandy@gmail.com
mailto:papers@timur.audio
mailto:jberne4@bloomberg.net
mailto:eric@efcs.ca
mailto:iain@sandoe.co.uk


void handle_contract_violation (const contract_violation& cv) {
if (cv.detection_mode() == detection_mode::evaluation_exception) {

auto evaluation_exception_ptr = std::current_exception();
// handle

}

Further, to handle exceptions of a particular type, we can re-throw the current exception in the
contract-violation handler and immediately catch it (this technique is called a Lippincott function):

void handle_contract_violation (const contract_violation& cv) {
if (cv.detection_mode() == detection_mode::evaluation_exception) {

try {
throw;

} catch (std::exception& e) {
// handle

}
}

However, these techniques are more verbose and require more care to use. If no exception was
thrown during the contract check, but the user forgets to query detection_mode(), they will
either fail (if no exception is currently being handled), or worse get an exception that is currently
being handled but that was not the cause of the contract violation (this is possible if the contract
violation occurred within a catch clause handling some other exception). The member function
evaluation_exception() was intended to give the user a simple and direct way to access the
exception thrown during the contract check without having to worry about any other exceptions.

2 The problem
When evaluation_exception() was proposed in [P3227R1] and added to [P2900R14], there
was an assumption that would essentially be syntactic sugar for the simple logic above: check
detection_mode() and invoke std::current_exception() if that mode is evaluation_exception.
However, a problem arises when an exception is thrown within a contract-violation handler and
evaluation_exception() is then invoked within the catch clause handling that internal exception:

void handle_contract_violation (const contract_violation& cv) {
// ...
try {

// ...
throw X;

} catch (...) {
if (cv.detection_mode() == detection_mode::evaluation_exception) {

// the current exception is now X, not whatever was thrown by the contract check!

auto evaluation_exception_ptr = cv.evaluation_exception();
// handle the original exception, not X

}
}

}

In order to always return the exception that originated from evaluating the violated contract
assertion, even inside such a catch clause within the contract-violation handler, the implementation
must do extra work to preserve access to that exception before invoking the contract-violation
handler. In particular, since the adoption of [P2900R14] for C++26 we have learned that on some
platforms, this requires copying the exception object before invoking the contract-violation handler.
Requiring implementations to perform such a copy is problematic as it can lead to user code being
executed after a contract violation has been detected but before the associated contract-violation
handler is called. This, in turn, may pose a security risk (see also [P3417R1]).

2



When a contract violation has been detected, the program may be in an invalid state, for example a
corrupted stack. The contract-violation handler is user code, but it is user code that is expected
to be run in such circumstances, and can be written to be robust against them. On the other
hand, the copy constructor of an arbitrary exception type will typically not be written with such
robustness in mind. For example, it could walk the stack (one might want to save the stack trace at
the time when the exception object was created or copied). This opens up a security vulnerability:
an attacker could corrupt the stack and then use the exception copy constructor to jump to an
arbitrary place and execute arbitrary code.
On platforms implementing the Itanium ABI (GCC, Clang), there is a known implementation
strategy for evaluation_exception() that avoids such a copy of the exception object. However,
for the Microsoft ABI, we were unfortunately so far unable to confirm the existence of such an
implementation strategy. In the general case, the C++ exception API does not yet expose a way to
implement this feature without potentially making a copy. Thus, implementing this function would
put a new requirement on all future exception-handling implementations.

3 Proposal
The contract-violation handling mechanism in the C++26 working draft (as originally proposed in
[P2811R7], which did not yet contain evaluation_exception()) was carefully designed to avoid
potential security risks. To this end, it consciously avoided executing user-defined code or mandating
any operations that might be overly non-trivial after a contract violation has occurred but before
the call to the contract-violation handler.
Unless and until we can be sure that evaluation_exception() is implementable on all platforms
without violating this design principle, we should not ship it in a C++ Standard. We therefore
propose to remove the member function evaluation_exception() entirely before shipping C++26.
This function can easily be added back in future versions of C++ when we have a better understanding
of the potential security risks.
In the meantime, users can access an exception thrown from a contract check through other means,
such as by using std::current_exception() and Lippincott functions. As discussed above, these
techniques have known gotchas, but they can be used correctly and efficiently and do not come with
security concerns. On some platforms, accessing the exception may still incur a copy, but that copy
happens inside the user-defined contract-violation handler, where the user has full control over it.

4 Wording
The proposed wording is relative to [N5014].
Modify the header <contracts> synopsis ([contracts.syn]) as follows:

class contract_violation {
// no user-accessible constructor

public:
contract_violation(const contract_violation&) = delete;
contract_violation& operator=(const contract_violation&) = delete;

/* see below */ ~contract_violation();

const char* comment() const noexcept;
detection_mode detection_mode() const noexcept;
exception_ptr evaluation_exception() const noexcept;
bool is_terminating() const noexcept;

3



assertion_kind kind() const noexcept;
source_location location() const noexcept;
evaluation_semantic semantic() const noexcept;

};

Remove the following paragraph from [support.contract.violation]:

exception_ptr evaluation_exception() const noexcept;

Returns: If the contract violation occurred because the evaluation of the predicate exited
via an exception, an exception_ptr object that refers to that exception or a copy of that
exception; otherwise, a null exception_ptr object.

References

[N5014] Thomas Köppe. Working Draft, Standard for Programming Language C++. https:
//wg21.link/n5014, 2025-08-05.

[P2811R7] Joshua Berne. Contract-violation handlers. https://wg21.link/p2811r7, 2023-06-27.

[P2900R14] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r14, 2025-02-13.

[P3227R1] Gašper Ažman and Timur Doumler. Fixing the library API for contract violation
handling. https://wg21.link/p3227r1, 2025-02-27.

[P3417R1] Gašper Ažman and Timur Doumler. Handling exceptions thrown from contract predicates.
https://wg21.link/p3417r1, 2025-02-27.

4

https://wg21.link/n5014
https://wg21.link/n5014
https://wg21.link/p2811r7
https://wg21.link/p2900r14
https://wg21.link/p2900r14
https://wg21.link/p3227r1
https://wg21.link/p3417r1

	1 The status quo
	2 The problem
	3 Proposal
	4 Wording
	References

