
Document number: 	 P3813R0

Date: 	 2025-09-10

Project: 	 Programming Language C++

Audience:	 LEWG

Reply-to:	 Michael Florian Hava <mfh.cpp@gmail.com>
1

execution::task::valueless()

Abstract
This paper proposes to add a valueless member function to execution::task.

Tony Table

Revisions
R0: Initial version

Motivation
Types with empty states aren’t extraordinary in C++, but types with unrecoverable empty states
are. The former category includes pointers, optional, variant and string. The latter category 2

is defined by indirect, polymorphic, generator and execution::task.

In general objects in an unrecoverable empty state can only destroyed or assigned to, as all their
other operations have a precondition on the object not being in this state. Even though this state
shouldn’t be observed in a valid program, we’ve added valueless_after_move to indirect and
polymorphic to guard against it.

There is currently no way to check for this state in generator or task. We originally wanted to
propose an API for both of these types, but after examining existing implementations, we’ve
decided to move extensions to generator into a future paper.

Design Space
A task can be in the unrecoverable empty state only if it was involved in a move operation, or
connect was previously called. As there is little value in differentiating these two reasons for the
empty state, we are proposing only one member function:

We don’t propose a task::state::valueless as contrary to task, task::state is not user-
facing and will almost exclusively be used in the context of executors.

Before Proposed
task<int> t = …;

//is it safe to use t?

auto res = sync_wait(t);

task<int> t = …;

contract_assert(not t.valueless());

auto res = sync_wait(t);

bool valueless() const noexcept;

 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at1

 variant has an extraordinary, yet recoverable empty state.2

1

mailto:michael.hava@risc-software.at
mailto:mfh.cpp@gmail.com

Impact on the Standard
This proposal is a pure library addition. Existing standard library classes are modified in a non-
ABI-breaking way.

Proposed Wording
Wording is relative to [N5014]. Additions are presented like this, removals like this and drafting
notes like this.

[version.syn]

[exec.task]

[task.members]

Acknowledgements
Thanks to RISC Software GmbH for supporting this work.

#define __cpp_lib_task YYYYYMM202506L // also in <execution>

[DRAFTING NOTE: Adjust the placeholder value as needed to denote the proposal’s date of adoption.]

??.??.?.? Class template task [task.class]

namespace std::execution {
 template<class T, class Environment>
 class task {
 …
 ~task();

 bool valueless() const noexcept;

 template<receiver Rcvr>
 state<Rcvr> connect(Rcvr&& rcvr);
 };
}

??.??.?.? task members [task.members]

−task();

2 Effects: Equivalent to:

 if (handle)
 handle.destroy();

bool valueless() const noexcept;

3 Returns: bool(handle) is false.

template<receiver Rcvr>
 state<Rcvr> connect(Rcvr&& recv);

34 Preconditions: bool(handle)valueless() is truefalse.

2

http://wg21.link/N5014
https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design Space
	Impact on the Standard
	Proposed Wording
	Acknowledgements

