
Document number: 	 P3786R0

Date: 	 2025-08-21

Project: 	 Programming Language C++

Audience:	 LEWG

Reply-to:	 Michael Florian Hava <mfh.cpp@gmail.com>
1

Tuple protocol for fixed-size span

Abstract
This paper proposes amending fixed-size spans with the tuple protocol, enabling structured
binding, integration with views::elements and pattern matching once it is approved.

Tony Table

Revisions
R0: Initial version

Motivation
The tuple-protocol has been introduced in C++11 and has been supported for array, tuple and
pair ever since. With structured bindings (C++17) this protocol was made an integral
customisation point for users to tap into a language feature - something that is bound to become
even more important with the introduction of pattern matching in a future standard.

Support for the tuple-protocol has been applied to ranges::subrange and complex in C++20
and C++26 respectively. At the time of writing the only fixed-size library types that do not support
structured binding are: bitset, integer_sequence and span.

We can come up with rationales for why the first two in this list do not support it: the former would
have to provide proxy-references, something currently not supported by structured binding, the

Before Proposed
span<int, 3> s{…};

auto & x{s[0]};
auto & y{s[1]};
auto & z{s[2]};

span<int, 3> s{…};

auto & [x, y, z]{s};

vector<span<int, 3>> ss{…};

auto firsts{ss | views::transform(auto s) {
 return s[0];
 })
 | ranges::to<vector>()};

vector<span<int, 3>> ss{…};

auto firsts{ss | views::elements<0>
 | ranges::to<vector>()};

❌ span is not compatible with pattern matching //interaction with pattern matching proposal P2688R5

span<double, 2> p{…};

p match {
 [0, 0] => std::println("at origin");
 [let x, 0] => std::println("on x-axis at {}", x);
 [0, let y] => std::println("on y-axis at {}", y);
 let [x, y] => std::println("at {}, {}", x, y);
};

 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at1

1

mailto:michael.hava@risc-software.at
mailto:mfh.cpp@gmail.com

latter is a meta-programming tool primarily used for deduction of its values. For span we lack
such a clear rationale.

In fact P1024 already proposed this feature - together with several other useful additions and got
accepted during the C++20 cycle. After its approval LWG3212 was filled, as the approved design
would have resulted in tuple_element_t<const span<T, 3>> yielding const T. Per P2116 the
feature was dropped from C++20.

Design Space
Given the established design of the tuple-protocol there is little to discuss, apart from revisiting
the issue that previously lead to the removal of this feature.

Our design is based on the fact that span has reference semantics - top-level cv-qualifiers are
ignored for all operations. Instead of trying to come up with different semantics we just lift this
design into the tuple-protocol:

• tuple_size<cv1 span<cv2 T, N>>::value == N

• tuple_element<I, cv1 span<cv2 T, N>>::type == cv2 T

• decltype(get (span<cv T, N>)) == cv T 2

All of which is only valid if N != dynamic_extent.

Support for volatile is deprecated - as it already is for existing uses of the tuple-protocol. In
addition to the above, we adjust the exposition-only tuple-like concept to include fixed-size
spans, enabling support for adaptors like views::elements.

Impact on the Standard
This proposal is a library extension changing the meaning of tuple-like<span<T, E>>. Given
this concept is exposition-only, we don’t expect (nor could we observe) breaking changes.

Implementation Experience
The proposed design has been implemented at https://godbolt.org/z/d6n7eMvEK.

Proposed Wording
Wording is relative to [N5014]. Additions are presented like this, removals like this and drafting
notes like this.

[version.syn]

[tuple.like]

#define __cpp_lib_tuple_like 202311LYYYYMML //also in <utility>, <tuple>, <map>, <unordered_map>

[DRAFTING NOTE: Adjust the placeholder value as needed to denote the proposal’s date of adoption.]

??.??.? Concept tuple-like [tuple.like]

template<class T>
 concept tuple-like = see below; //exposition only

1 A type T models and satisfies the exposition-only concept tuple-like if remove_cvref_t<T> is a specialization of array, complex,
pair, tuple, or ranges::subrange.:

(1.1) — array, complex, pair, tuple, ranges::subrange, or

(1.2) — span and remove_cvref_t<T>::extent is not equal to dynamic_extent.

 Note: instead of the traditional four overloads, we just provide one function that takes the span by value.2

2

http://wg21.link/P1024
http://wg21.link/lwg3212
http://wg21.link/P2116
https://godbolt.org/z/d6n7eMvEK
http://wg21.link/N5014

[views.contiguous]
??.?.?.? Header synopsis [span.syn]

// mostly freestanding

namespace std {
…
 // [views.span], class template span
…
 template<class ElementType, size_t Extent>
 constexpr bool ranges::enable_borrowed_range<span<ElementType, Extent>> = true;

 // [span.tuple], tuple interface

 template<class T> struct tuple_size;
 template<size_t I, class T> struct tuple_element;
 template<class ElementType, size_t Extents>
 struct tuple_size<span<ElementType, Extents>>;
 template<class ElementType, size_t Extents>
 struct tuple_size<const span<ElementType, Extents>>;
 template<size_t I, class ElementType, size_t Extents>
 struct tuple_element<I, span<ElementType, Extents>>;
 template<size_t I, class ElementType, size_t Extents>
 Struct tuple_element<I, const span<ElementType, Extents>>;
 template<size_t I, class ElementType, size_t Extents>
 constexpr ElementType& get(span<ElementType, Extents>) noexcept;

 // [span.objectrep], views of object representation
…
}

??.?.?.? Class template span [views.span]

…

??.?.?.?.? Iterator support [span.iterators]

…

constexpr reverse_iterator rend() const noexcept;

6 Effects: Equivalent to: return reverse_iterator(begin());

??.?.?.? Tuple interface [span.tuple]

template<class ElementType, size_t Extents>
 struct tuple_size<span<ElementType, Extents>> : integral_constant<size_t, Extents> {};
template<class ElementType, size_t Extents>
 struct tuple_size<const span<ElementType, Extents>> : integral_constant<size_t, Extents> {};

template<size_t I, class ElementType, size_t Extents>
 struct tuple_element<I, span<ElementType, Extents>> {
 using type = ElementType;
 };
template<size_t I, class ElementType, size_t Extents>
 struct tuple_element<I, const span<ElementType, Extents>> {
 using type = ElementType;
 }:

1 Mandates:

(1.1) — Extents != dynamic_extents is true, and

(1.2) — I < Extents is true.

template<size_t I, class ElementType, size_t Extents>
 constexpr ElementType& get(span<ElementType, Extents> s) noexcept;

2 Mandates:

(2.1) — Extents != dynamic_extents is true, and

(2.2) — I < Extents is true.

3 Effects: Equivalent to: return s[I];

??.?.?.? Views of object representation [span.objectrep]

3

[depr]
Add a new entry to Annex D, preferably close to [depr.tuple]:

Acknowledgements
Thanks to RISC Software GmbH for supporting this work. Thanks to Tomasz Kamiński for initially
pointing us to P1024 and advising on wording.

D.?? Span tuple interface [depr.span.tuple]

1 The header has the following additions:

namespace std {
 template<class ElementType, size_t Extents>
 struct tuple_size<volatile span<ElementType, Extents>>;
 template<class ElementType, size_t Extents>
 struct tuple_size<const volatile span<ElementType, Extents>>;

 template<size_t I, class ElementType, size_t Extents>
 struct tuple_element<volatile span<ElementType, Extents>>;
 template<size_t I, class ElementType, size_t Extents>
 struct tuple_element<const volatile span<ElementType, Extents>>;
}

template<class ElementType, size_t Extents>
 struct tuple_size<volatile span<ElementType, Extents>> : integral_constant<size_t, Extents> {};
template<class ElementType, size_t Extents>
 struct tuple_size<const volatile span<ElementType, Extents>> : integral_constant<size_t, Extents> {};

template<size_t I, class ElementType, size_t Extents>
 struct tuple_element<volatile span<ElementType, Extents>> {
 using type = ElementType;
 };
template<size_t I, class ElementType, size_t Extents>
 struct tuple_element<const volatile span<ElementType, Extents>> {
 using type = ElementType;
 };

2 Mandates:

(2.1) — Extents != dynamic_extents is true, and

(2.2) — I < Extents is true.

4

https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design Space
	Impact on the Standard
	Implementation Experience
	Proposed Wording
	Acknowledgements

