
Clarifying the interaction of the literal and execution

encodings
Document #: P3670R0
Date: 2025-04-16
Programming Language C++
Audience: SG-16
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Motivation

C++ juggles multiple encodings per type (literal, execution, and environment). We like to
consider them separate because they are controlled by different actors (person compiling
the program versus the person running it). However, we found it is hardly possible to reason
about the behavior of a program that makes that distinction.

A char is just an integer, and interpreting it differently depending on whether it ”comes from”
a literal (across copies and other transformations) or not is simply not possible. Same for
multibyte characters and strings.

It is also not something users can be expected to do. Users will concatenate strings originating
from literals, execution, and files and expect a sensible outcome.

SG-16 has spent countless hours (not a hyperbole!) discussing the merit of referring to
literal versus execution encodings for various interfaces, recently thread names, standard
exceptions, format/print.

In particular, std::format assumes that the literal encoding is a good proxy for the encoding
of the format string and any string argument, even if all of these elements can be in the
execution encoding.

We decided a thread name was also in the literal encoding because that theoretically leads to
better outcomes on some platforms - because the execution encoding is degraded at startup
(Per the C standard (7.11.2 The setlocale function)), whereas the literal encoding is not. Yet
thread names functions being system interfaces deal in string in the execution encoding.

The reason these decisions pan out in practice is that

• On many platforms, these encodings are always the same anyway.

• In places where they aren’t, no amount of wording will lead to a better or worse outcome.

Internet was a mistake

In the days of yore, compiling a program in the environment where it would run was the norm.
When the compiler picks the execution encoding on the platform it runs on, and the compiled

1

mailto:corentin.jabot@gmail.com


program runs on the same platform, mojibake does not occur. How people deployed their
C++ software changed, and C++ did not adapt.

The Windows conundrum

Most Linux, Apple, and Android systems default to UTF-8 for the execution encoding. Windows
doesn’t. And yet, we see users compile with the /utf8 MSVC flag - a flag that sets both the
source file encoding and the literal encoding. (/execution-charset).

Clang-cl only supports UTF-8 as execution encoding, and all packages in the vcpkg repository
use UTF-8 as the execution encoding.

So, Windows is a platform where the literal and execution encoding are routinely different.
You would expect that in places where the standard infers the execution encoding from the
literal encoding, things would go haywire. Yet they seemingly do not - or rather fine enough
not to inconvenience a majority of users.

This paradox can be explained by the fact we have started to leverage Unicode support
in Windows, bypassing standard utilities and their locale-related behavior (std::print calls
WriteConsoleOutputW on Windows), and in part because things have been broken long enough
that users learn not to rely on locale-related standard features to handle characters outside
of the basic character sets.

Mojibake, normatively

So, we are in a situation where conflating the literal encoding and the execution encoding is
incorrect. Yet, it is inevitable. The status quo is unfixable yet seemingly good enough.

I’m trying to get us (SG-16) to acknowledge that we cannot reason about environments where
literal and execution encoding differ. And that this is fine. And to codify it in the standard.
Again, this is a precedent set by std::print, and no one complained.

In particular, what wewant to do is hint atmojibake in some scenarios. In previous discussions,
people were concerned about describing Mojibake as UB.

I think UB is certainly the most apt description, given that unintentionally changing the
meaning of text is certainly not reasonable from a correctness standpoint, and that arguably
garbled text can be leveraged to exploit vulnerabilities.

However, any formulation that roughly said, ”This is not a use case that we can support, and
you get what you get” would be an acceptable outcome.

Proposed change

This paper adds non-normative notes reflecting our understanding. No functional change is
proposed.

2

https://worst.fit/


Future work

Ultimately, there isn’t much we can do better interpret the encoding of an arbitrary char,
Besides tracking what the industry is doing and educating our users on the pitfalls of mixing
different encodings, and on the effects of various flags and platform settings.

A lot of languages have solved that problem by assuming UTF-8 consistently, in line with the
UTF-8 everywhere, the idea being that if every single actor in a system independently assumes
the same encoding (UTF-8), then mojibake simply cannot happen.

Alas, C++ is less in a position to make that shift today, at least not on every platform. We
should, however, improve char8_t, as this type communicates its encoding clearly.

We should also revisit that a program behaves as-if setlocale(LC_ALL, "C") is called at startup.
Changing the locale makes sense - arguably (and certainly can’t be changed). However, if the
initial locale is, for example, ja_JP.utf8, then we probably want the initial locale to be set by
setlocale(LC_ALL, "C.utf8") on platforms where this is available. The encoding is a property
of the environment and, ideally, would not be modified by the program.

Wording

�? Character sequences [character.seq]

�? General [character.seq.general]

The C standard library makes widespread use of characters and character sequences that
follow a few uniform conventions:

• Properties specified as locale-specific may change during program execution by a call
to setlocale(int, const char*) [clocale.syn], or by a change to a locale object, as de-
scribed in [locales] and [input.output].

• The execution character set and the execution wide-character set are supersets of the basic
literal character set [lex.charset]. The encodings of the execution character sets and the
sets of additional elements (if any) are locale-specific. Each element of the execution
wide-character set is encoded as a single code unit representable by a value of type
wchar_t. [Note: The encodings of the execution character sets can be unrelated to any
literal encoding. —end note ]
[Note: If any element of the literal character set does not have the same (or any) repre-
sentation in the execution encoding as it does in the literal encoding, passing a sequence
of characters encoded in the literal encoding to a standard library function expecting
an argument in the execution encoding can produce unexpected effects or result in
undefined behavior.

Similarly, library functions, which expect their arguments in the literal encoding, may
produce unexpected effects or result in undefined behavior when passed character
sequences in the execution encoding, which are not valid in the literal encoding.] —end
note ]

3

https://utf8everywhere.org/


[Note: Sequences of characters are never assumed to be in the execution or wide
execution encodings during constant evaluation] —end note ]

References

[N5008] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N5008

4

https://wg21.link/N5008

	1 Motivation
	1.1 Internet was a mistake
	1.2 The Windows conundrum
	1.3 Mojibake, normatively

	2 Proposed change
	3 Future work
	4 Wording
	4.1 Character sequences
	4.1.1 General



