
P3561: Index based coproduct operations on

variant, and library wording

P3561R2

Esa Pulkkinen

esa.pulkkinen@iki.fi

April 6, 2025

Revision History

Revision Date Author(s) Description

P3561R0 8.1.2025 Esa Pulkki-
nen

Initial version for C++ standardization

P3561R1 15.1.2025 Esa Pulkki-
nen

Clarify valueless_by_exception() = true

scenario
P3561R2 6.4.2025 Esa Pulkki-

nen
Describe semantics of
valueless_by_exception() = true

scenario. Many fixes to indices in
the description of the categorical
semantics. Expanded description of
loose ends.

1 Introduction

This paper is intended for WG21, C++ standardization committee, in particu-
lar, should be reviewed by SG18 LEWGI and LEWG.

This paper is intended to formalize changes to C++ standard for introducing
index-based coproduct visit operations for variant to C++.

1.1 Motivation and scope

There is a known problem with C++ std::variant’s visit operations, which
are useful when variant’s branches do not have multiple uses of same types as
branches. When using the overloaded visiting, only differences encoded in types
would be allowed, but when multiple branches have same type, the behaviour
of the visit operations using an overload-set based matching does not allow
distinguishing them.

1

This came up for class invariants in P3361 [7], which attempted to rely on
coproducts in category theory to describe semantics of class invariants and con-
tract checking in general, however current std::variant implementation didn’t
quite support sufficient operations, and therefore linking coproduct semantics
with current approach in std::variant seemed difficult.

Here are some examples, what you might need to do to use a variant:

std::variant <int ,int ,int > v{std:: in_place_index

<0>,10}; // OK

// ill -formed , also can’t determine which int:

// std:: visit(v, [](int i) { ... })

int x = std::get <0>(v); // works

int y = std::get <1>(v); // throws exception

// ill -formed , and can’t tell which int was selected

:

// int z = std::get <int >(v);

// ugly , inefficient code , but works:

int a;

try {

a = std::get <0>(v);

} catch (std:: bad_variant_access &e) {

try {

a = std::get <1>(v);

} catch (std:: bad_variant_access &e) {

a = std::get <2>(v);

}

}

// also ugly:

if (int * ap0 = std::get_if <0>(&v)) {

a = *ap0;

} else if (int *ap1 = std::get_if <1>(&v)) {

a = *ap1;

} else if (int *ap2 = std::get_if <2>(&v)) {

a = *ap2;

} else { throw std:: bad_variant_access (); }

// ugly , procedural style code , but works , now all

// branch -specific code now is inside the switch -

case:

switch (v.index ()) {

case 0: a = std::get <0>(v); break;

case 1: a = std::get <1>(v); break;

case 2: a = std::get <2>(v); break;

default: throw std:: bad_variant_access ();

}

std::variant <std::tuple <int ,int >, std::pair <int , std

2

::string > > v{

std:: in_place_index <0>, std:: make_tuple (2,3)

};

auto f = [](int x , int y) { return x + y; };

auto g = [](int x, std:: string name) { return x +

name.length (); }

// now arguments to either f and g are in variant ,

but how to call it?

int res = 0;

switch (v.index ()) {

case 0: res = std:: apply(f,std::get <0>(v)); break;

case 1: res = std:: apply(g,std::get <1>(v)); break;

default: throw std:: bad_variant_access ();

}

To a functional programmer, all of the above examples seem very compli-
cated and procedural.

It’s possible nonetheless to distinguish different branches using index based
lookup from variant, that is, std::get<I> for a compile-time index. However
these are not particularly useful when the index of the chosen branch is not
known at compile-time. This is in particular necessary to support correct pat-
tern matching operations for representing a coproduct in category theory using
variant. In particular, a coproduct has “injections”, which are represented by
already existing variant constructors that use index, and “index based case
matching”, which are described here.

It’s important to see that order of declaration now matters, and the functions
to process data from variant must be given in the same order they are declared in
the variant. But that’s because it’s the indexing that is used to match branches
of the variant with actual functions.

Here are some examples of how index based case matching could work.

std::variant <int ,std::string , int > v{std::

in_place_index <2>, 66};

std::variant <int ,std::string , int > w{std::

in_place_index <1>, "foo"};

// order of branches matters:

auto compute = invoke_cases(

[](int i) -> int { return i; },

[](std:: string const &s) -> int { return s.

length (); },

[](int j) -> int { return j + 100; }

);

std::cout << "res=" << compute(v) << "," << compute(

w) << std::endl;

using message = std::tuple <int ,int >;

using message2 = std::pair <int ,std::string >;

std::variant <message , message2 > args{

3

std:: in_place_index <0>, std:: make_tuple (3,4)

};

std::variant <message , message2 > args2{

std:: in_place_index <1>, std:: make_pair(3,"

teststring")

};

auto analyze = apply_cases(

[](int x, int y) -> int { return x + y; },

[](int x, std:: string const &y) -> int {

return x + y.length (); });

int result = analyze(args);

int result2 = analyze(args2);

int result3 = visit_apply_cases(args ,

[](int x, int y) -> int { return x + y; },

[](int x, std:: string const &y) -> int {

return x + y.length (); });

auto tup = std:: make_tuple(

[](int x, int y) -> int { return x + y; },

[](int x, std:: string const &y) -> int { return x

+ y.length (); }

);

int result4 = visit_apply(args ,tup);

int result5 = visit_apply(args2 ,tup);

For the coproduct index based case matching, the important consideration
is that it allows combining several functions indexed by a compile-time integer
into one function, whose input is a variant whose branches are indexed simi-
larly by the integer. Such operation is often considered primitive in functional
programming languages such as Haskell [1].

As summary, the plan is to support following operations:

operation multi-parameter functions variant first parameter multiple functions

visit invoke No Yes Tuple
visit invoke cases No Yes Variadics

invoke cases No No Variadics
visit apply Yes Yes Tuple

visit apply cases Yes Yes Variadics
apply cases Yes No Variadics

The idea in naming these operations is that “invoke” is used if functions have
one parameter, “apply” for cases where more than one parameter is supported.
The “cases” suffix is used if the functions are listed as variadic arguments. The
“visit” prefix is used if the first argument is the variant to be analyzed. If not,
then to call the operation, you need two calls, where first call is for a list of
functions, and second call passes in the variant.

4

2 Categorical semantics

The appropriate category theory commutative diagram is the definition of the
coproduct. The definitions for these are well known [2] [3]. Notice that these
are intended to represent coproduct of arbitrary number of alternatives, not the
binary coproducts. The extension to more than two alternatives is a standard
construction.

Ai ∐kAk

B

fi

ini

[fk]

There is a simple mechanism for visiting a variant which allows matching by
index. The ini is the constructor for variant indexed by compile-time constant
i. The [fk] = [fk]k∈[0,n−1] will be called invoke_cases(f0, ..., fn−1) and satisfies

the principle that invoke_cases(f0, ..., fn−1)(ini(xi)) = fi(xi).
Notice the indices i and k vary independently. This is the source of content

of the coproduct commutative diagram. For every i it must be that the same set
of indices k satisfies fi = [fk]◦ ini. Thus [fk] must include all fi for i ∈ [0, n−1].
So it’s the coproduct injection ini (a.k.a. variant constructor) which chooses
which function from fk the composition represents.

The parameter to fi has type xi : 1 → Ai, and since the type depends on
the index, I’ve used index for xi as well.

The visit_invoke operation described above doesn’t support functions
where the function takes more than one parameter. To support that case, I
will add a new operation which uses std::apply to apply the function on the
variant branch to multiple arguments that are described in a tuple. This pro-
vides a generalization where functions to deconstruct the variant are not limited
to functions of one argument. So in that case each branch of the variant should
be a tuple of parameters, which would be passed on to the functions in the
tuple.

Therefore, I allow each Ai to be a product. The C++ implementation will
support separate functions to support functions fi that take multiple parame-
ters, as a generalization of the one-parameter case. The corresponding function
to invoke_cases will be called apply_cases. That satisfies the same principle
than invoke_cases, except that it allows multiple parameter functions, and
requires the arguments to be wrapped in a tuple. So each Ai in that case is con-
sidered to be of form ΠjUij , and corresponding functions fi : (ΠjUij) → B. So
apply_cases(f0, ..., fn−1)(ini(〈xi0, ..., xi(ki−1)〉)) = fi(xi0, ..., xi(ki−1)), where
i ∈ [0, n− 1] and j ∈ [0, ki − 1].

Notice that it is not required that the functions take same number of pa-
rameters, and thus the number of parameters of each function, ki, is indexed by
i.

In C++, the variant has a special case of valueless_by_exception, which
describes the scenario when move-assignment, copy-assignment, type changing
assignment or type changing emplace operation raises exception. In such cases,
the variant is initialized with the special value. To describe semantics of that
special scenario as extension to the normal coproduct semantics, I add following
commutative diagrams:

5

Γ× E ⊥ Ai B

Γ 1 ∐kAk ∐kAk × E′ ⊥

throw

π

⊥Ai

⊥1 ini

fi

!Γ init

〈id,ǫ〉

[fi]

assigni(ai)

throw

⊥B

The valueless_by_exception scenario can be identified as the case where
Γ = ∐kAk and ai in assigni(ai) is ai = ⊥Ai

◦throw◦〈idΓ, e〉 for some exception
object constructor e.

Here init is a special operation to construct the empty variant describ-
ing the valueless_by_exception scenario and ǫ ∈ E′ is the corresponding
bad_variant_access exception object thrown if the variant is valueless. The
point here is to say that any exception that occurs when constructing the variant
object may leave the variant in an unique valueless by exception state, where
observing the variant’s state will produce exceptions. ⊥B are the initial mor-
phisms and !Γ is the terminal morphism. I do assume the categorical model
of C++ has terminal objects, initial objects, binary products, products, co-
products and exponentials. When one of the variant’s branches is the terminal
object, Ai = 1, it’s important to be able to distinguish this empty scenario from
the ini scenario, so the init operation should be identified by an (unspecified)
index, that is not present for any of the variants’ non-empty branches.

The distinction between the empty variant scenario and valid values is by
existence of the index i for variant created using the index base variant con-
structors. To distinguish these cases from the empty scenario, a special index
value is allocated. The standard has variant_npos for that purpose, as result
of index query operation on the variant produced by init.

The assignment can be described as follows:

Γ

Ai Aj

∐kAk ∐kAk

aj
ai

ini

assign(aj)

inj

assignj(aj)

Implied here is the idea that assignment preserves the storage location of the
assigned value. This notion is not reflected in the categorical model, and adding
it would imply modelling pointers, then modelling which data is stored in what
locations of memory, and then abstracting that using some appropriate functor.
However, that is outside the scope of this paper. Here it’s sufficient to require
addressof(ai) = addressof(ai.assign(aj)). This implies that we want to re-
quire the corresponding addressof(ini(ai)) = addressof(ini(ai).assignj(aj)).

The reason for requiring these is the following: There is an alternative im-
plementation for variant-like type which allocates storage for all branches of
the variant separately, and keeps track which branches are filled, basically a
fancy version of a typed set that models Πk(1 +Xk):

template <class... T> using typed_set = tuple<optional<T>...>;

Then composing assigni(ai) ◦ assignj(aj) for i 6= j would fill two branches

6

to produce a value that cannot be produced by a single invocation of variant
constructor ini, violating the above commutative diagrams. To disallow that
scenario for variant, the address of each branch of the variant should be allo-
cated from same storage. The variant assignment must destroy the previously
assigned value.

Notice here the underlying assignment can change the type of the assigned
value, which is why assign(aj) is not an endomorphism unless i = j. Normally
state changes would be modelled as endomorphisms that are right actions of the
operation identified by the method of a class, but that notion requires the types
to be preserved. The variant assignment however preserves types. Anyway, it’s
necessary for the variant assignment to select which branch of variant contains
the new value.

The variant can also be constructed using type-indexed constructors inAi

when the types of branches are unique, and corresponding assignment operations
exist. However, it’s important to require inAi

≡ ini when there is an unique
index i that identifies the Ai branch. If Ai

∼= Aj for i 6= j, the type indexed
constructors cannot be used, and corresponding coproduct operations would not
be able to choose an unique index.

To represent an indexed set of functions, a tuple containing function objects
is natural. The C++ implementation uses functions that take tuples of func-
tions instead of a variadic function with multiple function parameters. Those are
useful primitives to construct more complicated cases. In C++ the case where
n = 2 is special, because std::pair and std::tuple with two parameters pro-
vide similar (isomorphic) functionality. The std::get and std::apply already
provide sufficient abstraction for that, and it’s expected that other coproduct-
like types should also support these operations.

The case where n = 0 is also special in that coproduct of zero alternatives
should be the initial object, in such way that the operation to extract values al-
ways fails, and constructing the variant is ill-formed. However, the valueless-by-
exception scenario means that such variant has a possible value, so the variant
with zero alternatives is not quite the initial object. However, extracting values
from such variant raises the bad_variant_access exception, which is almost
as good. However comparison operations for two variants and the index query
operation may be able to tell the difference and they are required not to raise
exceptions.

For ease of use, it’s useful to support operations where user doesn’t need
to explicitly construct the tuple 〈fk〉. The tuple can be described as following
commutative diagram, which is dual to the one for coproduct.

Γ ΠkXk

Xi

ai

〈ak〉

πi

The operation πi is the std::get<I> operation, and 〈ak〉 = 〈ak〉k∈[0,n−1] is

make_tuple(a0, ..., an−1).
Here there is similar consideration for commutative diagram that 〈ak〉 must

have access to every value stored to the tuple because πi must be able to choose
any one of them, and k and i vary independently.

To specialize this to represent an indexed set of functions for coproduct, I set
Xk = Ak → B and use exponentials (−∗,app, ηA, φA) : −× A ⊣ A → −, a.k.a.

7

lambda abstraction, to produce the function based on the coproduct definition.
This produces following commutative diagram:

Γ Πk(Ak → B)

Ai → B

f∗

i

〈f∗

k 〉

πi

Using exponentials in reverse, and using the coproduct, we can turn this into
commutative diagram:

Γ×Ai Πk(Ak → B)×Ai

(Ai → B)×Ai

Γ×∐kAk B

f∗

i ×idAi

〈f∗

k 〉×idAi

idΓ×ini

πi×idAi

app

[fk]◦snd

Notice that when constructing the coproduct, the context is not used, whereas
when going through the lambda, the function used to deconstruct the variant
may depend on the context. This means the variant is usable as messages in sit-
uations where data is sent from one context to another. However, the processing
logic cannot be in such way separated from its context.

However, the indices k for the coproduct operation [fk] and the correspond-
ing indices for the tuple of functions associated with each branch 〈f∗

k 〉 : Πk(Ak →
B) must match. This is expressed in C++ as a concept requirement involving
sizeof... operator.

3 Changes to standard

The changes are against [5]. An example implementation which doesn’t need
compiler extensions is given in the appendix.

3.1 coproduct global operations

This should be added after 22.6.7 [variant.visit] so that these will be included
in <variant> header.

3.1.1 visit invoke

template <class Tuple , size_t I = 0, class ... Alts >

constexpr auto visit_invoke(std::variant <Alts...>

const &v, Tuple const &tup)

noexcept(/* described below */)

requires (I >= 0

&& I < tuple_size_v <Tuple >

&& sizeof ...(Alts) == tuple_size_v <Tuple >);

Throws: std::bad_variant_access if v.index() == std::variant_npos.
The semantics should be same as returning the results of following expres-

sion:

8

invoke(

get <LIFT(v.index()) >(tup),

get <LIFT(v.index()) >(v)

);

Where LIFT(v.index()) is a constant expression referring to currently cho-
sen branch of variant in v. The lifting of the run-time index of the chosen branch
of the variant to compile-time expression should use an implementation-defined
mechanism, which is indicated as “LIFT” here. Practical library implemen-
tations could use a switch statement with appropriate mechanisms to prevent
ill-formed constructs together with a default branch that invokes the operation
recursively, or a more sophisticated implementation-defined mechanism.

3.1.2 visit apply

template <class Tuple , size_t I = 0, class ... Alts >

constexpr decltype(auto)

visit_apply(std::variant <Alts ...> const &v, const

Tuple &t)

requires (I >= 0

&& I < std:: tuple_size_v <Tuple >

&& sizeof ...(Alts) == std:: tuple_size_v <Tuple >);

Throws: std::bad_variant_access if v.index() == std::variant_npos.
The semantics should be same as returning the results of following:

return std:: apply(get <LIFT(v.index())>(t), std::get <

LIFT(v.index ()) >(v));

Where again the “LIFT” is as above.

3.1.3 visit apply cases

template <class ... Alts , class ... F>

constexpr decltype(auto)

visit_apply_cases(variant <Alts...> const &v,

F && ... funcs)

requires (sizeof ...(Alts) == sizeof ...(F));

Throws: std::bad_variant_access if v.index() == std::variant_npos.
The semantics should be:

return visit_apply(v, std:: make_tuple(std::forward <F

>(funcs)...));

3.1.4 apply cases

template <class ... F>

constexpr auto apply_cases(F && ... funcs);

The semantics should be:

9

return [fs = std:: make_tuple(std::forward <F>(funcs)

...)]

<class ... Alts >(std::variant <Alts...> const &

v)

requires (sizeof ...(Alts) == sizeof ...(F)) { return

visit_apply(v,fs); }

The returned function throws: std::bad_variant_access if v.index() == std::variant_npos.

3.1.5 visit invoke cases

template <class ... Alts , class ... F>

constexpr auto

visit_invoke_cases(

std::variant <Alts...> const &v, F && ... funcs)

-> common_type_t <invoke_result_t <F, Alts >...>

requires (sizeof ...(Alts) == sizeof ...(F));

Throws: std::bad_variant_access if v.index() == std::variant_npos.
The semantics should be:

return visit_invoke(v, std:: make_tuple(std::forward <

F>(funcs)...));

3.1.6 invoke cases

template <class ... F>

constexpr auto invoke_cases(F && ... funcs);

Semantics should be:

return [fs = std:: make_tuple(std::forward <F>(funcs)

...)]

<class ... Alts >(std::variant <Alts...> const &v)

-> std:: common_type_t <std:: invoke_result_t <F, Alts

>...>

requires (sizeof ...(F) == sizeof ...(Alts))

{ return visit_invoke(v,fs); };

The returned function throws: std::bad_variant_access if v.index() == std::variant_npos.

4 Loose ends

The following known issues have not had careful analysis:

1. Naming of the operations. It’s possible to support std::variant member
functions with similar semantics for the visit operations that take variant
as first argument. Also various overloaded operations which might auto-
matically choose between, say, visit_invoke_cases and visit_apply_cases
based on whether the functions used are multi-argument functions are pos-
sible. However to avoid overloading-based ambiguities on their semantics
I’ve used distinct name.

10

Such approach would introduce a helper function as follows, and then use
this invoke_or_apply instead of invoke or apply inside implementation
of visit_invoke.

template <class F, class... Args>

constexpr auto

invoke_or_apply(F&& f, Args && ... args)

noexcept(std::is_nothrow_invocable_v<F, Args...>)

-> std::invoke_result_t<F,Args...>

requires std::invocable<F, Args...>

{

return std::invoke(std::forward<F>(f), std::forward<Args>(args)...);

}

template <class F, class... Args>

constexpr auto

invoke_or_apply(F&& f, const std::tuple<Args...> & args)

noexcept(std::is_nothrow_invocable_v<F, Args...>)

-> std::invoke_result_t<F,Args...>

requires std::invocable<F, Args...>

{

return std::apply(std::forward<F>(f), args);

}

Following names and signatures may be possible for visit_invoke oper-
ation. However, adding these can impact include dependencies between
<tuple> and <variant> headers.

template <class... F, class ... Alts>

auto std::tuple<F...>::operator()(std::variant<Alts...> const &v)

requires (sizeof...(F) == sizeof...(Alts))

{ return visit_invoke(v,*this); }

template <class... Alts, class... F>

auto std::variant<Alts...>::visit(std::tuple<F...> const &t)

requires (sizeof...(Alts) == sizeof...(F))

{ return visit_invoke(*this, t); }

template <class... F, class... Alts>

auto std::invoke(std::tuple<F...> const &t, std::variant<Alts...> const &v)

requires (sizeof...(F) == sizeof...(Alts))

{ return visit_invoke(v,t); }

The member functions might possibly be implemented in terms of ex-
plicit object member functions to support classes derived from tuple or
variant.

OTOH, std::invoke overload seems redundant if tuple has member operator().
Also since invoke is used internally by visit_invoke a possibility for re-
cursive calls occurs in case of nested tuples. This could be intentional and
useful.

11

And variant’s visit overload would produce ambiguities with normal use
of visit, in particular if tuple’s operator() were introduced. So these
seem mutually exclusive approaches.

The version of variant<Alts...>::visit that would use variadic tem-
plate parameters for the functions called would be even more obviously
be ambiguous with normal use of visit.

2. Interaction with pattern matching proposals [6] [4]. It’s not obvious what
is good syntax for pattern matching for the index based operations. Ei-
ther the index of the matched branch should be provided by user in the
syntax, or order of branches of the pattern matches should automatically
determine the indices.

3. Interaction with std::expected, std::optional or std::any, or other
existing coproduct-like types.

Consider for example an overloaded operation with following signature:

template < class Tuple, size_t I = 0, class T, class E>

constexpr decltype(auto) visit_invoke(std::expected<T,E> const &v, const Tuple &t)

requires (I >= 0 && I < 2 && std::tuple_size_v<Tuple> == 2);

This would extend the usefulness of visit_invoke beyond the variant.
Similar can be done for optional. However, the functions, e.g. invoke_cases
which are just used to package an indexed set of functions need to include
such extensions into the overload set of operator() of the returned func-
tion object. This can be done only for a fixed number of coproduct-like
types inside the returned function object, and the default mechanism is
not very extensible to additional types. So there you might need to in-
troduce another extension point to such extensions. For that scenario
returning a minimal tuple of functions is expected to be a good solution.

std::any is more difficult since it’s not by default obvious how many
branches should be included, however maybe those can be deduced from
the function parameter types.

4. If it were not for the valueless_by_exception() == true scenario, The
noexcept specification for visit_invoke would look as follows.

noexcept(noexcept ([]<std:: size_t ... J>(std::

integer_sequence <std::size_t , J...>) constexpr

noexcept ((std::

is_nothrow_invocable_v <std:: tuple_element_t <J,

Tuple >,

std::

variant_alternative_t <J, std::variant <Alts...>

> > && ...))

{}(std:: index_sequence_for <Alts ... >{})))

However it seems important to throw an exception if the variant is value-
less, and this information is only available at run-time. So declaring these
functions noexcept(false) seems better. Also my experiments indicated
that this long noexcept specification seemed to always return false, which
was surprising.

12

5. Optimization: instead of throwing bad_variant_access, it’s possible to
use __builtin_unreachable() since concepts are used for checking the
compile-time index, and run-time indices requested from an initialized
variant should already be checked by the switch-case.

However, valueless_by_exception() == true case would become un-
safe. In that case, a precondition pre(not v.valueless_by_exception())

would be needed. For users that explicitly specify starting index to avoid
specifying functions for some branches, the branches skipped would also
produce such errors. This optimization is not proposed.

6. Analyzing a variant with one or more std::monostate branch cannot be
used to call functions with empty parameter list. Instead monostate needs
to declared as parameter to the function.

7. It’s possible to support operations that turn a run-time index into a
compile-time index by mapping v.index() into std::in_place_index<I>
arguments to functions. This may be useful in building function templates
that analyze a variant with an overload-set of functions.

8. the functions depend on both tuple and variant, so using it requires depen-
dency to std::apply and tuple_size_v from <tuple> and variant from
<variant> headers, and the implementation requires access to std::invoke
from <functional>. Due to this, it’s not obvious which header these fa-
cilities should be added to. It should be possible to use these when both
<tuple> and <variant> have been included. For two-parameter case,
even std::pair from <utility> is sufficient instead of tuple.

5 Appendix

These functions have been implemented. As an example, the visit_invoke

operation can be implemented as follows:

template < class Tuple , size_t I = 0, class ... Alts >

constexpr decltype(auto) visit_invoke(std::variant <

Alts...> const &v, const Tuple &t)

requires (I >= 0 && I < std:: tuple_size_v <Tuple >

&& sizeof ...(Alts) == std:: tuple_size_v <

Tuple >)

{

constexpr std:: size_t SZ = std:: tuple_size_v <Tuple >;

switch (v.index ()) {

case I: if constexpr (I < SZ) { return std:: invoke

(std::get <I>(t), std::get <I>(v)); }

case I+1: if constexpr (I+1<SZ) { return std:: invoke

(std::get <I+1>(t),std::get <I+1>(v)); }

case I+2: if constexpr (I+2<SZ) { return std:: invoke

(std::get <I+2>(t),std::get <I+2>(v)); }

case I+3: if constexpr (I+3<SZ) { return std:: invoke

(std::get <I+3>(t),std::get <I+3>(v)); }

case I+4: if constexpr (I+4<SZ) { return std:: invoke

(std::get <I+4>(t),std::get <I+4>(v)); }

13

case I+5: if constexpr (I+5<SZ) { return std:: invoke

(std::get <I+5>(t),std::get <I+5>(v)); }

case std:: variant_npos:

default: if constexpr (SZ > I+6) {

return visit_invoke <Tuple ,I+6, Alts ...>(v,t);

} else {

throw std:: bad_variant_access ();

}

}

}

The visit_apply function is similar, but uses std::apply instead of std::invoke.
The other functions’ implementation is relying on these two, and are as described
in their semantics.

References

[1] The Haskell 2010 committee. The haskell 2010 report. Technical report,
2010.

[2] Maarten M. Fokkinga. A gentle introduction to category theory. 1994.

[3] Joseph A. Goguen. A categorical manifesto. 1989.

[4] Bruno Cardoso Lopes, Sergei Murzin, Michael Park, David Sankel, Dan
Sarginson, and Bjarne Stroustrup. Pattern matching. https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2020/p1371r3.pdf.

[5] N4950: Working draft, standard for programmning language c++.
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4950.pdf.

[6] Michael Park. Pattern matching: match expression. https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2024/p2688r1.pdf.

[7] Esa Pulkkinen. Class invariants and contract checking philosophy.
https://esapulkkinen.github.io/cifl-math-library/C++/contracts.pdf, 2024.

14

