
Graph Library: Overview
Document #: P3126r3
Date: 2025-04-13
Project: Programming Language C++
Audience: Library Evolution

SG19 Machine Learning
SG14 Game, Embedded, Low Latency

Revises: P3126r2

Reply-to: Phil Ratzloff (SAS Institute)
phil.ratzloff@sas.com
Andrew Lumsdaine
lumsdaine@gmail.com

Contributors: Kevin Deweese
Muhammad Osama (AMD, Inc)
Jesun Firoz
Michael Wong (Intel)
Jens Maurer
Richard Dosselmann (University of Regina)
Matthew Galati (Amazon)
Guy Davidson (Creative Assembly)
Oliver Rosten

1

mailto:phil.ratzloff@sas.com
mailto:lumsdaine@gmail.com


© ISO/IEC P3126r3

1 Getting Started
This paper is one of several interrelated papers for a proposed Graph Library for the Standard C++ Library.
The Table 1 describes all the related papers.

Paper Status Description
P1709 Inactive Original proposal, now separated into the following papers.
P3126 Active Overview, describes the big picture of what we are proposing.
P3127 Active Background and Terminology provides the motivation, theoretical background, and

terminology used across the other documents.
P3128 Active Algorithms covers the initial algorithms as well as the ones we’d like to see in the future.
P3129 Active Views has helpful views for traversing a graph.
P3130 Active Graph Container Interface is the core interface used for uniformly accessing graph data

structures by views and algorithms. It is also designed to easily adapt to existing graph data
structures.

P3131 Active Graph Containers describes a proposed high-performance compressed_graph container. It
also discusses how to use containers in the standard library to define a graph, and how to
adapt existing graph data structures.

P3337 In process Comparison to other graph libraries on performance and usage syntax. Not published
yet.

Table 1: Graph Library Papers

Reading them in order will give the best overall picture. If you’re limited on time, you can use the following
guide to focus on the papers that are most relevant to your needs.

Reading Guide

— If you’re new to the Graph Library, we recommend starting with the Overview (P3126) paper to
understand the focus and scope of our proposals. You’ll also want to check out how it stacks up against
other graph libraries in performance and usage syntax in the Comparison (P3337) paper.

— If you want to understand the terminology and theoretical background that underpins what we’re
doing, you should read the Background and Terminology (P3127) paper.

— If you want to use the algorithms, you should read the Algorithms (P3128) and Graph Containers (P3131)
papers. You may also find the Views (P3129) and Graph Container Interface (P3130) papers helpful.

— If you want to write new algorithms, you should read the Views (P3129), Graph Container Interface
(P3130), and Graph Containers (P3131) papers. You’ll also want to review existing implementations in the
reference library for examples of how to write the algorithms.

— If you want to use your own graph data structures, you should read the Graph Container Interface
(P3130) and Graph Containers (P3131) papers.

2 Revision History
P3126r0

— Split from P1709r5. Added Getting Started section.

— Rewrite Goals and Priorities section to reflect the structure of the papers and to include a section on our
Future Roadmap.

— Added Notes and Considerations section.

— Concepts will be identified as "For exposition only" until we have consensus of whether they belong in the
standard or not.

§2.0 2

https://www.wg21.link/P3126
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3337
https://www.wg21.link/P3126
https://www.wg21.link/P3337
https://www.wg21.link/P3127
https://www.wg21.link/P3128
https://www.wg21.link/P3131
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3129
https://www.wg21.link/P3130
https://www.wg21.link/P3131
https://www.wg21.link/P3130
https://www.wg21.link/P3131


© ISO/IEC P3126r3

P3126r1
— Added Issues Status section to be open with the issues that have been reported and that we are working on.

P3126r2
— Add the edgelist as an abstract data structure as a peer to the adjacency list. This completes an open issue

for completing the definition of the edgelist.

— Added the std::graph::edgelist namespace for edgelist concepts, traits and types to keep identically
named types separate from those for adjacency lists.

— Added a reference to the new P3337 Graph Comparisons paper to the Getting Started section.

— Update text to make it clear parallel algorithms will not be included in the proposal.

P3126r3
— Change the reference implementation from the std::graph to the graph namespace. This will make it

more accessible to the community and allow for easier experimentation outside of this proposal.

— Update the status on supporting more versatile BFS and DFS algorithms.

— Add additional motivation for a graph library in the Overview section.

— Extend the Six Degrees of Kevin Bacon example to include the output and additional description.

— Add a note that we will be unable to support a freestanding graph library in this proposal because of the
need for stack , queue and potential bad_alloc exception in many of the algorithms.

— Update the Open Design Issues and Open Reported Issues sections to reflect the current status of the
proposal. The changes revolve around the introduction of the new boost::graph-like descriptors and
improvements to the BFS, DFS and Topological Sort algorithms.

3 Overview
The C++ Standard Library (nee the Standard Template Library, or STL), is a well-structured collection of
generic software components, systematically organized based on fundamental properties of their underlying
problem domain. In the case of the Standard Library, this domain comprises that of one-dimensional containers,
specified by iterator pairs (equiv. ranges). Of course, the contents of any one-dimensional container can be
another container, to the Standard Library, those contents are opaque.

Since the introduction of the STL and the generic programming paradigm that is its intellectual foundation, there
has been recognition of the need to extend the standard library to support hierarchical containers (containers
of containers). (See, for example, Matt Austern’s paper “Segmented Iterators and Hierarchical Algorithms, or
WG21/N3700 “Hierarchical Data Structures and Related Concepts for the C++ Standard Library”). C++ does
have some notion of multidimensional data structures (multi-dimensional ranges, std::mdspan), but they are
not containers in the sense of the standard library. Moreover, multi-dimensional arrays are not “interesting”
hierarchical containers, in that, even if viewed as a container of containers, the container one level down from a
given container is still a multi-dimensional array.

Graphs are an important abstraction in Computer Science and that arise in numerous problem domains. They
have attracted significant attention recently with the increasing importance of their use in data science, machine
learning, and artificial intelligence. Moreover, graphs represent perhaps the most basic form of an interesting
(non-trivial) hierarchical data structure. For example, although the “adjacency list” representation of a graph
only comprises two levels, it is richer than a two-dimensional container. Most significantly, the “inner container”
of the adjacency list cannot be opaque; traversal of a graph is of necessity an interleaved traversal of the inner
and outer containers.

§4.0 3

https://www.wg21.link/P3337


© ISO/IEC P3126r3

4 Goals and Priorities
The main goal of this library is to provide a self-consistent and systematic library of software components
for graph computations, based on well-defined graph representations. it includes generic algorithms, named
requirements, views, and utilities. views. It is informed by the authors’ past experience with the Boost Graph
Library (BGL), the NWGraph library, the C++ GraphBLAS, and the library proposed in P1709. The proposed
library seeks to leverage the existing Standard Library while introducing as little new machinery as possible.
Because of the broad scope of graph data structures and algorithms, we have defined a focused set of goals and
priorities to deliver an initial set of useful and practical functionality that will also establish a solid foundation
for future development.

Design Principles. We propose a lightweight library of software components for graph computing that is
self-consistent and systematically defined. The foundation of the library is its collection of generic traversal
patterns and algorithms. Although concepts will be used “under the hood,” the API for the library’s algorithms
and traversals will be specified using named requirements. As little new machinery as possible is introduced; to
the greatest extent possible, graph library components are built on top of existing Standard Library components.

Named Requirements. The named requirements in the library reflect the needs of graph algorithms and are
organized and named according to well-accepted practice in the underlying problem domain of graphs and graph
algorithms. The named requirements are intended to be minimal in order to enable the largest variety of concrete
data structures to satisfy them.

Graph Representation. To be precise, and in keeping with common practice, the named requirements, the
underlying concepts, and the algorithms in the library are defined in terms of representations of graphs. What
we mean by a graph representations is developed in detail in the companion document D3127.

Leverage the Standard Library. With the basis of the library being the representation of graphs in the form of
hierarchical containers, and with the intention for the library to be included as part of the C++ standard library,
we leverage standard library components to the greatest extent possible. Notably, compositions of Standard
Library containers satisfy the graph representation requirements, sufficient for their use with the proposed graph
library.

Graph Library Components. The library will comprise algorithms and views, along with domain-specific
named requirements.

4.1 Future Roadmap

The following areas are opportunities for future proposals, after the initial proposals are accepted. We endeavor to
investigate them (without introducing additional proposals) to ensure the currently proposed design will support
them.

— Additional graph algorithms. The Graph Algorithms proposals (D3128) identifies tiers of algorithms that
we suggest be added in a staged fashion (including parallel algorithms).

— Support for sparse vertex ids, implying the use of bi-directional containers such as map and unordered_map
for vertices.

— Bi-directional graphs, where vertices have incoming and outgoing edges.

— Constexpr graphs, where vertices and edges are stored in std::array or other constexpr-friendly container.

— Parallel graph algorithms.

5 Example: Six Degrees of Kevin Bacon
A classic example of the use of a graph algorithm is the game “The Six Degrees of Kevin Bacon.” The game is
played by connecting actors to each other through movies they have appeared in together. The goal is to find
the smallest number of movies that connect a given actor to Kevin Bacon. That number is called the “Bacon

§5.0 4



© ISO/IEC P3126r3

number” of the actor. Kevin Bacon himself has a Bacon number of 0. Since Kevin Bacon appeared with Tom
Cruise in “A Few Good Men”, Tom Cruise has a Bacon number of 1.

The following program computes the Bacon number for a small selection of actors.

std::vector<std::string> actors { "Tom Cruise", "Kevin Bacon", "Hugo Weaving",
"Carrie-Anne Moss", "Natalie Portman", "Jack Nicholson",
"Kelly McGillis", "Harrison Ford", "Sebastian Stan",
"Mila Kunis", "Michelle Pfeiffer", "Keanu Reeves",
"Julia Roberts" };

using G = std::vector<std::vector<int>>;
G costar_adjacency_list{

{1, 5, 6}, {7, 10, 0, 5, 12}, {4, 3, 11}, {2, 11}, {8, 9, 2, 12}, {0, 1}, {7, 0},
{6, 1, 10}, {4, 9}, {4, 8}, {7, 1}, {2, 3}, {1, 4} };

int main() {
std::vector<int> bacon_number(size(actors));

// 1 -> Kevin Bacon
for (auto&& [uid,vid] : basic_sourced_edges_bfs(costar_adjacency_list, 1)) {

bacon_number[vid] = bacon_number[uid] + 1;
}

for (int i = 0; i < size(actors); ++i) {
std::cout << actors[i] << " has Bacon number " << bacon_number[i] << std::endl;

}
}

Output:

Tom Cruise has Bacon number 1
Kevin Bacon has Bacon number 0
Hugo Weaving has Bacon number 3
Carrie-Anne Moss has Bacon number 4
Natalie Portman has Bacon number 2
Jack Nicholson has Bacon number 1
Kelly McGillis has Bacon number 2
Harrison Ford has Bacon number 1
Sebastian Stan has Bacon number 3
Mila Kunis has Bacon number 3
Michelle Pfeiffer has Bacon number 1
Keanu Reeves has Bacon number 4
Julia Roberts has Bacon number 1

In graph parlance, we are creating a graph where the vertices are actors and the edges are movies. The number
of movies that connect an actor to Kevin Bacon is the shortest path in the graph from Kevin Bacon to that
actor. In the example above, we compute shortest paths from Kevin Bacon to all other actors and print the
results. Note, however, that actor-actor relationships are not how data about actors is available in the wild (from
IMDB, for example). Rather, two available types of data are actor-movie and movie-actor relationships. See
Section ?? below.

6 What this proposal is not
The Graph Library proposal limits itself to adjacency graphs and edgelists only. An adjacency graph is an outer
range of vertices with an inner range of outgoing edges on each vertex. An edgelist is a view of edges on an
adjacency list, or a range of edge types.

§6.0 5



© ISO/IEC P3126r3

Parallel graph algorithms are not included in this proposal for several reasons.

— Parallelism is not beneficial for some algorithms, such as for depth-first search.

— There is no clear industry standard for a parallel version of some algorithms.

— The parallel algorithm is a different algorithm altogether, such as Delta-Stepping for shortest paths. Omitting
them helps to limit the size of this proposal that is already large.

— A richer set of parallelization mechanisms is required because of the irregular and hierarchical nature of
graph data structures. Deferring this to a future proposal constrains the complexity and size of this initial
proposal.

We feel that providing a broader set of algorithms to address different interests is the better choice. We anticipate
that proposals will be submitted for parallel graph algorithms in the future.

Hypergraphs are not supported.

7 Impact on the Standard
This proposal is a pure library extension.

8 Interaction wtih Other Papers
The entirety of our proposal for graph algorithms and data structures comprises multiple companion papers:
D3127 (Terminology), D3128 (Algorithms), D3129 (Views), D3130 (Container Interface), D3131 (Containers),
D9903 (Operators), and D9907 (Adaptors). Other than these papers, there are no interactions with other
proposals to the standard.

9 Implementation Experience
The github github.com/stdgraph repository contains a reference implementation for this proposal.

10 Usage Experience
There is no current use of the library outside of the proposers. There are plans to begin using it in 2025 in
commercial, academic, and research settings.

11 Deployment Experience
There is no current deployment experience of the library. Deployment experience will be gathered in conjunction
with use.

12 Performance Considerations
The algorithms are being ported from NWGraph to the github.com/stdgraph implementation used for this proposal.
Performance analysis from those algorithms can be found in the peer-reviewed papers for NWGraph [1, 2].

13 Prior Art
boost::graph has been an important C++ graph implementation since 2001. It was developed with the goal of
providing a modern (at the time) generic library that addressed all the needs of a graph library user. It is still a
viable library used today, attesting to the value it brings.

§13.0 6

https://github.com/stdgraph
https://github.com/stdgraph


© ISO/IEC P3126r3

However, boost::graph was written using C++98 in an “expert-friendly” style, adding many abstractions and
using sophisticated tempate metaprogramming, making it difficult to use by a casual developer. Particular
pain-points described in ad-hoc discussions with users include: property maps, parameter-passing, visitors.

NWGraph ([3] and [1]) was published in 2022 by Lumsdaine et al, bringing additional experience gained since
creating boost::graph, to create a modern graph library using C++20 for its implementation that was more
accessible to the average developer.

While NWGraph made important strides to introduce the idea of an adjacency list as a range-of-ranges and
implemented many important algorithms, there are some areas it didn’t address that come a practical use in the
field. For instance, it didn’t have a well-defined API for graph data structures that could be applied to existing
graphs, and there wasn’t a uniform approach to properties.

This proposal takes the best of NWGraph, with previous work done for P1709 to define a Graph Container
Interface, to provide a library that embraces performance, ease-of-use, and the ability to use the algorithms and
views on externally defined graph containers.

GraphBLAS Graph algorithms are traditionally developed, and then implemented, using explicit loops over a
graph data structure—sometimes referred to as “pointer chasing.” An alternative formulation of graph algorithms
leverages the close inherent relationship between graphs and sparse matrices to formulate graph algorithms
as sequences of higher-level operations: sparse matrix multiplication (and other similar operations) over a
semiring [4].

The GraphBLAS is an ad-hoc standardization effort to develop a set of kernel operations for supporting classical
graph algorithms. As an API specification, the GraphBLAS is not a a graph library per se, but rather is intended
to be used to implement graph algorithms (much as the linear algebra BLAS are used to implement linear algebra
libraries such as LAPACK).

A C language binding that specifically implements the API is available as part of SuiteSparse. However, the
resulting library relies on its own (opaque) data structures for representing graphs and would not be inter-operable
with modern C++ approaches to library and application design. There have been early attempts at native C++
realizations of GraphBLAS, e.g., the GraphBLAS Template Library (GBTL).

(NB: Andrew is a co-author of boost::graph; Scott and Andrew were participants in GraphBLAS standardization
and co-authors of GBTL; Andrew, Scott, and Phil are co-authors of NWGraph.)

14 Alternatives
Although the prior efforts have served, and do serve, important roles, they do not meet the needs or expectations
of modern C++ development. We are currently unaware of any existing graph library that meets the same
requirements and uses concepts and ranges from C++20.

15 Feature Test Macro
The __cpp_lib_graph feature test macro is recommended to represent all features in this proposal including
algorithms, views, concepts, traits, types, functions, and graph container(s).

16 Freestanding
We are unable to support freestanding implementations in this proposal because many of the algorithms and
views require a stack or queue , which are not available in a freestanding environment. Additionally, stack and
queue require memory allocation which could throw a bad_alloc exception.

§17.0 7



© ISO/IEC P3126r3

17 Namespaces
Graph containers and their views and algorithms are not interchangeable with existing containers and algorithms.
Additionally, there are some domain-specific terms that may clash with existing or future names, such as degree
and partition_id . For these reasons, we recommend their own namespaces. The following assumption is used in
this proposal.

std::graph , std::graph::views and std::graph::edgelist

Alternative locations include the following:

std::ranges , std::ranges::views , and std::ranges::edgelist

std::ranges/graph , std::ranges::graph::views and std::ranges::graph::edgelist

The advantage of these two options are that there would be no requirement to use the ranges:: prefix for things
in the std::ranges namespace, a common occurance.

18 Notes and Considerations
There are some interesting observations that can be made about graphs and how they compare and contrast to
the standard library that may not be obvious.

— The adjacency list, the primary data structure for this proposal, is a compound data structure of a range of
ranges. This introduces a new form of container beyond a simple range.

— There is more than one possible value type, one each for edge, vertex, and graph. Each is optional. This
is in contrast to existing practice where the value type is the distinguishing difference between different
containers, such as for set and map .

— Algorithms will often use views, though they can use the GCI functions when needed.

— Algorithms and Views often need to allocate memory internally to achieve their purpose. This is a departure
from common practice in the standard.

There are other observations we’ve also discovered along the way that may not be obvious.

— Storing vertices in a map (bi-directional range) requires a different style of programming algorithms,
compared to being kept in a vector (random access range). When using a vector , edges(g,uid) would
normally be used without much thought. Using that with a map would incur a O(log(V )) cost. Instead, it
will use vertex id once to get the vertex reference and then use edges(g,uv) . This is expected to result in
overloading of existing algorithms based on the range type of a container, distinguished with concepts.

The addition of concepts to the standard library is a serious consideration because, once added, they cannot be
removed. We believe that adjacency lists as a range-of-ranges merits the addition new concepts but we recognize
that it may be a controversial decision. Toward that end, we will continue to include them to help clarify the
examples given and are assumed to be "For exposition only" as suggested implementation until a clear decision to
include them, or not, is made.

19 Issues Status
This sections lists the known and open issues for the Graph Library proposal across all papers. They are organized
by the paper they are associated with.

19.1 Open Design Issues
19.2 Open Reported Issues

— P3127 Background and Terminology

§19.2 8

https://www.wg21.link/P3127


© ISO/IEC P3126r3

1. P1709 has lots of details which I think to be irrelevant. (P1709 is the original proposal that was split
into multiple papers)

— Clarification: I don’t find the discussion about adjacency matrices helpful, but rather a distraction.
It’s not that it shouldn’t be there in some form, but at the moment it has a prominence which I
don’t think is commensurate with its importance to the paper, perhaps exacerbated by the fact
that the paper lacks many salient details (see next point).

2. It is very hard to follow

— Clarification: As it stands, the paper lacks a discussion of the authors’ standpoint on graph
terminology, defining features (e.g. self loops, multi-edges) and the sort of trade-offs you get by
allowing/not allowing them. Put another way, I think the paper would be easier to follow if there’s
a technical narrative that reveals the way the authors are thinking about this huge area.

I like the style of the motivation in P1709R5; if this could be greatly extended to include
the mathematical background that Andrew is working on, this would be really helpful. And
beyond the mathematical background, as discussion of the computational tradeoffs for both graph
implementations and the associated algorithms, given certain choice, would be great to have.

— This paper includes much of the content from P1709R5 for motivation. Andrew will be extending
the paper to include a more rigorous mathematical description.

3. We need to add a mathematical perspective to the paper.

— P3127 includes some of this. We plan on extending it to include a more rigorous mathematical
description.

4. There needs to be a proper discussion about whether the paper’s definition of graph is what some
authors call a multigraph and whether it does/doesn’t include loops.

— P3128 Graph Algorithms

1. The summary tables for the algorithms are necessary but not sufficient:

— There needs to be a discussion of these aspects for graph implementations themselves. Various
graph operations may be more efficient if the graph structure is more constrained. However, not
allowing e.g. multiple edges between pairs of nodes prohibits representing many useful systems.
There are trade-offs and these need to be discussed.

— Improvements to the Dikstra and Bellman-Ford algorithms have been made. PLease review
give feedback.

— A justification of the choices made for the algorithms may be helpful.

— P3337 Comparison to Other Graph Libraries (Unpublished)

1. My comment about the structure of the paper changing was a reference to previous comparisons with
boost::graph. I’m sure these were in an earlier version, or am I misremembering?

— We never had any comparisons to boost::graph.

— A draft was reviewed in the March 2025 SG19 meeting. It will be published after it is updated
with new benchmark numbers when the descriptors functionality is fully implemented.

19.3 Resolved Issues
— General Library Design

1. Build on mdspan and try to standardize (or at least understand) what might reasonably be called an
unstructured span

Suppose someone standardizes unstructured span, as a natural extension of mdspan. What could we
learn from its api that may be relevant for graphs? In both cases, we will presumably have a method

§19.3 9

https://www.wg21.link/P3128
https://www.wg21.link/P3337


© ISO/IEC P3126r3

which allows iteration over the ith partition (or edges of a given node, for graphs). Consistency of the
stl may mean we want these to have the same look/feel.

— This is a very different direction and beyond the scope of this proposal. This will not be pursued
and we invite others to submit a separate proposal.

2. Complete the unpublished Graph Operators proposal, which adds utility functions including degree,
sort, relabel, transpose and join.

— While useful, the funcitons are not critical to offer a complete library. This is deferred until the
other papers have been voted out of SG19.

— P3126 Overview

1. GraphBLAS is not included as part of the prior art.

— Added in P3126r1.

2. The electrical circuit example has issues in P3127, section 6.1.

— Removed in P3126r3.

— P3128 Graph Algorithms

1. A concern is that the DFS and BFS functionality isn’t flexible enough, especially when compared to
boost::graph’s visitors.

— Visitors have been added to the BFS and DFS algorithms, and to Dijkstra’s and Belman-Ford
shortest paths algorithms. The same visitor events are supported as boost::graph for each of the
algorithms. If a visitor event is not used, there is no performance overhead. We also investigated
the use of coroutines but found it resulted in an unacceptable overhead, whether a visitor event
was used or not.

— P3130 Graph Container Interface

1. I’m not convinced by the load API.

— We agree because the use of both load functions and constructors creates ambiguity and complexity
when both are defined. Even though constructors weren’t in the paper it wasn’t clear whether
they should be included or not. We have removed the load functions and added constructors for
compressed_graph to simplify the interface.

2. Complete the definition of the edgelist concepts, types and CPO functions. This is distinct from the
existing edgelist view.

Acknowledgements
Phil Ratzloff’s time was made possible by SAS Institute.

Portions of Andrew Lumsdaine’s time was supported by NSF Award OAC-1716828 and by the Segmented Global
Address Space (SGAS) LDRD under the Data Model Convergence (DMC) initiative at the U.S. Department
of Energy’s Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute
under Contract DE-AC06-76RL01830.

Michael Wong’s work is made possible by Codeplay Software Ltd., ISOCPP Foundation, Khronos and the
Standards Council of Canada.

Muhammad Osama’s time was made possible by Advanced Micro Devices, Inc.

The authors thank the members of SG19 and SG14 study groups for their invaluable input.

§19.3 10

https://www.wg21.link/P3126
https://www.wg21.link/P3128
https://www.wg21.link/P3130


© ISO/IEC P3126r3

References
[1] A. Lumsdaine, L. D’Alessandro, K. Deweese, J. Firoz, T. Liu, S. McMillan, P. Ratzloff, and M. Zalewski,

“Nwgraph: A library of generic graph algorithms and data structures in c++20.” "https://drops.dagstuhl.de/
opus/volltexte/2022/16259/".

[2] A. Azad, M. M. Aznaveh, S. Beamer, M. P. Blanco, J. Chen, L. D’Alessandro, R. Dathathri, T. Davis,
K. Deweese, J. Firoz, H. A. Gabb, G. Gill, B. Hegyi, S. Kolodziej, T. M. Low, A. Lumsdaine, T. Manlaibaatar,
T. G. Mattson, S. McMillan, R. Peri, K. Pingali, U. Sridhar, G. Szarnyas, Y. Zhang, and Y. Zhang, “Evaluation
of graph analytics frameworks using the gap benchmark suite,” in 2020 IEEE International Symposium on
Workload Characterization (IISWC), pp. 216–227, 2020.

[3] A. Lumsdaine, L. D’Alessandro, K. Deweese, J. Firoz, T. Liu, S. McMillan, P. Ratzloff, and M. Zalewski,
“Nwgraph library code.” "https://github.com/pnnl/NWGraph".

[4] J. Kepner and J. R. Gilbert, eds., Graph Algorithms in the Language of Linear Algebra, vol. 22 of Software,
environments, tools. SIAM, 2011.

[5] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide and Reference Manual.
Addison-Wesley Professional, Dec. 2001.

§19.3 11

"https://drops.dagstuhl.de/opus/volltexte/2022/16259/"
"https://drops.dagstuhl.de/opus/volltexte/2022/16259/"
"https://github.com/pnnl/NWGraph"

	Getting Started
	Revision History
	Overview
	Goals and Priorities
	Future Roadmap

	Example: Six Degrees of Kevin Bacon
	What this proposal is not
	Impact on the Standard
	Interaction wtih Other Papers
	Implementation Experience
	Usage Experience
	Deployment Experience
	Performance Considerations
	Prior Art
	Alternatives
	Feature Test Macro
	Freestanding
	Namespaces
	Notes and Considerations
	Issues Status
	Open Design Issues
	Open Reported Issues
	Resolved Issues

	Acknowledgements

