
An Overview of Syntax Choices for Contracts

Document #: P3028R0
Date: 2023-11-05
Project: Programming Language C++
Audience: SG21 (Contracts)
Reply-to: Joshua Berne <jberne4@bloomberg.net>

Gašper Ažman <gasper.azman@gmail.com>
Rostislav Khlebnikov <rkhlebnikov@bloomberg.net>
Timur Doumler <papers@timur.audio>
Abstract

SG21 has two proposals for the syntax for Contracts ([P2935R4] and [P2961R2]) with multiple
options. This paper attempts to identify the properties of each, so all participants can make
informed decisions on the optimal syntax for Contracts in C++.

Contents
1 Introduction 2

2 Examples 2
2.1 Basic Usage 3
2.2 Free Functions 4
2.3 Member Functions 7
2.4 Assertion Usage 9
2.5 Lambdas 10
2.6 Future Extensions 11

3 Evaluation 15
3.1 Requirements 15
3.2 Principles 20

4 Conclusion 22

1

mailto:jberne4@bloomberg.net
mailto:gasper.azman@gmail.com
mailto:rkhlebnikov@bloomberg.net
mailto:papers@timur.audio

Revision History
Revision 0 (November 2023 WG21 meeting in Kona)

• Original version of the paper

1 Introduction
Following the plan laid out in [P2695R1], SG21 has been diligently reaching consensus on the
fundamental behaviors to propose as part of the initial Contracts facility for C++ (see [P2900R1]),
i.e., the Contracts MVP. Deciding on the syntax for expressing a contract-checking annotation
(CCA) is a major task remaining before the discussion can move on to other groups and Contracts
can be adopted into the draft C++ Standard.

SG21 has already gathered a number of requirements for a Contracts syntax that go above and
beyond what a minimal product will require. Numerous participants hope to see this syntax choice
be the foundation for a complete facility that meets the many varied needs of the C++ community.
Those requirements have been gathered in [P2885R3].

Two papers have laid out options for this syntax, each of which makes a case for how they meet the
various requirements captured in [P2885R3].

• [P2935R4] — “An Attribute-Like Syntax for Contracts” proposes the same syntax that was
(for a time) in the draft C++20 Standard. In addition to faithfully reproducing that original
syntax, three other alternatives are offered as options.

• [P2961R2] — “A natural syntax for Contracts” proposes an new syntax for CCAs that avoids
the design space of attributes in favor of more closely resembling existing function-call-like
C++ operators.

SG21’s plan (and hope) is to achieve consensus during the November 2023 in-person WG21 meeting
in Kona. To aid in discussion, this paper will do two things.

1. In Section 2, we will show all proposed syntax alternatives with the same set of examples
written in the corresponding syntax.

2. In Section 3, we will enumerate many of the decision-inspiring principles that might influence
preference for one syntax over the other and provide what we hope and intend is an objective
evaluation of how each individual syntax proposal satisfies the principles in question.

Our goal is that reading the alternatives and the principles together will assist participants in
making the best choice for a syntax for Contracts for C++.

2 Examples
First, let’s look at the distinct alternative syntax proposals available to SG21 along with numerous
examples to clarify the distinctions among the various choices. For each syntax, we present the
same set of examples (even when the differences are minimal or irrelevant to that particular syntax)
to facilitate comparing the various scenarios across the overall syntax choices. Predicates in the

2

examples are deliberately trivial (usually true) to avoid distracting from the facets of the syntax
itself.

Any example (particularly of future potential extensions) marked with a comment noting its
ambiguity will need either to have disambiguation rules applied or to be made ill-formed.

There are five distinct proposals for syntax to consider.

1. Attrlike — This syntax is proposed by [P2935R4] as Proposal 1-A, “C++20 Attribute-Like
Syntax.” The C++20 attribute-like syntax uses [[]] to enclose the CCA in a form that
resembles but does not grammatically qualify as an attribute. CCAs on functions are located
where an attribute that would appertain to that function type would be located.

2. Attrlike+Post — This syntax is proposed by [P2935R4] as Proposal 1-B, “Post-Declaration
Attribute-Like Syntax.” The post-declaration attribute-like syntax uses the same structure as
the attribute-like syntax but places function CCAs at the end of function declarations instead
of the attribute-related location specified by C++20 Contracts.

3. Attrlike+Delim — This syntax is proposed by [P2935R4] as Proposal 1-C, “Attribute-Like
Syntax with Delimited Return-Value Specification.” This variation on the attribute-like syntax
uses a colon to introduce the return-value identifier in postconditions.

4. Attrlike+Post+Delim — This syntax is proposed by [P2935R4] as Proposal 1-D, “Post-
Declaration Attribute-Like Syntax with Delimited Return-Value Specification.” This variation
of the attribute-like syntax makes both considered changes to the C++20 syntax, moving the
location of function CCAs to the end of the declaration and adding the preceding colon to the
return value identifier in postconditions.

5. Natural — This syntax is proposed in [P2961R2]. The natural syntax eschews the use of
[[]] and instead introduces assertions with a new keyword and preconditions and postcon-
ditions with a context-sensitive keyword. Note that strong consensus was reached to use
contract_assert as the keyword to introduce an assertion CCA and that it must be a keyword,
not an context-sensitive keyword (an identifier with special meaning). Should no decision on
the specific keyword to propose be reached soon, both decisions will be represented here as
distinct syntax options.

2.1 Basic Usage

First, we will show the forms of the three basic kinds of CCAs on functions with no other particular
language features in use.

Precondition CCA
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim
void f() [[pre : true]];

Natural void f() pre(true);

3

Postcondition CCA
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim
void f() [[post : true]];

Natural void f() post(true);

Postcondition CCA with Return-Value Identifier
Attrlike

Attrlike+Post int f() [[post r : true]];
int f() [[post (r) : true]];

Attrlike+Delim
Attrlike+Post+Delim int f() [[post : r : true]];

Natural int f() post(r : true);

Assertion CCA
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim

void f() {
[[assert : true]];

}

Natural void f() {
contract_assert(true);

}

2.2 Free Functions

CCAs on free functions with different annotations expose more of the differences between the syntax
options available.

Trailing Return Type
Attrlike

Attrlike+Delim auto f() [[pre : true]] -> int;

Attrlike+Post
Attrlike+Post+Delim auto f() -> int [[pre : true]];

Natural auto f() -> int pre(true);

noexcept

Attrlike
Attrlike+Post

Attrlike+Delim
Attrlike+Post+Delim

void f() noexcept [[pre : true]];

Natural void f() noexcept pre(true);

4

requires Clause

Attrlike
Attrlike+Delim

template <typename T>
int f() [[pre : true]] requires something<T>;
template <typename T>
auto f() [[pre : true]] -> int requires something<T>;

Attrlike+Post
Attrlike+Post+Delim

template <typename T>
int f() requires something<T> [[pre : true]];
template <typename T>
auto f() -> int requires something<T> [[pre : true]];

Natural template <typename T>
int f() requires something<T> pre(true);
template <typename T>
auto f() -> int requires something<T> pre(true);

Function Returning Pointer to Array
Attrlike

Attrlike+Delim int (*g(char i) [[pre : true]])[17];

Attrlike+Post
Attrlike+Post+Delim int (*g(char i))[17] [[pre : true]];

Natural int (*g(char i))[17] pre(true);

Deleted Function
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim
void f() [[pre : true]] = delete;

Natural void f() pre(true) = delete;

5

Attributes

Attrlike
Attrlike+Delim

void [[return_type_attribute]] f()
[[pre : 1 || true]]
[[function_type_attribute1]]
[[pre : 2 || true]]
[[function_type_attribute2]];

Attrlike+Post
Attrlike+Post+Delim

void [[return_type_attribute1]] f()
[[function_type_attribute1]]
[[function_type_attribute2]]
[[pre : 1 || true]]
[[pre : 2 || true]];

Natural
void [[return_type_attribute1]] f()

[[function_type_attribute1]]
[[function_type_attribute2]]
pre(1 || true)
pre(2 || true)

Attributes with Trailing Return Type

Attrlike
Attrlike+Delim

auto f()
[[pre : 1 || true]]
[[function_type_attribute1]]
[[pre : 2 || true]]
[[function_type_attribute2]];
-> int
[[return_type_attribute]]

Attrlike+Post
Attrlike+Post+Delim

auto f()
[[function_type_attribute1]]
[[function_type_attribute2]]
-> int
[[return_type_attribute1]]
[[pre : 1 || true]]
[[pre : 2 || true]];

Natural
auto f()

[[function_type_attribute1]]
[[function_type_attribute2]]
-> int
[[return_type_attribute1]]
pre(1 || true)
pre(2 || true)

6

Postcondition Needing Return Type To Parse

Attrlike auto f() [[post r : r > 0]] -> int;
// return type needed before seen

Attrlike+Post auto f() -> int [[post r : r > 0]];

Attrlike+Delim auto f() [[post : r : r > 0]] -> int;
// return type needed before seen

Attrlike+Post+Delim auto f() -> int [[post : r : r > 0]];

Natural auto f() -> int post(r : r > 0);

2.3 Member Functions

Member functions introduce a number of additional qualifiers that interact with the placement of
CCAs.
Trailing Return Type

Attrlike
Attrlike+Delim

struct S {
auto f() [[pre : true]] -> int;

};

Attrlike+Post
Attrlike+Post+Delim

struct S {
auto f() -> int [[pre : true]];

};

Natural struct S {
auto f() -> int pre(true);

};

const and Reference Qualifier
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim

struct S {
void f() & [[pre : true]];
void g() const&& [[pre : true]];

};

Natural struct S {
void f() & pre(true);
void g() const&& pre(true);

}

7

Virtual Specifiers

Attrlike
Attrlike+Delim

struct S {
virtual void f() [[pre : true]] override final;

};

Attrlike+Post
Attrlike+Post+Delim

struct S {
virtual void f() override final [[pre : true]];

};

Natural struct S {
virtual void f() override final pre(true);

};

Pure Specifier
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim

struct S {
virtual void f() [[pre : true]] = 0;

};

Natural struct S {
virtual void f() pre(true) = 0;

};

Defaulted Function
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim

struct S {
bool operator=(const S&) [[pre : true]] = default;

};

Natural struct S {
bool operator=(const S&) pre(true) = default;

};

Deleted Function
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim

struct S {
void f() [[pre : true]] = delete;

};

Natural struct S {
void f() pre(true) = delete;

};

8

Everything But The Kitchen Sink

Attrlike
struct S {

template <typename T>
auto f() const&&

[[pre : true]]
[[post r : true]]

-> int requires something<T>
{ return 17; }

}

Attrlike+Post
struct S {

template <typename T>
auto f() const&&
-> int requires something<T>

[[pre : true]]
[[post r : true]]

{ return 17; }
}

Attrlike+Delim
struct S {

template <typename T>
auto f() const&&

[[pre : true]]
[[post : r : true]]

-> int requires something<T>
{ return 17; }

}

Attrlike+Post+Delim
struct S {

template <typename T>
auto f() const&&
-> int requires something<T>

[[pre : true]]
[[post : r : true]]

{ return 17; }
}

Natural
struct S {

template <typename T>
auto f() const&&
-> int requires something<T>

pre(true)
post(r : true)

{ return 17; }
}

2.4 Assertion Usage

Assertions that are usable as expressions with a void type benefit from some concrete examples.

9

Statement
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim

void f() {
[[assert : true]];

}

Natural void f() {
contract_assert(true);

}

In Return Statement
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim

void f() {
return [[assert : true]];

}
int g() {

return [[assert : true]] , 17;
}

Natural
void f() {

return contract_assert(true);
}
int g() {

return contract_assert(true) , 17;
}

In Member Initializer
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim

struct S {
int d_x;
S : d_x([[assert : true]] , 17) {}

};

Natural struct S {
int d_x;
S : d_x(contract_assert(true) , 17) {}

};

2.5 Lambdas

Lambdas have a terse syntax within which CCAs must find a home.

10

Lambda Expression
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim

auto x = [] (int a) [[pre : true]] {};
auto y = [] [[pre : true]] {};

Natural auto x = [] (int a) pre(true) {};
auto y = [] pre(true) {};

Lambda Expression with Trailing Return Type
Attrlike

Attrlike+Delim auto x = [] (int a) [[pre : true]] -> int { return 17; };
auto y = [] [[pre : true]] -> int { return 17; };

Attrlike+Post
Attrlike+Post+Delim auto x = [] (int a) -> int [[pre : true]] { return 17; };

auto y = [] -> int [[pre : true]] { return 17; };

Natural auto x = [] (int a) -> int pre(true) { return 17; };
auto y = [] -> int pre(true) { return 17; };

Lambda Expression with requires Clause
Attrlike

Attrlike+Delim auto x = [](auto a) [[pre : true]]
requires something<decltype(a)> {};

Attrlike+Post
Attrlike+Post+Delim auto x = [](auto a) requires something<decltype(a)>

[[pre : true]] {};

Natural auto x = [](auto a) requires something<decltype(a)>
pre(true) {};

2.6 Future Extensions

The choice of syntax has a significant impact on potential future features that build upon the
Contracts MVP.

11

Attribute Appertaining to CCA

Attrlike
Attrlike+Post

void f()
[[pre [[clang::weeble]] : true]]
[[post [[gcc::wibble]] : true]]
[[post [[msvc::wobble]] r : true]]

{
[[assert [[icc::falldown]] : true]];
return x;

}

Attrlike+Delim
void f()

[[pre [[clang::weeble]] : true]]
[[post [[gcc::wibble]] : true]]
[[post [[msvc::wobble]] : r : true]]

{
[[assert [[icc::falldown]] : true]];
return x;

}

Attrlike+Post+Delim
void f()

[[pre [[clang::weeble]] : true]]
[[post [[gcc::wibble]] : true]]
[[post [[msvc::wobble]] : r : true]]

{
[[assert [[icc::falldown]] : true]];
return x;

}

Natural
void f()

pre(true) [[clang::weeble]]
post(true) [[gcc::wibble]]
post(r : true) [[msvc::wobble]]

{
contract_assert(true) [[icc::falldown]];
return x;

}

Structured Binding Return Value
Attrlike

Attrlike+Post std::tuple<int,int> f()
[[post [a,b] : true]];

Attrlike+Delim
Attrlike+Post+Delim std::tuple<int,int> f()

[[post : [a,b] : true]];

Natural std::tuple<int,int> f()
post([a,b] : true);

12

Capture Values for Postcondition

Attrlike
Attrlike+Post

void f(int a)
[[post [a] : true]] // ambiguous with structured binding
[[post [a=a] : true]]; // ok

Attrlike+Delim
Attrlike+Post+Delim

void f(int a)
[[post [a] : true]]
[[post [a=a] : true]];

Natural void f(int a)
post [a] (true)
post [a=a] (true);

Structured Binding and Captures

Attrlike
Attrlike+Post

std::tuple<int,int> f(int a)
[[post [a] [x,y] : true]] // visually ambiguous
[[post [a=a] [x,y] : true]];

Attrlike+Delim
Attrlike+Post+Delim

std::tuple<int,int> f(int a)
[[post [a] : [x,y] : true]]
[[post [a=a] : [x,y] : true]];

Natural std::tuple<int,int> f(int a)
post [a] ([x,y] : true)
post [a=a] ([x,y] : true);

Labels
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim

void f()
[[pre audit : true]]
[[post audit : true]]

{
[[assert audit : true]];

}

Natural
void f()

pre(true) [audit]
post(true) [audit]

{
contract_assert(true) [audit];

}

13

Label Conflicting with Return-Value Name
Attrlike

Attrlike+Post int f()
[[post audit (audit) : audit > 0]];

Attrlike+Delim
Attrlike+Post+Delim int f()

[[post audit : audit : audit > 0]];

Natural int f()
post(audit : audit > 0) [audit];

Parameterized Labels with <>

Attrlike
Attrlike+Post

Attrlike+Delim
Attrlike+Post+Delim

void f()
[[pre label<a> : true]];

Natural void f()
pre(true) [label<a>];

Parameterized Labels with ()

Attrlike
Attrlike+Post

void f()
[[pre label(a) : true]]
[[post label(a) : true]] // ambiguous with return value name

{
[[assert label(a) : true]];

}

Attrlike+Delim
Attrlike+Post+Delim

void f()
[[pre label(a) : true]]
[[post label(a) : true]]

{
[[assert label(a) : true]];

}

Natural
void f()

pre(true) [label(a)]
post(true) [label(a)]

{
contract_assert(true) [label(a)];

}

14

requires Clause on CCA
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim

template <typename T>
[[pre requires something<T> : true]];

Natural template <typename T>
pre requires something<T> (true);

Control Object Parameterizing CCA
Attrlike

Attrlike+Post
Attrlike+Delim

Attrlike+Post+Delim
void f() [[pre<control()> : true]];

Natural void f() pre<control()>(true);

3 Evaluation
Both syntax papers, [P2935R4] and [P2961R2], strive to explain how they satisfy the requirements
for a Contracts syntax that were gathered in [P2885R3]. In addition, considering fundamental
principles might shine additional light on the distinct qualities of each syntax proposal.

When we can objectively measure how well the syntax choices meet an individual concern, we will
use the following notation.

• ✔— The syntax satisfies the concern completely.

• ✓— The syntax largely satisfies the concern with some seemingly acceptable caveats.

• ✗— The syntax satisfies part of the concern but overall fails to meet it.

• ✘— The syntax fails to meet the specified concern.

Note that we do not intend to suggest that whichever syntax has the most green or least red must
be the syntax we choose. Each member of SG21 must determine which concerns they consider to be
important for this decision and choose accordingly; this analysis is not intended as prescriptive and
aims to aid in having a common understanding of the relationship between the syntax choices and
the concerns.

3.1 Requirements

• [basic.aesthetic]1 — The aesthetic appeal of a syntax decision is almost completely sub-
jective, so we can provide no objective measure to help guide the syntax decision beyond the
reader’s own conclusion about the appeal of any particular syntax decision.

1See [P2885R3], Section 4.1, “Aesthetics” [basic.aesthetic].

15

• [basic.brief]2 — The number of characters and tokens needed for each syntax can be
measured to give an idea of the weight of the overhead involved in any of the syntax choices.

Characters of Overhead
Attrlike Attrlike

+Post
Attrlike
+Delim

Attrlike
+Post
+Delim

Natural

Precondition 8 8 8 8 5
Postcondition 9 9–10 9 9–10 6–7
Assertion 11 11 11 11 17

Tokens of Overhead
Attrlike Attrlike

+Post
Attrlike
+Delim

Attrlike
+Post
+Delim

Natural

Precondition 6 6 6 6 3
Postcondition 6 6–7 6 6–7 3–4
Assertion 6 6 6 6 3

Beyond the tables above, the judgment as to whether these quantities of characters and tokens
warrant considering either syntax brief or burdensome is subjective and left to the reader.

• [basic.teach]3 —

• [basic.practice]4 — Both proposals use the already commonplace choices of pre and post for
precondition and postcondition CCAs, a decision that had strong consensus when originally
proposed by [P1344R0].

On the other hand, the natural syntax is unable to use the identifier assert; this syntax needs
the identifier it uses for assertion CCAs to be a language keyword, so it proposes the use of
contract_assert. The use of assert as the keyword for assertions is common practice in many
other languages, including, unfortunately, C. The inability with the natural syntax to use
assert as the token in the Contracts syntax has raised concerns for many.

Concern 1: Use the Identifier assert

The syntax should use follow existing literature and industry practice by using the
identifier assert for assertion CCAs.
Attrlike: ✔

Attrlike+Post: ✔

Attrlike+Delim: ✔

Attrlike+Post+Delim: ✔

Natural: ✘

2See [P2885R3], Section 4.2, “Brevity” [basic.brief].
3See [P2885R3], Section 4.3, “Teachability” [basic.teach].
4See [P2885R3], Section 4.4, “Consistency with existing practice” [basic.practice].

16

• [basic.cpp]5 — Both syntax choices are using syntactic constructs that strongly resemble
existing C++ constructs. The attribute-like syntax takes the form of C++ attributes in most
readers’ opinions. The natural syntax looks like a function invocation or named operator.

The attribute-like syntax might not grammatically be an attribute but does follow the normal
attribute appertainment rules (as obscure as they might be) and otherwise builds on an
existing language construct. When placed in the postcondition location, those obscure rules
are, however, ignored.

Concern 2: Consistent Use of Language Constructs

The syntax should make consistent use of existing language constructs.
Attrlike: ✓

Attrlike+Post: ✘

Attrlike+Delim: ✓

Attrlike+Post+Delim: ✘

Natural: ✔

• [compat.break]6 — The attribute-like syntax proposals will have no impact on existing code.
The natural syntax comes with a minor concern that an assertion might conflict with an
existing function invocation or that the introduction of a new keyword for assertions might
break existing code that uses that keyword as an identifier. Initial research has indicated that
neither is a major concern.

Concern 3: No Breaking Changes

Do not alter the meaning or break existing C++ code.
Attrlike: ✔

Attrlike+Post: ✔

Attrlike+Delim: ✔

Attrlike+Post+Delim: ✔

Natural: ✓

• [compat.macro]7 — None of the syntax choices depend on macros for their use.

• [compat.parse]8 — All the syntax choices appear parseable.

• [compat.impl]9 — None of the syntax proposals have had any implementation concerns raised.
Publicly available patches to the major open-source compilers will likely be available by the
time the SG21 MVP is ready to present to other study groups, regardless of which syntax
decision is made.

GCC 13 with the -fcontracts option implements the C++20 attribute-like syntax excluding
the optional ()s around return value identifiers. The other attribute-like syntaxes are largely

5See [P2885R3], Section 4.5, “Consistency with the rest of the C++ language” [basic.cpp].
6See [P2885R3], Section 5.1, “No breaking changes” [compat.break].
7See [P2885R3], Section 5.2, “No macros” [compat.macro].
8See [P2885R3], Section 5.3, “Parsability” [compat.parse].
9See [P2885R3], Section 5.4, “Implementation experience” [compat.impl].

17

similar in terms of parsing the CCA itself, but we do not have implementation experience
with those syntax choices in their entirety.

There is also a GCC branch developed by Ville Voutilainen available under the name “x86-64
gcc (contracts natural syntax)” at http://godbolt.org which implements the precondition
and postcondition parst of the natural syntax for contracts. It does not implement (as of this
writing) the assertions as expressions, but neither does any other current implementation.

Concern 4: Implementation Experience

The specified syntax will have implementation experience in a modern C++ compiler.
Attrlike: ✔

Attrlike+Post: ✗

Attrlike+Delim: ✗

Attrlike+Post+Delim: ✗

Natural: ✔

• [compat.back]10 — The attribute-like syntaxes all propose a possible alternative for allowing
precondition and postcondition CCAs to fully resemble an attribute by making use of optional
parentheses around everything except the kind. None, however, actually propose this choice,
and deploying the choice would come with other issues due to GCC 13 compilers already
treating attribute-like constructs with pre and post as ill-formed if they do not meet the
C++20 Contracts syntax, even without a top-level colon in the tokens inside the attribute
brackets.

The natural syntax could be elided from code built on older compilers through the use of
function-like macros that expand to nothing yet would likely encounter problems with macros
using the relatively common identifiers of pre and post.

Therefore, none of the syntax choices seem to directly offer a complete route for supporting
backward compatibility.

• [compat.tools]11 — None of the syntax choices are any harder or easier to parse than the
C++ declarations to which they would be attached.

• [compat.c]12 — All the syntax choices could be added to the C grammar with the same ease
with which they have been added to the C++ grammar.

• [func.pred]13 — All the syntax choices allow for arbitrary C++ expressions as the CCA
predicate.

• [func.kind]14 — The natural syntax introduces a keyword for assertion CCAs, so the corre-
sponding enumerator used in std::contracts::contract_kind will need to be distinct; other-
wise, no syntax has noteworthy issues with this requirement.

10See [P2885R3], Section 5.5, “Backwards-compatibility” [compat.back].
11See [P2885R3], Section 5.6, “Toolability” [compat.tools].
12See [P2885R3], Section 5.7, “C compatibility” [compat.c].
13See [P2885R3], Section 6.1, “Predicate” [func.pred].
14See [P2885R3], Section 6.2, “Contract kind” [func.kind].

18

http://godbolt.org

• [func.pos]15 — The attribute-like syntaxes need to be parsed as tokens first and then fully
processed after consuming the entire function declaration. The post-declaration attribute-like
syntaxes and the natural syntax should all be parseable in terms of tokens that have already
been seen.

Concern 5: Immediately Parseable

Function CCAs should not require delayed parsing.
Attrlike: ✘

Attrlike+Post: ✔

Attrlike+Delim: ✘

Attrlike+Post+Delim: ✔

Natural: ✔

• [func.pos.prepost]16 — All the syntax choices place function CCAs after the function
parameters.

• [func.pos.assert]17 — Assertion CCAs as expressions is now part of the Contracts MVP,
and all syntax proposals are compatible with this choice.

• [func.multi]18 and [func.mix]19 — All the syntax choices allow for any number of precondi-
tions and postconditions to be interleaved on a single function.

• [func.retval]20 and [func.retval.userdef]21 — All the syntax proposals provide a location
for optionally introducing an identifier for the return value of the function to be used within a
postcondition CCA.

The attribute-like syntax without the additional delimiter for return-value identifiers does
not provide a location, for naming the return value, that is clearly distinct and that will not
conflict with future proposals that build on top of the initial Contracts MVP. In the original
C++20 Contracts syntax, the return value needed to be actively disambiguated from the three
potential labels that were available for contracts — default, audit, and the other one.22

15See [P2885R3], Section 6.3, “Position and name lookup” [func.pos].
16See [P2885R3], Section 6.4, “Pre/postconditions after parameters” [func.pos.prepost].
17See [P2885R3], Section 6.5, “Assertions anywhere an expression can go” [func.pos.assert].
18See [P2885R3], Section 6.6, “Multiple pre/postconditions” [func.multi].
19See [P2885R3], Section 6.7, “Mixed order of pre/postconditions” [func.mix].
20See [P2885R3], Section 6.8, “Return value” [func.retval].
21See [P2885R3], Section 6.10, “User-defined name for return value” [func.retval.userdef].
22See [P1672R0].

19

Concern 6: Unambiguous Return-Value Identifier

The syntax shall provide an unambiguous location for introducing an identifier for the
return value.
Attrlike: ✓

Attrlike+Post: ✓

Attrlike+Delim: ✔

Attrlike+Post+Delim: ✔

Natural: ✔

• [func.retval.predef]23 — None of the syntax proposals provide a predefined name for the
return value.

• [app.functype]24 — All the syntax choices that place function CCAs at the end of the function
declaration will have problems and ambiguities attempting to allow for function CCAs to be
placed on function types — in particular when a function uses a trailing return type that is
itself a pointer to a function type.

Only the attribute-like syntaxes in their original position leverage existing attribute locations
to allow for unambiguously appertaining to either the function type of the function being
declared or to a function type embedded within that declaration.

Concern 7: Enable CCAs on Function Types

The syntax should allow for adding precondition and postcondition CCAs to function
types with the same syntax as that used for function declarations.
Attrlike: ✔

Attrlike+Post: ✘

Attrlike+Delim: ✔

Attrlike+Post+Delim: ✘

Natural: ✘

The remaining concerns in [P2885R3] relate to specific future proposals, and we will cover those
issues under the broader principles enumerated below.

3.2 Principles

A number of principles more fundamental than the requirements specified in [P2885R3] underly the
overall design of new language features and, in particular, of Contracts for C++. Each of these will
shine additional light on the distinctions between the available syntax proposals.

• Ambiguities in the parsing of the C++ language are always a source of user confusion, compiler
complexity, and potentially broken specifications.

The C++20 attribute-like syntax overloaded the space between the kind and the colon both
to contain metainformation about the CCA and to introduce the return value identifier. When

23See [P2885R3], Section 6.9, “Predefined name for return value” [func.retval.predef].
24See [P2885R3], Appendix A.3, “Contracts on function types” [app.functype].

20

ambiguous, the label (one of the three defined in the language at the time) was chosen in lieu
of treating the identifier as a name for the return value. This need for disambiguation sorely
restricts the ability to add additional tokens with meaning, including user-defined ones, to
that same syntactic space. The natural syntax and the option to introduce the return value
with a colon as a delimiter in the attribute-like syntax both alleviate this problem.

Concern 8: Enable Unambiguous Extensions of the Syntax

The syntax should clearly identify optional components so it will be unambiguous with
future extensions that will themselves inherently be optional components of a CCA.
Attrlike: ✘

Attrlike+Post: ✘

Attrlike+Delim: ✔

Attrlike+Post+Delim: ✔

Natural: ✔

• We are currently aware of plans for a wide variety of potential features to build upon the
Contracts MVP, such as those introduced in [P2755R0]. Assuming that is the full scope of
what may be added to CCA specifications in the future would be pure hubris. Therefore, to
maximize future evolutionary paths, we must minimize restrictions that would be placed on
extensions to the accepted CCA syntax.

Each of the proposed syntax choices provides ample room for evolution, but some are subtly
more limited than others. Some of these issues do not have currently known upcoming
proposals.

– All the attribute-like syntax choices will have issues allowing a feature that is placed on
assertion CCAs immediately after the kind and beginning with an open parenthesis due
to that construct appearing to the preprocessor as a use of the assert() function-like
macro from <cassert>.

– The attribute-like syntax proposals that do not introduce a delimiter before the return-
value identifier introduce ambiguities when attempting to add any syntax between the
kind and the return value that has trailing optional parentheses.

– The natural syntax lacks enclosing delimiters that clearly identify what is and is not
part of a CCA. Due to this lack of clarity, careful analysis is needed when extending the
syntax with features that might border arbitrary other syntax that might come before or
after a CCA.

Other aspects of the syntax proposals would require possibly challenging disambiguation rules
for known upcoming proposals.

– Two upcoming features — capturing values and using structured bindings for the return
value — both use a syntax that is identified by a single set of []s. Without an additional
delimiter for the identifier, these can be disambiguated by requiring captures to have an
initializer and recognizing that structured bindings are always a sequence of identifiers
with no other tokens, but that is a subtle and sometimes surprising distinction.

21

Concern 9: Maximize Evolutionary Flexibility

The syntax should maximize the flexibility available for future additions.
Attrlike: ✘

Attrlike+Post: ✘

Attrlike+Delim: ✓

Attrlike+Post+Delim: ✓

Natural: ✓

• Contracts are, inherently, not intended to be evaluated as part of the essential behavior of
a program. To many, this intention is clearly conveyed through the use of the attribute-
like syntax, harkening to existing C++ attributes’ known property of being ignorable when
considering the intended behavior of a piece of code. The attribute-like syntax conveys this
facet of Contracts; the natural syntax does not.

Concern 10: Indicate Nonessential Nature of Contracts

The syntax should convey that CCA predicates are not part of the essential behavior of
a program.
Attrlike: ✔

Attrlike+Post: ✔

Attrlike+Delim: ✔

Attrlike+Post+Delim: ✔

Natural: ✘

• Overall guidance on language evolution or design of particular features is rarely something for
which WG21 seeks or achieves consensus. For attributes, however, significant discussion about
their intent and design culminated in [P2552R3].

While the attribute-like syntax does not meet the grammar of being an attribute, it does
appear to be an attribute to most readers and is thus in conflict with the consensus in EWG
that was reached for [P2552R3].

Concern 11: Follow EWG Guidance on Attributes

The syntax should meet design guidelines adopted by EWG which might appear to a
reader to apply to that syntax.
Attrlike: ✘

Attrlike+Post: ✘

Attrlike+Delim: ✘

Attrlike+Post+Delim: ✘

Natural: ✔

4 Conclusion
With each of the requirements and principles considered in Section 3, we identified similarities and
differences between the various syntax proposals that SG21 must consider. Those considerations

22

where all syntax proposals have equivalent responses are fundamentally nonviable mechanisms to
guide the choice of syntax.

In the table below, we therefore gather those data points where the syntax choices do differ along
with a brief summary of each syntax’s result for that concern.

Concern Attrlike Attrlike
+Post

Attrlike
+Delim

Attrlike
+Post
+Delim

Natural

1 Use the Identifier assert ✔ ✔ ✔ ✔ ✘

2 Consistent Use of Language Constructs ✓ ✘ ✓ ✘ ✔

3 No Breaking Changes ✔ ✔ ✔ ✔ ✓

4 Implementation Experience ✔ ✗ ✗ ✗ ✔

5 Immediately Parseable ✘ ✔ ✘ ✔ ✔

6 Unambiguous Return-Value Identifier ✓ ✓ ✔ ✔ ✔

7 Enable CCAs on Function Types ✔ ✘ ✔ ✘ ✘

8 Enable Unambiguous Extensions of the Syntax ✘ ✘ ✔ ✔ ✔

9 Maximize Evolutionary Flexibility ✘ ✘ ✓ ✓ ✓

10 Indicates Nonessential Nature of Contracts ✔ ✔ ✔ ✔ ✘

11 Follow EWG Guidance on Attributes ✘ ✘ ✘ ✘ ✔

We sincerely hope that the above information helps participants in SG21 — and in WG21 as a
whole — to select the optimal syntax for Contracts in C++.

Acknowledgements
Thanks Tom Honermann, Lori Hughes, and Jens Maurer for careful reading and feedback on this
paper.

Bibliography
[P1344R0] Nathan Myers, “Pre/Post vs. Enspects/Exsures”, 2019

http://wg21.link/P1344R0

[P1672R0] Joshua Berne, “"Axiom" is a False Friend”, 2019
http://wg21.link/P1672R0

[P2552R3] Timur Doumler, “On the ignorability of standard attributes”, 2023
http://wg21.link/P2552R3

[P2695R1] Timur Doumler and John Spicer, “A proposed plan for contracts in C++”, 2023
http://wg21.link/P2695R1

[P2755R0] Joshua Berne, Jake Fevold, and John Lakos, “A Bold Plan for a Complete Contracts
Facility”, 2023
http://wg21.link/P2755R0

23

http://wg21.link/P1344R0
http://wg21.link/P1672R0
http://wg21.link/P2552R3
http://wg21.link/P2695R1
http://wg21.link/P2755R0

[P2885R3] Timur Doumler, Joshua Berne, Gašper Ažman, Andrzej Krzemieński, Ville Voutilainen,
and Tom Honermann, “Requirements for a Contracts syntax”, 2023
http://wg21.link/P2885R3

[P2900R1] Joshua Berne, Timur Doumler, and Andrzej Krzemieński, “Contracts for C++”, 2023
http://wg21.link/P2900R1

[P2935R4] Joshua Berne, “An Attribute-Like Syntax for Contracts”, 2023
http://wg21.link/P2935R4

[P2961R2] Timur Doumler and Jens Maurer, “A natural syntax for Contracts”, 2023
http://wg21.link/P2961R2

24

http://wg21.link/P2885R3
http://wg21.link/P2900R1
http://wg21.link/P2935R4
http://wg21.link/P2961R2

	1 Introduction
	2 Examples
	2.1 Basic Usage
	2.2 Free Functions
	2.3 Member Functions
	2.4 Assertion Usage
	2.5 Lambdas
	2.6 Future Extensions

	3 Evaluation
	3.1 Requirements
	3.2 Principles

	4 Conclusion

