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Abstract
We propose the addition of two new class templates to the C++ Standard
Library: indirect<T> and polymorphic<T>.

These class templates have value semantics and compose well with other standard
library types (such as vector) allowing the compiler to correctly generate special
member functions.

The class template indirect confers value-like semantics on a free-store-allocated
object. An indirect may hold an object of a class T. Copying the indirect will
copy the object T. When a parent object contains a member of type indirect<T>
and is accessed through a const access path, constness will propagate from the
parent object to the instance of T owned by the indirect member.

The class template polymorphic confers value-like semantics on a free-store-
allocated object. A polymorphic<T> may hold an object of a class publicly
derived from T. Copying the polymorphic<T> will copy the object of the derived
type. When a parent object contains a member of type polymorphic<T> and is
accessed through a const access path, constness will propagate from the parent
object to the instance of T owned by the polymorphic member.

This proposal is a fusion of two earlier individual proposals, P1950 and P0201.
The design of the two proposed class templates is sufficiently similar that they
should not be considered in isolation.

Motivation
The standard library has no vocabulary type for a free-store-allocated object
with value semantics. When designing a composite class, we may need an object
to be stored indirectly to support incomplete types, reduce object size or support
open-set polymorphism.

We propose the addition of two new class templates to the standard library to rep-
resent indirectly stored values: indirect and polymorphic. Both class templates
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represent free-store-allocated objects with value-like semantics. polymorphic<T>
can own any object of a type publicly derived from T, allowing composite classes
to contain polymorphic components. We require the addition of two classes to
avoid the cost of virtual dispatch (calling the copy constructor of a potentially
derived-type object through type erasure) when copying of polymorphic objects
is not needed.

Design requirements
We review the fundamental design requirements of indirect and polymorphic
that make them suitable for composite class design.

Special member functions

Both class templates are suitable for use as members of composite classes where
the compiler will generate special member functions. This means that the class
templates should provide the special member functions where they are supported
by the owned object type T.

• indirect<T, Alloc> and polymorphic<T, Alloc> are default con-
structible in cases where T is default constructible.

• indirect<T, Alloc> is copy constructible where T is copy constructible
and assignable.

• polymorphic<T, Alloc> is unconditionally copy constructible and
assignable.

• indirect<T, Alloc> and polymorphic<T, Alloc> are unconditionally
move constructible and assignable.

• indirect<T, Alloc> and polymorphic<T, Alloc> destroy the owned
object in their destructors.

Deep copies

Copies of indirect<T> and polymorphic<T> should own copies of the owned
object created with the copy constructor of the owned object. In the case of
polymorphic<T>, this means that the copy should own a copy of a potentially
derived type object created with the copy constructor of the derived type object.

Note: Including a polymorphic component in a composite class means that
virtual dispatch will be used (through type erasure) in copying the polymorphic
member. Where a composite class contains a polymorphic member from a
known set of types, prefer std::variant or indirect<std::variant> if indirect
storage is required.
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const propagation

When composite objects contain pointer, unique_ptr or shared_ptr members
they allow non-const access to their respective pointees when accessed through a
const access path. This prevents the compiler from eliminating a source of const-
correctness bugs and makes it difficult to reason about the const-correctness of
a composite object.

Accessors of unique and shared pointers do not have const and non-const over-
loads:

T* unique_ptr<T>::operator->() const;
T& unique_ptr<T>::operator*() const;

T* shared_ptr<T>::operator->() const;
T& shared_ptr<T>::operator*() const;

When a parent object contains a member of type indirect<T> or
polymorphic<T>, access to the owned object (of type T) through a const access
path should be const qualified.

struct A {
enum class Constness { CONST, NON_CONST };
Constness foo() { return Constness::NON_CONST; }
Constness foo() const { return Constness::CONST; };

};

class Composite {
indirect<A> a_;

Constness foo() { return a_.foo(); }
Constness foo() const { return a_.foo(); };

};

int main() {
Composite c;
assert(c.foo() == A::Constness::NON_CONST);
const Composite& cc = c;
assert(cc.foo() == A::Constness::CONST);

}

Value semantics

Both indirect and polymorphic are value types whose owned object is free-
store-allocated (or some other memory resource controlled by the specified
allocator).

When a value type is copied it gives rise to two independent objects that can be
modified separately.
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The owned object is part of the logical state of indirect and polymorphic.
Operations on a const-qualified object do not make changes to the object’s logical
state nor to the logical state of other object.

indirect<T> and polymorphic<T> are default constructible in cases where T is
default constructible. Moving a value type onto the free store should not add or
remove the ability to be default constructed.

Unobservable null state and interaction with std::optional

Both indirect and polymorphic have a null state that is used to implement
move. The null state is not intended to be observable to the user. There is
no operator bool or has_value member function. Accessing the value of an
indirect or polymorphic after it has been moved from is erroneous behaviour.
We provide a valueless_after_move member function that returns true if an
object is in a valueless state. This allows explicit checks for the valueless state
in cases where it cannot be verified statically.

Without a null state, moving indirect or polymorphic would require allocation
and moving from the owned object. This would be expensive and would require
the owned object to be moveable. The existence of a null state allows move to
be implemented cheaply without requiring the owned object to be moveable.

Where a nullable indirect or polymorphic is required, using std::optional
is recommended. This may become common practice since indirect and
polymorphic can replace smart pointers in composite classes, where they are
currently used to (mis)represent component objects. Putting T onto the free
store should not make it nullable. Nullability must be explicitly opted into by
using std::optional<indirect<T>> or std::optional<polymorphic<T>>.

std::optional<> is specialized for indirect<> and polymorphic<> so they
incur no additional overhead.

Access to a std::optional<indirect<T>> or std::optional<polymorphic<T>>
can be done with double indirection, (**v), or with a single arrow operator to
access a member, v->some_member.

Note: As the null state of indirect and polymorphic is not observable, and
access to a moved-from object is erroneous, std::optional can be specialized
by implementers to exchange pointers on move construction and assignment.

Allocator support

Both indirect and polymorphic are allocator-aware types. They must be
suitable for use in allocator-aware composite types and containers. Existing
allocator-aware types in the standard, such as vector and map, take an allocator
type as a template parameter, provide allocator_type, and have constructor
overloads taking an additional allocator_type_t and allocator instance as
arguments. As indirect and polymorphic need to work with and in the same
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way as existing allocator-aware types, they too take an allocator type as a
template parameter, provide allocator_type, and have constructor overloads
taking an additional allocator_type_t and allocator instance as arguments.

Modelled types

The class templates indirect and polymorphic have strong similarities to
existing class templates. These similarities motivate much of the design; we aim
for consistency with existing library types, not innovation.

Modelled types for indirect The class template indirect owns an object
of known type, permits copies, propagates const and is allocator aware.

• Like optional and unique_ptr, indirect can be in a valueless state;
indirect can only get into the valueless state after move.

• unique_ptr and optional have preconditions for operator-> and
operator*: the behavior is undefined if *this does not contain a value.

• unique_ptr and optional mark operator-> and operator* as noexcept:
indirect does the same.

• optional and indirect know the underlying type of the owned object so
can implement r-value qualified versions of operator*. For unique_ptr
the underlying type is not known (it could be an instance of a derived
class) so r-value qualified versions of operator* are not provided.

• Like vector, indirect owns an object created by an allocator. The move
constructor and move assignment operator for vector are conditionally
noexcept on properties of the allocator. Thus for indirect, the move
constructor and move assignment operator for indirect are conditionally
noexcept on properties of the allocator (Allocator instances may have
different underlying memory resources, it is not possible for an allocator
with one memory resource to delete an object in another memory resource.
When allocators have different underlying memory resources, move neces-
sitates the allocation of memory and cannot be marked noexcept). Like
vector, indirect marks member and non-member swap as noexcept and
requires allocators to be equal.

• Like optional, indirect knows the type of the owned object so forwards
comparison operators and hash to the underlying object.

• Unlike optional, indirect is not observably valueless: use after move
is erroneous. Formatting is supported by indirect by forwarding to the
owned object.

Modelled types for polymorphic The class template polymorphic owns an
object of known type, requires copies, propagates const and is allocator aware.
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• Like optional and unique_ptr, polymorphic can be in a valueless state;
polymorphic can only get into the valueless state after move.

• unique_ptr and optional have preconditions for operator-> and
operator*: the behavior is undefined if *this does not contain a value.

• unique_ptr and optional mark operator-> and operator* as noexcept:
polymorphic does the same.

• Neither unique_ptr nor polymorphic know the underlying type of the
owned object so cannot implement r-value qualified versions of operator*.
For optional the underlying type is known so r-value qualified versions of
operator* are provided.

• Like vector, polymorphic owns an object created by an allocator. The
move constructor and move assignment operator for vector are condi-
tionally noexcept on properties of the allocator. Thus for polymorphic,
the move constructor and move assignment operator for polymorphic
are conditionally noexcept on properties of the allocator. Like vector,
polymorphic marks member and non-member swap as noexcept and re-
quires allocators to be equal.

• Like unique_ptr, polymorphic does not know the type of the owned
object (it could be an instance of a derived type). As a result polymorphic
cannot forward comparison operators, hash or formatting to the owned
object.

noexcept and narrow contracts

C++ library design guidelines recommend that member functions with narrow
contracts (runtime-preconditions) should not be marked noexcept. This is
partially motivated by a non-vendor implementation of the C++ standard
library that uses exceptions in a debug build to check for precondition violations
by throwing an exception. The noexcept status of operator-> and operator*
for indirect and polymorphic is identical to that of optional and unique_ptr.
All have preconditions (this cannot be valueless), all are marked noexcept.
Whatever strategy was used for testing optional and unique_ptr can be used
for indirect and polymorphic.

Not marking operator-> and operator* as noexcept for indirect and
polymorphic would make them strictly less useful than unique_ptr in contexts
where they would otherwise be a valid replacement.

Design for polymorphic types

A type PolymorphicInterface used as a base class with polymorphic does
not need a virtual destructor. The same mechanism that is used to call the
copy constructor of a potentially derived-type object will be used to call the
destructor.
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To allow compiler-generation of special member functions of an abstract
interface type PolymorphicInterface in conjunction with polymorphic,
PolymorphicInterface needs at least a non-virtual protected destruc-
tor and a protected copy constructor. PolymorphicInterface does
not need to be assignable, move constructible or move assignable for
polymorphic<PolymorphicInterface> to be assignable, move constructible or
move assignable.

class PolymorphicInterface {
protected:

PolymorphicInterface(const PolymorphicInterface&) = default;
~PolymorphicInterface() = default;

public:
// virtual functions

};

For an interface type with a public virtual destructor, users would potentially
pay the cost of virtual dispatch twice when deleting polymorphic<I> objects
containing derived-type objects.

All derived types owned by a polymorphic must be publicly copy constructible.

Prior work
This proposal continues the work started in [P0201] and [P1950].

Previous work on a cloned pointer type [N3339] met with opposition because of
the mixing of value and pointer semantics. We believe that the unambiguous
value semantics of indirect and polymorphic as described in this proposal
address these concerns.

Impact on the standard
This proposal is a pure library extension. It requires additions to be made to
the standard library header <memory>.

Technical specifications
X.Y Class template indirect [indirect]

X.Y.1 Class template indirect general [indirect.general] An indirect
value is an object that manages the lifetime of an owned object. An indirect
value object is valueless if it has no owned object. An indirect value may only
become valueless after it has been moved from.

In every specialization indirect<T, Allocator>, the type allocator_traits<Allocator>::value_type
shall be the same type as T. Every object of type indirect<T, Allocator>
uses an object of type Allocator to allocate and free storage for the owned
object as needed. The owned object shall be constructed using the function
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allocator_traits<allocator_type>::rebind_traits<U>::construct and
destroyed using the function allocator_traits<allocator_type>::rebind_traits<U>::destroy,
where U is either allocator_type::value_type or an internal type used by
the indirect value.

Copy constructors for an indirect value obtain an allocator by calling
allocator_traits<allocator_type>::select_on_container_copy_construction
on the allocator belonging to the indirect value being copied. Move constructors
obtain an allocator by move construction from the allocator belonging to the
container being moved. Such move construction of the allocator shall not
exit via an exception. All other constructors for these container types take a
const allocator_type& argument. [Note 3:If an invocation of a constructor
uses the default value of an optional allocator argument, then the allocator
type must support value-initialization. end note] A copy of this allocator
is used for any memory allocation and element construction performed by
these constructors and by all member functions during the lifetime of each
indirect value object, or until the allocator is replaced. The allocator may be
replaced only via assignment or swap(). Allocator replacement is performed by
copy assignment, move assignment, or swapping of the allocator only if (64.1)
allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value,
(64.2) allocator_traits<allocator_type>::propagate_on_container_move_assignment::value,
or (64.3) allocator_traits<allocator_type>::propagate_on_container_swap::value
is true within the implementation of the corresponding indirect value operation.

The template parameter T of indirect must be a non-union class type.

The template parameter T of indirect may be an incomplete type.

X.Y.2 Class template indirect synopsis [indirect.syn]

template <class T, class Allocator = std::allocator<T>>
class indirect {

T* p_; // exposition only
Allocator allocator_; // exposition only

public:
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;

constexpr indirect();

template <class... Ts>
explicit constexpr indirect(Ts&&... ts);

template <class... Ts>
constexpr indirect(
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std::allocator_arg_t, const Allocator& alloc, Ts&&... ts);

constexpr indirect(const indirect& other);

constexpr indirect(std::allocator_arg_t, const Allocator& alloc,
const indirect& other);

constexpr indirect(indirect&& other) noexcept(see below);

constexpr indirect(std::allocator_arg_t, const Allocator& alloc,
indirect&& other) noexcept(see below);

constexpr ~indirect();

constexpr indirect& operator=(const indirect& other);

constexpr indirect& operator=(indirect&& other) noexcept(see below);

constexpr const T& operator*() const & noexcept;

constexpr T& operator*() & noexcept;

constexpr const T&& operator*() const && noexcept;

constexpr T&& operator*() && noexcept;

constexpr const_pointer operator->() const noexcept;

constexpr pointer operator->() noexcept;

constexpr bool valueless_after_move() const noexcept;

constexpr allocator_type get_allocator() const noexcept;

constexpr void swap(indirect& other) noexcept;

friend constexpr void swap(indirect& lhs, indirect& rhs) noexcept;

template <class U, class AA>
friend constexpr auto operator==(

const indirect<T, A>& lhs, const indirect<U, AA>& rhs);

template <class U, class AA>
friend constexpr auto operator!=(

const indirect<T, A>& lhs, const indirect<U, AA>& rhs);
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template <class U, class AA>
friend constexpr auto operator<(

const indirect<T, A>& lhs, const indirect<U, AA>& rhs);

template <class U, class AA>
friend constexpr auto operator<=(

const indirect<T, A>& lhs, const indirect<U, AA>& rhs);

template <class U, class AA>
friend constexpr auto operator>(

const indirect<T, A>& lhs, const indirect<U, AA>& rhs);

template <class U, class AA>
friend constexpr auto operator>=(

const indirect<T, A>& lhs, const indirect<U, AA>& rhs);

template <class U, class AA>
friend constexpr auto operator<=>(

const indirect<T, A>& lhs, const indirect<U, AA>& rhs);

template <class U>
friend constexpr auto operator==(const indirect<T, A>& lhs, const U& rhs);

template <class U>
friend constexpr auto operator==(const U& lhs, const indirect<T, A>& rhs);

template <class U>
friend constexpr auto operator!=(const indirect<T, A>& lhs, const U& rhs);

template <class U>
friend constexpr auto operator!=(const U& lhs, const indirect<T, A>& rhs);

template <class U>
friend constexpr auto operator<(const indirect<T, A>& lhs, const U& rhs);

template <class U>
friend constexpr auto operator<(const U& lhs, const indirect<T, A>& rhs);

template <class U>
friend constexpr auto operator<=(const indirect<T, A>& lhs, const U& rhs);

template <class U>
friend constexpr auto operator<=(const U& lhs, const indirect<T, A>& rhs);

template <class U>
friend constexpr auto operator>(const indirect<T, A>& lhs, const U& rhs);
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template <class U>
friend constexpr auto operator>(const U& lhs, const indirect<T, A>& rhs);

template <class U>
friend constexpr auto operator>=(const indirect<T, A>& lhs, const U& rhs);

template <class U>
friend constexpr auto operator>=(const U& lhs, const indirect<T, A>& rhs);

template <class U>
friend constexpr auto operator<=>(const indirect<T, A>& lhs, const U& rhs);

template <class U>
friend constexpr auto operator<=>(const U& lhs, const indirect<T, A>& rhs);

};

template <class T, class Alloc>
struct hash<indirect<T, Alloc>>;

X.Y.3 Constructors [indirect.ctor]

constexpr indirect()

• Mandates: is_default_constructible_v<T> is true.

• Effects: Constructs an indirect owning a default-constructed T. allocator_
is default constructed.

• Postconditions: *this is not valueless.

template <class... Ts>
explicit constexpr indirect(Ts&&... ts);

• Constraints: is_constructible_v<T, Ts...> is true.

• Effects: Constructs an indirect owning an instance of T created with the
arguments Ts. allocator_ is default constructed.

• Postconditions: *this is not valueless.

template <class... Ts>
constexpr indirect(std::allocator_arg_t, const Allocator& alloc, Ts&&... ts);

• Constraints: is_constructible_v<T, Ts...> is true.

• Preconditions: Allocator meets the Cpp17Allocator requirements.

• Effects: Equivalent to the preceding constructor except that the allocator
is initialized with alloc. allocator_ is initialized with alloc.

• Postconditions: *this is not valueless.
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constexpr indirect(const indirect& other);

• Mandates: is_copy_constructible_v<T> is true.

• Preconditions: other is not valueless.

• Effects: Constructs an indirect owning an instance of T created with the
copy constructor of the object owned by other. allocator is obtained by
calling allocator_traits<allocator_type>::select_on_container_copy_constructionon
the allocator belonging to the object being copied.

• Postconditions: *this is not valueless.

constexpr indirect(std::allocator_arg_t, const Allocator& alloc,
const indirect& other);

• Mandates: is_copy_constructible_v<T> is true.

• Preconditions: other is not valueless and Allocator meets the
Cpp17Allocator requirements.

• Effects: Equivalent to the preceding constructor except that the allocator
is initialized with alloc.

• Postconditions: *this is not valueless.

constexpr indirect(indirect&& other) noexcept;

• Preconditions: other is not valueless.

• Effects: Constructs an indirect owning the object owned by other.
allocator is created by move construction from the allocator belonging
to the object being moved.

• Postconditions: other is valueless.

• Remarks: This constructor does not require that is_move_constructible_v<T>
is true.

constexpr indirect(std::allocator_arg_t, const Allocator& alloc,
indirect&& other) noexcept;

• Preconditions: other is not valueless and Allocator meets the
Cpp17Allocator requirements.

• Effects: Equivalent to the preceding constructors except that the allocator
is initialized with alloc.

• Postconditions: other is valueless.

• Remarks: This constructor does not require that is_move_constructible_v<T>
is true.
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X.Y.4 Destructor [indirect.dtor]

constexpr ~indirect();

• Effects: If *this is not valueless, destroys the owned object.

X.Y.5 Assignment [indirect.assign]

constexpr indirect& operator=(const indirect& other);

• Mandates: is_copy_assignable_v<T> and is_copy_constructible_v<T>is
true.

• Preconditions: other is not valueless.

• Effects: If allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
== true, allocator is set to the allocator of other. If allocator is not
changed, std::is_copy_assignable_v<T> is true, and *this is not
valueless, copy assigns the owned object in *this from the owned object in
other. Otherwise, destroys the owned object, if any, then copy constructs
a new object using the object owned by other.

• Postconditions: *this is not valueless.

constexpr indirect& operator=(indirect&& other) noexcept(
allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

Mandates: is_move_constructible_v<T>is true.

• Preconditions: other is not valueless.

• Effects: If allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
== true, allocator is set to the allocator of other. If allocator is
propagated or is equal to the allocator of other, destroys the owned object,
if any, then takes ownership of the object owned by other. Otherwise,
destroys the owned object, if any, then move constructs an object from the
object owned by other.

• Postconditions: *this is not valueless. other is valueless.

X.Y.6 Observers [indirect.observers]

constexpr const T& operator*() const & noexcept;
constexpr T& operator*() & noexcept;
constexpr const T&& operator*() const && noexcept;
constexpr T&& operator*() && noexcept;

• Preconditions: *this is not valueless.

• Effects: Returns a reference to the owned object.

• Remarks: These functions are constexpr functions.
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constexpr const_pointer operator->() const noexcept;
constexpr pointer operator->() noexcept;

• Preconditions: *this is not valueless.

• Effects: Returns a pointer to the owned object.

• Remarks: These functions are constexpr functions.

constexpr bool valueless_after_move() const noexcept;

• Returns: true if *this is valueless, otherwise false.

constexpr allocator_type get_allocator() const noexcept;

• Returns: A copy of the Allocator object used to construct the owned
object.

X.Y.7 Swap [indirect.swap]

constexpr void swap(indirect& other) noexcept(
allocator_traits::propagate_on_container_swap::value
|| allocator_traits::is_always_equal::value);

• Preconditions: *this is not valueless, other is not valueless.

• Effects: Swaps the objects owned by *this and other. If allocator_traits<allocator_type>::propagate_on_container_swap::value
is true, then allocator_type shall meet the Cpp17Swappable requirements
and the allocators of *this and other shall also be exchanged by
calling swap as described in [swappable.requirements]. Otherwise, the
allocators shall not be swapped, and the behavior is undefined unless
*this.get_allocator() == other.get_allocator().

• Remarks: Does not call swap on the owned objects directly.

constexpr void swap(indirect& lhs, indirect& rhs);

• Effects: Equivalent to lhs.swap(rhs).

X.Y.8 Relational operators [indirect.rel]

template <class U, class AA>
constexpr auto operator==(const indirect<T, A>& lhs, const indirect<U, AA>& rhs);

template <class U, class AA>
constexpr auto operator!=(const indirect<T, A>& lhs, const indirect<U, AA>& rhs);

template <class U, class AA>
constexpr auto operator<(const indirect<T, A>& lhs, const indirect<U, AA>& rhs);

template <class U, class AA>
constexpr auto operator<=(const indirect<T, A>& lhs, const indirect<U, AA>& rhs);
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template <class U, class AA>
constexpr auto operator>(const indirect<T, A>& lhs, const indirect<U, AA>& rhs);

template <class U, class AA>
constexpr auto operator>=(const indirect<T, A>& lhs, const indirect<U, AA>& rhs);

template <class U, class AA>
constexpr auto operator<=>(const indirect<T, A>& lhs, const indirect<U, AA>& rhs);

• Constraints: The operator op is defined for T.

• Preconditions: lhs is not valueless, rhs is not valueless.

• Effects: Returns *lhs op *rhs.

• Remarks: Specializations of this function template for which *lhs op *rhs
is a core constant expression are constexpr functions.

X.Y.9 Comparison with T [indirect.comp.with.t]

template <class U>
constexpr auto operator==(const indirect<T, A>& lhs, const U& rhs);

template <class U>
constexpr auto operator!=(const indirect<T, A>& lhs, const U& rhs);

template <class U>
constexpr auto operator<(const indirect<T, A>& lhs, const U& rhs);

template <class U>
constexpr auto operator<=(const indirect<T, A>& lhs, const U& rhs);

template <class U>
constexpr auto operator>(const indirect<T, A>& lhs, const U& rhs);

template <class U>
constexpr auto operator>=(const indirect<T, A>& lhs, const U& rhs);

template <class U>
constexpr auto operator<=>(const indirect<T, A>& lhs, const U& rhs);

• Constraints: The operator op is defined for T.

• Preconditions: lhs is not valueless.

• Effects: Returns *lhs op rhs.

• Remarks: Specializations of this function template for which *lhs op rhs
is a core constant expression, are constexpr functions.

template <class U>
constexpr auto operator==(const U& lhs, const indirect<T, A>& rhs);

template <class U>
constexpr auto operator!=(const U& lhs, const indirect<T, A>& rhs);
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template <class U>
constexpr auto operator<(const U& lhs, const indirect<T, A>& rhs);

template <class U>
constexpr auto operator<=(const U& lhs, const indirect<T, A>& rhs);

template <class U>
constexpr auto operator>(const U& lhs, const indirect<T, A>& rhs);

template <class U>
constexpr auto operator>=const U& lhs, const indirect<T, A>& rhs);

template <class U>
constexpr auto operator<=>(const U& lhs, const indirect<T, A>& rhs);

• Constraints: The operator op is defined for T.

• Preconditions: rhs is not valueless.

• Effects: Returns lhs op *rhs.

• Remarks: Specializations of this function template for which lhs op *rhs
is a core constant expression, are constexpr functions.

X.Y.10 Hash support [indirect.hash]

template <class T, class Alloc>
struct std::hash<indirect<T, Alloc>>;

• Preconditions: i is not valueless.

The specialization hash<indirect<T, Alloc>> is enabled ([unord.hash]) if and
only if hash<remove_const_t<T>> is enabled. When enabled for an object i of
type indirect<T, Alloc>, then hash<indirect<T, Alloc>>()(i) evaluates
to the same value as hash<remove_const_t<T>>()(*i). The member functions
are not guaranteed to be noexcept.

X.Y.12 Optional support [indirect.optional]

template <class T, class Alloc>
class std::optional<indirect<T, Alloc>>;

The specialization std::optional<indirect<T, Alloc>> guarantees
sizeof(std::optional<indirect<T, Alloc>>) == sizeof(indirect<T,
Alloc>>).

// [optional.observe], observers
constexpr const indirect<T, Alloc>& operator->() const noexcept;
constexpr indirect<T, Alloc>& operator->() noexcept;

• Preconditions: *this contains a value. The contained indirect value is not
valueless.
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• Returns: val.

• Remarks: These functions are constexpr. The specialization
std::optional<indirect<T, Alloc>> provides operator-> that
returns a reference to the contained indirect.

Otherwise, the interface of the specialization is as defined in [optional].

X.Y.13 Formatter support [indirect.fmt]

// [indirect.fmt]
template <class T, class Alloc, class charT>
struct std::formatter<indirect<T, Alloc>, charT> : std::formatter<T, charT> {

template<class ParseContext>
constexpr typename ParseContext::iterator parse(ParseContext& ctx);

template<class FormatContext>
typename FormatContext::iterator format(

indirect<T, Alloc> const& value, FormatContext& ctx) const;
};

Specialization of std::formatter<indirect<T, Alloc>, charT> when the un-
derlying T supports specialisation of std::formatter<T, charT>.

• Preconditions: value is not valueless. The specialization formatter<T,
charT> meets the Formatter requirements.

Feature-test Macro [indirect.predefined.ft]
Add a new feature-test macro:

#define __cpp_lib_indirect 2023XXL

X.Z Class template polymorphic [polymorphic]

X.Z.1 Class template polymorphic general [polymorphic.general] A
polymorphic value is an object that manages the lifetime of an owned object. A
polymorphic value object may own objects of different types at different points
in its lifetime. A polymorphic value object is valueless if it has no owned object.
A polymorphic value may only become valueless after it has been moved from.

In every specialization polymorphic<T, Allocator>, the type allocator_traits<Allocator>::value_type
shall be the same type as T. Every object of type polymorphic<T, Allocator>
uses an object of type Allocator to allocate and free storage for the owned
object as needed. The owned object shall be constructed using the function
allocator_traits<allocator_type>::rebind_traits<U>::construct and
destroyed using the function allocator_traits<allocator_type>::rebind_traits<U>::destroy,
where U is either allocator_type::value_type or an internal type used by
the polymorphic value.
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Copy constructors for a polymorphic value obtain an allocator by calling
allocator_traits<allocator_type>::select_on_container_copy_construction
on the allocator belonging to the polymorphic value being copied. Move
constructors obtain an allocator by move construction from the allocator
belonging to the container being moved. Such move construction of the allocator
shall not exit via an exception. All other constructors for these container
types take a const allocator_type& argument. [Note 3:If an invocation of
a constructor uses the default value of an optional allocator argument, then
the allocator type must support value-initialization. end note] A copy of this
allocator is used for any memory allocation and element construction performed
by these constructors and by all member functions during the lifetime of each
polymorphic value object, or until the allocator is replaced. The allocator may
be replaced only via assignment or swap(). Allocator replacement is performed
by copy assignment, move assignment, or swapping of the allocator only if (64.1)
allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value,
(64.2) allocator_traits<allocator_type>::propagate_on_container_move_assignment::value,
or (64.3) allocator_traits<allocator_type>::propagate_on_container_swap::value
is true within the implementation of the corresponding polymorphic value
operation.

The template parameter T of polymorphic must be a non-union class type.

The template parameter T of polymorphic may be an incomplete type.

X.Z.2 Class template polymorphic synopsis [polymorphic.syn]

template <class T, class Allocator = std::allocator<T>>
class polymorphic {

control_block* control_block_; // exposition only
Allocator allocator_; // exposition only

public:
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;

constexpr polymorphic();

template <class U, class... Ts>
explicit constexpr polymorphic(std::in_place_type_t<U>, Ts&&... ts);

template <class U, class... Ts>
constexpr polymorphic(std::allocator_arg_t, const Allocator& alloc,

std::in_place_type_t<U>, Ts&&... ts);

constexpr polymorphic(const polymorphic& other);
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constexpr polymorphic(std::allocator_arg_t, const Allocator& alloc,
const polymorphic& other);

constexpr polymorphic(polymorphic&& other) noexcept(see below);

constexpr polymorphic(std::allocator_arg_t, const Allocator& alloc,
polymorphic&& other) noexcept(see below);

constexpr ~polymorphic();

constexpr polymorphic& operator=(const polymorphic& other);

constexpr polymorphic& operator=(polymorphic&& other) noexcept(see below);

constexpr const T& operator*() const noexcept;

constexpr T& operator*() noexcept;

constexpr const_pointer operator->() const noexcept;

constexpr pointer operator->() noexcept;

constexpr bool valueless_after_move() const noexcept;

constexpr allocator_type get_allocator() const noexcept;

constexpr void swap(polymorphic& other) noexcept(see below);

friend constexpr void swap(polymorphic& lhs, polymorphic& rhs) noexcept(see below);
};

X.Z.3 Constructors [polymorphic.ctor]

constexpr polymorphic()

• Mandates: is_default_constructible_v<T> is true, is_copy_constructible_v<T>
is true.

• Effects: Constructs a polymorphic owning a default-constructed T.
allocator_ is default constructed.

• Postconditions: *this is not valueless.

template <class U, class... Ts>
explicit constexpr polymorphic(std::in_place_type_t<U>, Ts&&... ts);

• Constraints: is_base_of_v<T, U> is true, is_constructible_v<U,
Ts...> is true, is_copy_constructible_v<U> is true.
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• Effects: Constructs a polymorphic owning an instance of U created with
the arguments Ts. allocator_ is default constructed.

• Postconditions: *this is not valueless.

template <class U, class... Ts>
constexpr polymorphic(std::allocator_arg_t, const Allocator& alloc,

std::in_place_type_t<U>, Ts&&... ts);

• Constraints: is_base_of_v<T, U> is true, is_constructible_v<U,
Ts...> is true, is_copy_constructible_v<U> is true.

• Preconditions: Allocator meets the Cpp17Allocator requirements.

• Effects: Equivalent to the preceding constructor except that the
allocator_ is initialized with alloc.

• Postconditions: *this is not valueless.

constexpr polymorphic(const polymorphic& other);

• Preconditions: other is not valueless.

• Effects: Constructs a polymorphic owning an instance of T created with the
copy constructor of the object owned by other. allocator is obtained by
calling allocator_traits<allocator_type>::select_on_container_copy_constructionon
the allocator belonging to the object being copied.

• Postconditions: *this is not valueless.

constexpr polymorphic(std::allocator_arg_t, const Allocator& alloc,
const polymorphic& other);

• Preconditions: other is not valueless and Allocator meets the
Cpp17Allocator requirements.

• Effects: Equivalent to the preceding constructor except that the allocator
is initialized with alloc.

• Postconditions: *this is not valueless.

constexpr polymorphic(polymorphic&& other) noexcept;

• Preconditions: other is not valueless.

• Effects: Constructs a polymorphic that takes ownership of the object
owned by other. allocator is created by move construction from the
allocator belonging to the object being moved.

• Postconditions: other is valueless.

• Remarks: This constructor does not require that is_move_constructible_v<T>
is true.

constexpr polymorphic(std::allocator_arg_t, const Allocator& alloc,
polymorphic&& other) noexcept;
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• Preconditions: other is not valueless and Allocator meets the
Cpp17Allocator requirements.

• Effects: Equivalent to the preceding constructor except that the allocator
is initialized with alloc.

• Postconditions: other is valueless.

• Remarks: This constructor does not require that is_move_constructible_v<T>
is true.

X.Z.4 Destructor [polymorphic.dtor]

constexpr ~polymorphic();

• Effects: If *this is not valueless, destroys the owned object.

X.Z.5 Assignment [polymorphic.assign]

constexpr polymorphic& operator=(const polymorphic& other);

• Preconditions: other is not valueless.

• Effects: If *this is not valueless, destroys the owned object. If
allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
== true, allocator is set to the allocator of other. Copy constructs a
new object using the object owned by other.

• Postconditions: *this is not valueless.

constexpr polymorphic& operator=(polymorphic&& other) noexcept(
allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

• Preconditions: other is not valueless.

• Effects: If allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
== true, allocator is set to the allocator of other. If allocator is
propagated or is equal to the allocator of other, destroys the owned object,
if any, then takes ownership of the object owned by other. Otherwise,
destroys the owned object, if any, then move constructs an object from the
object owned by other.

• Postconditions: *this is not valueless. other is valueless.

X.Z.6 Observers [polymorphic.observers]

constexpr const T& operator*() const noexcept;
constexpr T& operator*() noexcept;

• Preconditions: *this is not valueless.

• Effects: Returns a reference to the owned object.
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• Remarks: These functions are constexpr functions.

constexpr const_pointer operator->() const noexcept;
constexpr pointer operator->() noexcept;

• Preconditions: *this is not valueless.

• Effects: Returns a pointer to the owned object.

• Remarks: These functions are constexpr functions.

constexpr bool valueless_after_move() const noexcept;

• Returns: true if *this is valueless, otherwise false.

constexpr allocator_type get_allocator() const noexcept;

• Returns: A copy of the Allocator object used to construct the owned
object.

X.Z.7 Swap [polymorphic.swap]

constexpr void swap(polymorphic& other) noexcept(
allocator_traits::propagate_on_container_swap::value
|| allocator_traits::is_always_equal::value);

• Preconditions: *this is not valueless, other is not valueless.

• Effects: Swaps the objects owned by *this and other. If allocator_traits<allocator_type>::propagate_on_container_swap::value
is true, then allocator_type shall meet the Cpp17Swappable requirements
and the allocators of *this and other shall also be exchanged by
calling swap as described in [swappable.requirements]. Otherwise, the
allocators shall not be swapped, and the behavior is undefined unless
*this.get_allocator() == other.get_allocator().

• Remarks: Does not call swap on the owned objects directly.

constexpr void swap(polymorphic& lhs, polymorphic& rhs);

• Effects: Equivalent to lhs.swap(rhs).

X.Z.8 Optional support [polymorphic.optional]

template <class T, class Alloc>
class std::optional<polymorphic<T, Alloc>>;

The specialization std::optional<polymorphic<T, Alloc>> guarantees
sizeof(std::optional<polymorphic<T, Alloc>>) == sizeof(polymorphic<T,
Alloc>>).

// [optional.observe], observers
constexpr const polymorphic<T, Alloc>& operator->() const noexcept;
constexpr polymorphic<T, Alloc>& operator->() noexcept;

22



• Preconditions: *this is not valueless. The contained polymorphic value is
not valueless.

• Returns: val.

• Remarks: These functions are constexpr. The specialization
std::optional<polymorphic<T, Alloc>> provides operator-> that
returns a reference to the contained polymorphic.

Otherwise, the interface of the specialization is as defined in [optional].

Feature-test Macro [polymorphic.predefined.ft]
Add a new feature-test macro:

#define __cpp_lib_polymorphic 2023XXL

Reference implementation
A C++20 reference implementation of this proposal is available on GitHub at
[https://www.github.com/jbcoe/value_types].
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Appendix A: Detailed design decisions
We discuss some of the decisions that were made in the design of indirect and
polymorphic. Where there are multiple options, we discuss the advantages and
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disadvantages of each.

Two class templates, not one

It is conceivable that a single class template could be used as a vocabulary type
for an indirect value type supporting polymorphism. However, implementing this
would impose efficiency costs on the copy constructor when the owned object is
the same type as the template type. When the owned object is a derived type,
the copy constructor uses type erasure to perform dynamic dispatch and call
the derived type copy constructor. The overhead of indirection and a virtual
function call is not tolerable where the owned object type and template type
match.

One potential solution would be to use a std::variant to store the owned type
or the control block used to manage the owned type. This would allow the copy
constructor to be implemented efficiently when the owned type and template
type match. This would increase the object size beyond that of a single pointer
as the discriminant must be stored.

For the sake of minimal size and efficiency, we opted to use two class templates.

Copiers, deleters, pointer constructors, and allocator support

The older types indirect_value and polymorphic_value had constructors
that take a pointer, copier, and deleter. The copier and deleter could be
used to specify how the object should be copied and deleted. The existence
of a pointer constructor introduces undesirable properties into the design of
polymorphic_value, such as allowing the possibility of object slicing on copy
when the dynamic and static types of a derived-type pointer do not match.

We decided to remove the copier, delete, and pointer constructor in favour of
adding allocator support. A pointer constructor and support for custom copiers
and deleters are not core to the design of either class template; both could be
added in a later revision of the standard if required.

We have been advised that allocator support must be a part of the initial imple-
mentation and cannot be added retrospectively. As indirect and polymorphic
are intended to be used alongside other C++ standard library types, such as
std::map and std::vector, it is important that they have allocator support in
contexts where allocators are used.

Pointer-like helper functions

Earlier revisions of polymorphic_value had helper functions to get access to
the underlying pointer. These were removed under the advice of the Library
Evolution Working Group as they were not core to the design of the class
template, nor were they consistent with value-type semantics.
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Pointer-like accessors like dynamic_pointer_cast and static_pointer_cast,
which are provided for std::shared_ptr, could be added in a later revision of
the standard if required.

Implicit conversions

We decided that there should be no implicit conversion of a value T to an
indirect<T> or polymorphic<T>. An implicit conversion would require using
the free store and memory allocation, which is best made explicit by the user.

Rectangle r(w, h);
polymorphic<Shape> s = r; // error

To transform a value into indirect or polymorphic, the user must use the
appropriate constructor.

Rectangle r(w, h);
polymorphic<Shape> s(std::in_place_type<Rectangle>, r);
assert(dynamic_cast<Rectangle*>(&*s) != nullptr);

Explicit conversions

The older class template polymorphic_value had explicit conversions, allowing
construction of a polymorphic_value<T> from a polymorphic_value<U>, where
T was a base class of U.

polymorphic_value<Quadrilateral> q(std::in_place_type<Rectangle>, w, h);
polymorphic_value<Shape> s = q;
assert(dynamic_cast<Rectangle*>(&*s) != nullptr);

Similar code cannot be written with polymorphic as it does not allow conversions
between derived types:

polymorphic<Quadrilateral> q(std::in_place_type<Rectangle>, w, h);
polymorphic<Shape> s = q; // error

This is a deliberate design decision. polymorphic is intended to be used for
ownership of member data in composite classes where compiler-generated special
member functions will be used.

There is no motivating use case for explicit conversion between derived types
outside of tests.

A converting constructor could be added in a future version of the C++ standard.

Comparisons returning auto

We opt to return auto from comparsion operators on indirect<T> so that the
return type perfectly matches that of the underlying comparison for T. While
deferring the return type to the underlying type does support unusual user-
defined comparsion operators, we prefer to do so rather than impose requirements
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on the user-defined operators for consistency. Adoption of indirect or moving an
object onto the heap should not be impeded by unusual choices for the return
type of comparison operators on user-defined types.

Supporting operator() operator[]

There is no need for indirect or polymorphic to provide a function call or an
indexing operator. Users who wish to do that can just access the value and
call its operator. Furthermore, unlike comparisons, function calls or indexing
operators do not compose further; for example, a composite would not be able
to automatically generate a composited operator() or an operator[].

Member function emplace

Neither indirect nor polymorphic support emplace as a member function.
The member function emplace could be added as :

template <typename ...Ts>
indirect::emplace(Ts&& ...ts);

template <typename U, typename ...Ts>
polymorphic::emplace(in_place_type<U>, Ts&& ...ts);

This would be API noise. It offers no efficiency improvement over:

some_indirect = indirect(/* arguments */ );

some_polymorphic = polymorphic(in_place_type<U>, /* arguments */ );

Small Buffer Optimisation

It is possible to implement polymorphic with a small buffer optimisation, similar
to that used in std::function. This would allow polymorphic to store small
objects without allocating memory. Like std::function, the size of the small
buffer is left to be specified by the implementation.

The authors are sceptical of the value of a small buffer optimisation for objects
from a type hierarchy. If the buffer is too small, all instances of polymorphic
will be larger than needed. This is because they will allocate heap in addition to
having the memory from the (empty) buffer as part of the object size. If the
buffer is too big, polymorphic objects will be larger than necessary, potentially
introducing the need for indirect<polymorphic<T>>.

We could add a non-type template argument to polymorphic to specify the size
of the small buffer:

template <typename T, typename Alloc, size_t BufferSize>
class polymorphic;

However, we opt not to do this to maintain consistency with other standard
library types. Both std::function and std::string leave the buffer size as
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an implementation detail. Including an additional template argument in a later
revision of the standard would be a breaking change. With usage experience,
implementers will be able to determine if a small buffer optimisation is worthwhile,
and what the optimal buffer size might be.

A small buffer optimisation makes little sense for indirect as the sensible size
of the buffer would be dictated by the size of the stored object. This removes
support for incomplete types and locates storage for the object locally, defeating
the purpose of indirect.

Appendix B: Before and after examples
We include some minimal, illustrative examples of how indirect and
polymorphic can be used to simplify composite class design.

Using indirect for binary compatibility using the PIMPL idiom

Without indirect, we use std::unique_ptr to manage the lifetime of the
implementation object. All const-qualified methods of the composite will need
to be manually checked to ensure that they are not calling non-const qualified
methods of component objects.

Before, without using indirect

// Class.h

class Class {
class Impl;
std::unique_ptr<Impl> impl_;

public:
Class();
~Class();
Class(const Class&);
Class& operator=(const Class&);
Class(Class&&) noexcept;
Class& operator=(Class&&) noexcept;

void do_something();
};

// Class.cpp

class Impl {
public:
void do_something();

};
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Class::Class() : impl_(std::make_unique<Impl>()) {}

Class::~Class() = default;

Class::Class(const Class& other) : impl_(std::make_unique<Impl>(*other.impl_)) {}

Class& Class::operator=(const Class& other) {
if (this != &other) {

Class tmp(other);
using std::swap;
swap(*this, tmp);

}
return *this;

}

Class(Class&&) noexcept = default;
Class& operator=(Class&&) noexcept = default;

void Class::do_something() {
impl_->do_something();

}

After, using indirect

// Class.h

class Class {
indirect<class Impl> impl_;

public:
Class();
~Class();
Class(const Class&);
Class& operator=(const Class&);
Class(Class&&) noexcept;
Class& operator=(Class&&) noexcept;

void do_something();
};

// Class.cpp

class Impl {
public:
void do_something();

};
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Class::Class() : impl_(indirect<Impl>()) {}
Class::~Class() = default;
Class::Class(const Class&) = default;
Class& Class::operator=(const Class&) = default;
Class(Class&&) noexcept = default;
Class& operator=(Class&&) noexcept = default;

void Class::do_something() {
impl_->do_something();

}

Using polymorphic for a composite class

Without polymorphic, we use std::unique_ptr to manage the lifetime of
component objects. All const-qualified methods of the composite will need to be
manually checked to ensure that they are not calling non-const qualified methods
of component objects.

Before, without using polymorphic

class Canvas;

class Shape {
public:
virtual ~Shape() = default;
virtual std::unique_ptr<Shape> clone() = 0;
virtual void draw(Canvas&) const = 0;

};

class Picture {
std::vector<std::unique_ptr<Shape>> shapes_;

public:
Picture(const std::vector<std::unique_ptr<Shape>>& shapes) {

shapes_.reserve(shapes.size());
for (auto& shape : shapes) {

shapes_.push_back(shape->clone());
}

}

Picture(const Picture& other) {
shapes_.reserve(other.shapes_.size());
for (auto& shape : other.shapes_) {

shapes_.push_back(shape->clone());
}

}
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Picture& operator=(const Picture& other) {
if (this != &other) {

Picture tmp(other);
using std::swap;
swap(*this, tmp);

}
return *this;

}

void draw(Canvas& canvas) const;
};

After, using polymorphic

class Canvas;

class Shape {
protected:
~Shape() = default;

public:
virtual void draw(Canvas&) const = 0;

};

class Picture {
std::vector<polymorphic<Shape>> shapes_;

public:
Picture(const std::vector<polymorphic<Shape>>& shapes)

: shapes_(shapes) {}

// Picture(const Picture& other) = default;

// Picture& operator=(const Picture& other) = default;

void draw(Canvas& canvas) const;
};
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