Requirements for a Contracts syntax

Timur Doumler (papers@timur.audio)
Gaéper Azman (gasper.azman@gmail.com)
Joshua Berne (jperne4@bloomberg.net)
Andrzej Krzemienski (akrzemi1@gmail.com)
Ville Voutilainen (ville.voutilainen@gmail.com)

Document #: P2885R0

Date: 2023-07-16

Project: Programming Language C++
Audience: SG21, EWG

1 Motivation

As SG21 (the Contracts study group) moves along towards our plan [P2695R1] to build
consensus on a minimal viable product (MVP) for a Contracts feature for C++, the final major
piece still missing from the design is the choice of syntax for contract-checking annotations.
Three proposals for a Contracts syntax have been formally proposed so far: attribute-like
[P2388R4], closure-based [P2461R1], and condition-centric [P2737R0]. More syntax
designs have been proposed informally or might still appear in the future. We currently do
not have a good framework to compare and evaluate all these syntax designs.

This paper attempts to establish such a framework by collecting requirements for a
Contracts syntax. In addition to listing requirements, we also discuss how different syntax
designs (both proposed and hypothetical) compare under these requirements to some
extent. However, as the main goal of this paper is to establish requirements, not to conduct
an in-depth analysis of concrete syntax proposals, the proposal comparisons here are
necessarily incomplete and somewhat superficial, and mainly serve to understand the
requirements themselves. We refer deeper analysis of concrete syntax proposals to future
papers.

As the next step towards reaching consensus, we suggest that authors of previously
discussed syntax proposals should provide paper revisions offering such a deeper analysis
of how their proposed syntax satisfies the requirements in this paper.

While SG21 does not have a process to approve a set of requirements such as the one
presented in this paper (we can only approve actual proposals), it is our hope that this paper
can serve as a comprehensive reference to help SG21 make an informed decision about
which syntax to choose for the Contracts MVP targeting C++26.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2695r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2388r4.html#rat.att
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf

2 Methodology

The requirements for a Contracts MVP syntax listed here are drawn from multiple sources:
the "use cases" paper [P1995R1] which collected requirements for a C++ Contracts facility
more generally; all the functionality that has been adopted into the Contracts MVP since then
(see [P2521R4] and references therein) and that needs to be supported by the new syntax;
as well as additional requirements that were suggested on the SG21 reflector.

There is further a known need for the MVP to be able to viably evolve further to support a
wider range of use cases than we are initially targeting, i.e., the full breadth of use cases
captured by [P1995R 1] or identified since that effort completed. Any choice of syntax must
provide a path for such evolution. The requirements for a Contracts syntax therefore also
aim to satisfy the needs of these possible post-MVP extensions. We considered a wide
range of sources for these future evolution requirements, including ideas from published
papers ([PO465R0], [P1607R1], [P2461R1]), discussions on the SG21 reflector, as well as a
post-MVP Contracts design developed internally by Bloomberg, which we expect to be
released in the form of an SG21 proposal at a later date.

We labelled all requirements in this paper with stable identifiers, such as e.g. "[basic.lang]",
for ease of reference both within this paper and from other papers.

Some requirements in this paper, or parts thereof, are marked as Question if we feel that it
is an open question whether this should actually be considered a requirement, or that the
requirement itself raises questions that need to be explored further. For some of these
questions, it may make sense to conduct a poll in SG21 to obtain guidance.

The requirements can be placed on a spectrum between objective requirements (whether a
syntax meets the given requirement is straightforward to evaluate) and subjective
requirements (Whether a syntax meets the given requirement might be judged differently
depending on personal preference). For example, [func.kind] is an objective requirement,
while [basic.aesthetic] is a subjective requirement. We call out requirements that we
consider to be subjective.

The requirements can further be placed on a spectrum between hard requirements
("must-have") and soft requirements ("nice-to-have"). For example, arguably [compat.break]
is more of a hard requirement, while [future.meta.keyword] is more of a soft requirement. We
usually do not call out requirements as soft or hard, because such a classification (as well as
prioritising the requirements against each other more generally) is in itself subjective.
However we do call out some requirements as "nice-to-have" in cases where we think this
classification is uncontroversial.

Some requirements may contradict each other. It is important to point out that we do not
expect a Contracts syntax proposal to materialise that fully satisfies all requirements (in fact,
such a syntax is probably not possible); instead, our goal is to make the different tradeoffs
visible, in the hope that this will help SG21 make an informed choice.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1995r1.html
https://wg21.link/p2521r4
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1995r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0465r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1607r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf

3 Proposed syntaxes

In this section, we briefly summarise the three syntax designs that have been previously
discussed for the Contracts MVP, as they will be referenced throughout this paper. However,
we strongly recommend the reader to familiarise themselves with the actual proposals
(referenced below) and the design rationale described therein, before working with this
paper. As we said above, each of these proposals probably needs a new revision to clearly
indicate that its authors wish to move forward with it as a candidate for the final Contracts
MVP, and to provide an analysis of how it satisfies the requirements in this paper.

Note that proposals to add Contracts to C++, and therefore proposals for a Contracts syntax,
have a very long history that we cannot possibly summarise here; published proposals go at
least as far back as 2004 ([N1613]; for the last revision of that proposal, see [N1962]).

3.1 Attribute-like syntax

This is the syntax from the original C++20 Contracts proposal [P0542R5]. During the C++20
development cycle, this syntax has gained consensus in EWG and plenary and was included
into the C++20 Working Draft, before Contracts were removed from C++20 due to reasons
entirely unrelated to syntax. This syntax has been successfully implemented in GCC (see
[P1680R0]) and has been re-proposed for the Contracts MVP currently in development; see
[P2388R4] section 7 for a detailed design rationale.

Applied to the Contracts MVP (which lacks some additional syntactic features from
[PO542R5] such as the "default’, "audit’, and “axiom’ labels), the attribute-like syntax
proposes to spell a contract-checking annotation as follows:

[[contract kind : predicate]];

where contract_kind is one of “pre’ (for preconditions), "post” (for postconditions), and
‘assert’ (for assertions), and predicate is an arbitrary C++ expression contextually
convertible to bool.

Note that this differs from actual standard attribute syntax, which only allows the following
syntax for standard attributes (see [dcl.attr.grammar] in the Standard):

[[attribute]]
[[attribute (argument _clause)]]

Therefore, due to the presence of the colon, the attribute-like Contracts syntax is not actually
valid attribute syntax (see also [compat.back]), and will be rejected by a compiler that does
not implement Contracts (for a deeper comparison that also considers the colon in an
attribute-using-prefix, the case of multiple comma-separated attributes, etc., see [P2487R1]).

The other noteworthy innovation of the attribute-like syntax apart from the colon is that the
return value of a function is referenced in a postcondition through a user-declared identifier
that immediately precedes the colon:

https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2004/n1613.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1962.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1680r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2388r4.html#rat.att
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
http://eel.is/c++draft/dcl.attr.grammar
https://wg21.link/p2487r1

int f(int i)
[[pre: i >= 0]]
[[post r: r >= 0]]; // "r° names the return value of "f°

3.2 Closure-based syntax

Closure-based syntax [P2461R1] proposes to spell a contract-checking annotation as
follows:

contract_kind { predicate }

which is strikingly similar to the syntax proposed in [N1962] back in 2006. The return value of
a function is referenced in parentheses after the contract-kind:

int f(int i)
pre { i >=0 }
post (r) { r>=0 }; // r names the return value of "f°

The motivation for this proposal is twofold. First, this syntax entirely avoids the attribute
design space (which is also shared with the C language) and the associated problems (see
[P2487R1] and discussion of requirement [basic.lang] below). Second, the claim of the
authors is that this syntax is better suited than the attribute-like syntax for various post-MVP
extensions. In particular, it allows the user to refer to non-const parameters in
postconditions (see [future.params]), or even capture any kind of value at the beginning of
the function and then refer to that value in the postcondition at the end of the function (see
[future.captures]), by writing a capture similar to a lambda capture:

auto plus(auto x, auto y) -> decltype(x + y)
post [x, y] (r) { // capture x and y by value at point of call
r==(X+y)
}
{

return x += y;

}
or even an arbitrary init-capture:

void vector: :push back(const T& v)
post [old size = size()] { size() == old_size + 1 }; // init-capture

This is a powerful technique. No comparable mechanism for closures has been proposed for
any of the other Contracts syntax proposals. See [P2461R 1] for many use cases of closures
in contract-checking annotations, detailed code examples, and comparisons with
attribute-like syntax.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1962.html
https://wg21.link/p2487r1
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf

3.3 Condition-centric syntax

Condition-centric syntax [P2737R0] is the most recently published proposal. In this paper,
contract-checking annotations are spelled as follows:

contract_kind (predicate)

This approach, like the closure-based syntax, also entirely avoids the attribute design space.
Further, placing the predicate into parentheses is more consistent with existing practice in
C++ to place statements inside curly braces and expressions inside parentheses (see
[basic.lang]). Further, [P2737R0] proposed a series of other syntactic design choices:

e Changing the standard term for a contract "assertion" to the newly coined term
"incondition", and changing the identifiers for the three contract kinds from “pre’,
‘post’, and "assert’ to ‘precond’, ‘postcond’, and “incond’, respectively;
making all these three identifiers full keywords;

For naming the return value of a function in a postcondition, removing the syntactic
place for a user-defined identifier, and replacing it with a predefined identifier
‘result’.

These design choices were not favourably received on the SG21 reflector. In fact, all of
these choices can actually be decoupled from the choice of primary syntax, "contract_kind
(predicate), which we believe is promising and worth considering on its own.
Therefore, when we talk about "condition-centric syntax" in the remainder of this paper, we
mean just this choice of primary syntax — placing the predicate in parentheses — and not the
other three syntactic design choices that [P2737R0] proposed alongside it (which we will
consider separately). Thus, a contract-checking annotation with condition-centric syntax
would look as follows:

int f(int i)
pre (i >= 0);

A weak point of [P2737R0] is that it is not concerned with post-MVP extensions. It is
therefore an open question how well-suited the condition-centric syntax would be to such
extensions. We can derive some preliminary conclusions from section 7 of this paper, but we
would like to see a future paper conducting a proper analysis of this syntax design direction.

3.4 Hypothetical syntaxes

In order to explain some of the requirements listed below, in a few cases we "invent"
hypothetical syntaxes on the fly to make a point. These are not to be interpreted as serious
proposals; they serve merely as an aid to understand better how we could evaluate possible
future syntax proposals under the requirements in this paper.

For example, if we want to consider a syntax where contract-checking annotations are
clearly delimited by special tokens from other C++ code (which is currently the case only in

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf

attribute-like syntax), but at the same time avoid the attribute design space, we might
"invent" a hypothetical syntax, for example:

[{ contract_kind : predicate }];
or perhaps:
@(contract_kind : predicate);

We do not investigate such hypothetical syntaxes beyond the amount necessary to properly
define a given requirement; we leave such investigation to future papers.

4 Basic requirements

This section contains basic requirements that are not specific to the Contracts MVP but
apply to syntax design in general. All requirements in this section are to some degree
subjective.

4.1 Aesthetics [basic.aesthetic]

The syntax should be elegant. It should be easily readable and at the same time not too
obtrusive.

This requirement in particular is highly subjective. From informal conversations with
developers in the wider C++ community, we have anecdotal evidence that:

e Many consider an attribute-like syntax, such as "[[pre: x > 0]], to be too "heavy"
or "ugly", and dislike it for that reason;

e At the same time, some consider the particular way in which the attribute-like syntax
stands out visually to be a benefit, creating a clear separation between
contract-checking annotations and other C++ code.

However, this anecdotal evidence is not robust data. The closure-based and
condition-centric syntaxes are less known outside of SG21, and we therefore have no data
whatsoever on the perception of these syntaxes in the wider C++ community.

4.2 Brevity [basic.brief]

The syntax should be succinct. It should not use more tokens than necessary.

The attribute-like syntax compares unfavourably to both closure-based and condition-centric
syntax under this requirement:

[[pre: x >0]] // attribute-Llike: 6 tokens (8 chars) + predicate
pre {x > 0} // closure-based: 3 tokens (5 chars) + predicate
pre (x > 0) // condition-centric: 3 tokens (5 chars) + predicate

4.3 Accessibility [basic.access]

The syntax should be easy to learn and teach. It should be self-explanatory, intuitive to the
user and easy to remember. It should not introduce unnecessary complexity.

Evaluating syntax proposals under this requirement is not straightforward. However note
that, for example, a hypothetical syntax "'[{ pre: x > @ }] as an alternative to
attribute-like syntax does not seem to satisfy this requirement very well, since it would
introduce an entirely novel token sequence that users are not familiar with and might find
unintuitive (are the curly braces on the inside or on the outside?).

Note further that there is overlap with [basic.lang]: a syntax design inconsistent with the
existing C++ language is necessarily less accessible to learners.

4.4 Consistency with existing practice [basic.practice]

The syntax should correlate with existing literature and community knowledge about how to
make use of contract-checking frameworks.

Evaluating syntax proposals under this requirement is equally not straightforward and is left
for future papers. To give an example, we note that the proposal in [P2737R0] to rename the
term "assertion" to "incondition", and to use the token "incond’ instead of "assert’ to mark
this kind of contract, goes against this requirement as it replaces an established term of art
with a newly coined term.

4.5 Consistency with the rest of the C++ language [basic.lang]

The syntax should fit naturally into the existing C++ language. It should "feel like" C++.

It seems that closure-based syntax satisfies this requirement less well than condition-centric
syntax, because closure-based syntax places the contract predicate inside curly braces,
whereas condition-centric syntax places the contract predicate inside parentheses. In C++,
we usually place statements inside curly braces and expressions inside parentheses; the
contract predicate is an expression.

Notably, the attribute-like syntax might not satisfy the requirement of being consistent with
existing rules for standard attributes. [P2487R1] provides a thorough analysis of the
differences between attribute-like syntax for Contracts and standard attribute syntax in
existing C++. It comes to the conclusion that while contract-checking annotations seem
compatible with the notion of semantic ignorability in C++ as per [dcl.attr.grammar] Note 5
(see also [P2552R3]), they are not compatible with the notion of syntactic ignorability for
attributes in C (see also [compat.c]); moreover, they completely disregard the existing
syntactic rules for appertainment, aggregation, and comma-separation of standard attributes.

Further, even if current MVP Contracts are compatible with semantic ignorability of attributes
in C++, some of the proposed or planned post-MVP extensions (see Section 7) might not be.
For example, if we introduce a label post-MVP (see [future.meta]) that forces a particular
contract-checking annotation to be checked (either with "enforce" or with "observe"
semantics), such an annotation is semantically ignorable only in the absence of a contract

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf
https://isocpp.org/files/papers/P2487R1.html
http://eel.is/c++draft/dcl.attr#grammar-note-5
https://isocpp.org/files/papers/P2552R3.pdf

violation (note that side effects of predicate checks are not guaranteed to occur, see
[P2751R0]), but not if a contract violation occurs. Therefore, a guaranteed-to-be-checked
contract cannot be semantically ignorable, unless we decide to apply the ignorability rule
only to programs with no contract violations. However, note that a program with a contract
violation still has perfectly well-specified behaviour; this property is central to a Contracts
facility that features violation handling.

How much inconsistency with attributes there actually is is to some degree a matter of
interpretation and ongoing debate. The usual counterargument is that attribute-like
contract-checking annotations are not actually standard attributes (due to the presence of
the colon), and therefore the inconsistencies with attributes do not matter. While this is
formally correct, it at least presents a significant teachability burden (see [basic.access])):
C++ developers are usually not concerned with such language-lawyer level details and
perceive anythingin "[[...]] as an attribute.

5 Compatibility requirements

This section contains technical requirements that address compatibility with the existing C++
language and ecosystem, as well as possibly the C language.

5.1 Validity as part of the C++ language [compat.cpp]

The syntax should not create any ambiguity, confusion, inconsistencies, or unintended
interactions with existing language features.

For example, the syntax should avoid the use of the "assert’ identifier followed by a *(*
token, which is recognized as a macro and expanded if the standard “<cassert>" header
has been included, unless we also change the existing meaning of "assert’, for example as
proposed in [P2884R0] (but see [compat.break]). This is a problem particularly for
condition-centric syntax:

void f() {
// code...
assert(errno == 0); // does not work as a contract syntax!
}
5.2 No breaking changes [compat.break]

More broadly, the syntax should not break any existing C++ code (or C code, if we decide to
target the C programming language as well — see [compat.c]).

For example, the syntax should not claim identifiers commonly found in code today, such as
‘pre’ and ‘post’, as full keywords:

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2751r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2884r0.pdf

void () {
int pre = 0; // must work

}

To our knowledge, all current proposals for a Contracts MVP syntax avoid such breakage,
with the exception of [P2737R0], which claims full keywords for condition-centric syntax,
although it mitigates the impact by renaming “pre’, ‘post’, and "assert’ to ‘precond’,
‘postcond’, and “incond’, respectively, which are much less likely to be used as identifiers
in existing C or C++ code.

5.3 No macros [compat.macro]

The syntax should minimise the use of macros and the preprocessor.

Note that we expect codebases might wrap the whole contract-checking annotation with
macros like ‘#define EXPECTS(x) [[pre: x]], for engineering reasons; but it should be
possible to use all the features of Contracts without any use of the preprocessor, both in
terms of functionality (like switching semantics in the build system) and in terms of
readability.

While all current proposals for a Contracts MVP syntax satisfy this requirement, a historical
example of a proposal that does not is [P1429R3]. In this proposal, the contract semantic
(ignore, enforce, etc.) could be specified explicitly in the contract-checking annotation using
an identifier ("ignore’, etc.). Providing new ways to switch semantics at compile time
required the use of macros that expanded to these identifiers, which might have been one of
the reasons the proposal was rejected at the time.

5.4 Parsability [compat.parse]

The syntax should not create any new hurdles when parsing C++ and should not
unnecessarily complicate the existing C++ grammar.

We have not thoroughly analysed the current proposals for a Contracts MVP syntax under
this requirement; however we noticed in Section 7 that there is some potential for violations
of this requirement to arise when trying to satisfy certain future extension requirements with
a particular choice of syntax (see for example [future.meta.param] and [future.requires]).

In general, syntax designs where the whole contract-checking annotation is clearly delimited
by special tokens from other C++ code (such as attribute-like, which uses "[[...]] as
delimiter tokens, or some other hypothetical syntax that uses such delimiter tokens, e.g. "[{
... }17) seem to be less prone to violating this requirement than syntax designs where this is
not the case (such as closure-based or condition-centric), because without delimiting tokens,
contract-checking annotations are competing for space in the C++ grammar with all other
possible C++ constructs where they can appear. This is even more true if we use contextual
keywords for the contract kind rather than full keywords.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1429r3.pdf

5.5 Implementation experience [compat.impl]

We should have implementation experience with the proposed syntax in a C++ compiler.

At present, we are aware of only one proposed Contracts syntax for which there is actual
implementation experience, namely the attribute-like syntax, which has been successfully
implemented in GCC (see [P1680R0]). None of the other syntax proposals currently even
contain any statements from implementers about implementability.

5.6 Backwards-compatibility [compat.back]

It has been suggested that it would be nice if contract-checking annotations were
backwards-compatible, i.e. if we could add them to existing code, and a legacy compiler that
does not yet support Contracts would simply ignore them, rather than diagnosing a syntax
error.

Note that this is not a "hard" or fundamental requirement because we can work around it in
the same way we work around any syntactically new feature not supported by legacy
compilers: by wrapping it in a macro (and this does not constitute a violation of requirement
[compat.macro]).

No proposed Contracts syntax satisfies this requirement. It is a common misunderstanding
that the attribute-like syntax satisfies it, because the Standard normatively specifies that any
attribute not recognised by the implementation is ignored (see [dcl.attr.grammar] paragraph
6). But the attribute-like Contracts syntax is not actually valid attribute syntax (see section
3.1) due to the presence of the colon. Therefore, any compiler that does not implement the
attribute-like Contracts syntax will issue an error that this code is ill-formed.

In fact, there is only one possible syntax that could ever satisfy this criterion — making
contract-checking annotations actual standard attributes using the current standard attribute
grammar (see [dcl.attr.grammar] in the C++ Standard):

[[contract_kind (predicate)]]
Contract-checking annotations with this syntax would look as follows:

int f(int i)
[[pre (i >=9)]11;

This approach does not seem viable for at least the following reasons:

e |t would be impossible to have anything but a single attribute-token ("pre’, "post’, or
‘assert’) before the parentheses without breaking the backwards-compatibility
requirement. With this syntactic restriction, it is unclear how we could introduce an
identifier for the return value ([func.retval]) or add any kind of labels or
meta-annotations post-MVP ([future.metal)).

e The syntax would be identical to attribute "assume™ [P1774R8], which is not a
contract-checking annotation (and is orthogonal to Contracts by design),

10

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1680r0.pdf
http://eel.is/c++draft/dcl.attr#grammar-6.sentence-1
http://eel.is/c++draft/dcl.attr#grammar-6.sentence-1
http://eel.is/c++draft/dcl.attr.grammar
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1774r8.pdf

e Contracts could not have any functionality that is not semantically ignorable as per
[dcl.attr.grammar] Note 5. This might be true for the basic MVP functionality, but not
for the proposed or planned post-MVP extensions. This is already arguably a
problem for the proposed attribute-like syntax (see discussion in [basic.lang]),
because contract-checking annotations with this syntax are overwhelmingly
perceived as attributes, but the problem would be exacerbated even further if
Contracts were actual attributes.

5.7 Toolability [compat.tools]

Contracts are useful as input not only for compilers and human readers, but also for other
tools: static analysers, linters, IDEs, etc. The Contracts syntax should therefore be friendly to
such tools. Note that many such tools do not have a fully-fledged C++ frontend.

To our knowledge, whether and to what extent the current Contracts syntax proposals satisfy
this requirement has not yet been studied. This could be looked at as part of an overall
review of the Contracts MVP proposal by SG15 (the Tooling study group).

5.8 C compatibility [compat.c]

Question: Should the Contracts syntax also be standardisable for the C programming
language? Note that this might be a subset of the syntax adopted by WG21, or an alternative
spelling for the same constructs that is supported by both languages. How do we even
judge what syntax WG14 would accept without a proposal for that committee reaching
consensus?

Regardless of the answer, the Contracts syntax should at least not add new identifiers or
syntactic constructs that have an existing meaning in C.

Since we do not know yet whether we want to adopt this as a requirement, we did not

conduct an analysis of how well the current syntax proposals would satisfy this requirement;
we defer such analysis to future papers.

6 Functional requirements

This section contains requirements for a Contracts syntax that are needed to support the
current functionality in the Contracts MVP.

6.1 Predicate [func.pred]

The syntax should allow for the predicate to be an arbitrary C++ expression contextually
convertible to bool.

This requirement is satisfied by all three currently proposed syntaxes.

11

http://eel.is/c++draft/dcl.attr#grammar-note-5

6.2 Contract kind [func.kind]

The syntax should clearly and easily distinguish between the three kinds of
contract-checking annotations: preconditions, postconditions, and assertions. The names for
the enumerators in std: :contracts: :contract_kind need to be consistent with any
eventually chosen syntax. If this means that these names need to be different from the ones
we already adopted from [P2811R7] into the Contracts MVP — "pre’, "post’, and "assert’ —
new names for these enumerators should be proposed along with the syntax.

This requirement can be satisfied in a straightforward manner by all three currently proposed
syntaxes by choosing appropriate identifiers.

6.3 Position and name lookup (pre/postconditions) [func.pos.prepost]

Preconditions and postconditions should be part of the function declaration. It should be
possible to refer to the function arguments and the return type from the predicates of
preconditions and postconditions. The syntax should allow for name resolution in the
pre/postcondition predicate to be performed as if it were placed at the start of the function
body; for postconditions, hame resolution also includes names related to return value (see
also [func.retval]).

Therefore, the syntactic position of preconditions and postconditions should be after the
argument clause and after the trailing return type:

auto f() noexcept -> return_t PRECONDITION POSTCONDITION;

Note that this requirement does not need to specify whether preconditions or postconditions
should be before or after the requires clause of the function, or other parts of the
declaration that are orthogonal to preconditions and postconditions and irrelevant for name
lookup in the predicate; see also [future.requires].

This requirement is satisfied by all three currently proposed syntaxes.

6.4 Position and name lookup (assertions) [func.pos.assert]

Unlike preconditions and postconditions, assertions can only appear within a function
definition:

void f() {
// code...
ASSERTION;
// code...

The syntax should allow for name resolution in the assertion predicate to be performed as if
the predicate were an expression at that point in the lexical flow of code.

In principle, assertions should be syntactically able to appear anywhere that any other
evaluable expression might be able to appear. The basic use case is that assertions are

12

https://wg21.link/p2811r7

simply statements within the function definition, as in the code above. But the choice of
syntax should not prevent the ability to consider putting assertions anywhere an expression
with a void type might appear, for example as the left hand side of a comma operator used
within the member initialiser list of a constructor:

class X {
int* p;
public:
X(int* p) : _p((ASSERTION, p)) {}
s
Such an assertion might for example check that ‘p != nullptr’. Note that the "assert’

macro from header <cassert> can be used in any such syntactic position; if Contracts are
supposed to be a better replacement for <cassert>, Contracts assertions ought to be
usable in all places in which the "assert’ macro can be used.

The basic requirement of having assertions as statements inside the function is satisfied by
all three currently proposed syntaxes. However, the extended requirement that assertions
should be able to appear anywhere that any other evaluable expression might be able to
appear is not considered by any of these proposals — it might work, or it might not. Note that
the extended requirement places additional restrictions on the choice of syntax, because a
contract-checking annotation that can appear in any position where an expression might
appear must not break existing code ([compat.break]) or introduce parsing ambiguities
([compat.parse]).

6.5 Multiple pre/postconditions [func.multi]

The syntax should allow for multiple separate pre/postconditions on the same function
declaration. Having to combine multiple predicates into a single pre/postcondition would
have the disadvantage that they cannot be addressed separately for violation handling, or
given different semantics.

This requirement is satisfied by all three currently proposed syntaxes.

6.6 Return value [func.retval]

For postconditions, the syntax should provide a way to refer to the return value of the
function within the postcondition's predicate.

There are different ways to achieve this, with different tradeoffs. The attribute-like syntax and
closure-based syntax both propose a syntactic place for the introduction of a user-defined

variable name for the return value:

int f(int& i, array& arr)
[[post r: r >= 1i]]; // attribute-like: before the colon

int f(int& i, array& arr)
post [&1] (r) { r >= 1 }; // closure-based: inside parentheses

13

On the other hand, [P2737R0] proposes to have a predefined identifier with a special
meaning to refer to the return value, such as ‘result’:

int f(int& i, array& arr)
post (result >= i);

One particular tradeoff here is as follows (there might be other tradeoffs). On the one hand, a
user-defined variable name is handy, for example, in a complex mathematical expression
where the return value appears multiple times:

float cube_root(float x)
[[post r : approx_eq(x, r * r * r)]];

On the other hand, for a very simple postcondition like "the return value is nonnegative",
predefining an identifier such as "result’ for the return value minimises the amount of
tokens that the user needs to write for the predicate:

float abs(float x)
[[post : result >= 0]];

The tradeoffs here are that in the latter approach, name clashes have to be dealt with (see
[P2737R0]), and that a six-character identifier would be much more unwieldy in a
mathematical expression as in the cube_root example above.

Question: Which is the better choice? Should we require that the Contracts syntax allow the
first style (user-defined name), the second style (predefined identifier), or both?

[P2737R0] ties this choice to the choice of primary syntax (in this case, condition-centric),
but actually these aspects of the syntax are orthogonal. There is however currently no
proposal on how to fit the first approach (user-defined name for the return value) into
condition-centric syntax.

7/ Future evolution requirements

This section contains requirements for a Contracts syntax that are not necessary to support
the current functionality in the Contracts MVP, but should be satisfied to allow for future
evolution of the C++ Contracts facility.

Note that we are not proposing to add any of the new features that motivate the
requirements in this section, we merely intend to reserve the syntactic space for them in
case we decide to add them post MVP (which we might or might not end up doing).

7.1 Non-const non-reference parameters [future.params]

The Contracts syntax should be open to an extension for some kind of mechanism to refer to
a non-const non-reference function parameter in a contract-checking annotation. In the

14

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf

C++20 Contracts proposal [P0542R5], this case caused undefined behaviour; in the current
Contracts MVP, this case is ill-formed. Allowing it enables use cases like referencing a
moved-from object in a postcondition. The syntax should provide a reasonable way to refer
to such a parameter. We should consider:

referring to (a copy of) the value of the parameter that was passed in,

referring to the value of the same parameter at the point when the function returns,
referring to both values in the same postcondition,

multiple contract-checking annotations referring to the same non-const
non-reference parameter without unnecessary duplication.

Closure-based syntax satisfies this requirement by proposing an extension that allows to
name such parameters with a capture (see [P2461R1] section 3.2.1; see also
[future.captures] below):

int min(int x, int y)
post [x, y] (r) { r<=x & r <=y }; // capture x, y by explicit copy

To our knowledge, the closure-based syntax proposal is currently the only one that satisfies
this requirement, although other techniques to satisfy it with a different syntax seem possible
(with potential tradeoffs that need to be investigated).

7.2 Explicit captures [future.captures]

The Contracts syntax should be open to an extension for explicitly capturing values for use
in a contract-checking annotation, beyond the ability to refer to non-const non-reference
parameters (which is covered by [future.params]).

The Contracts syntax should provide a reasonable way to write such captures. For
preconditions and postconditions, captures will be initialised at function invocation time but
usable within the predicate. For postconditions, this predicate will be evaluated when the
function returns. There is no apparent reason to not allow explicit captures in assertions as
well. In this case, they would be initialised when control flow reaches the assertion. We
should consider:

captures of reference parameters by value,
captures of any variables reachable from the function,
init captures that introduce new names usable inside the contract-checking
annotation (but not outside it),
distinguishing between capturing by value, reference, or const reference,

e multiple contract-checking annotations referring to the same captured or init-captured
variable without unnecessary duplication.

There are many use cases for such captures (see [P2461R1] section 6.1). Consider for
example:

void vector: :push back(const T& v)
post [old_size = size()] { size() == old_size + 1 };

15

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf

To our knowledge, the closure-based syntax proposal is currently the only one that satisfies
this requirement; in fact, it addresses both [future.param] and [future.captures] with the same
technique.

Note also that this implies a syntactic requirement that these captures need to be in front of
the predicate, even if other possible meta-annotations might be placed after the predicate
(see [future.meta]), because the captures may change how the predicate is parsed (see also
[future.prim]).

7.3 Structured binding return value [future.struct]

For postconditions, if the return type is compatible with structured bindings, it would be nice
if the Contracts syntax had syntactic space for a list of identifiers to destructure the return
value and refer to the elements within the postcondition's predicate. For example:

auto returns_triple()
post ([x, vy, z]) { x>y & vy >z }; // in closure-based syntax

Note that this is not a "hard" or fundamental requirement because a structured binding is
itself just syntactic sugar and we can always work around it, with the tradeoff of more
verbosity and potentially poorer readability.

According to [P2461R1], closure-based syntax satisfies this requirement better than
attribute-like syntax, because the former has a clear syntactic place for the return value,
while the latter might suffer from visual ambiguity of what []* means:

auto returns_triple()
[[post [x, ¥y, z]: x >y & y > z 1]; // in a hypothetical extension
// of attribute-like syntax

No investigation has been conducted so far into how this requirement (or even the basic
requirement of naming the return value; see [func.retval]) could be satisfied by
condition-centric syntax.

7.4 Contract reuse [future.reuse]

For the case of a large set of functions all sharing the same set of preconditions and/or
postconditions, the Contracts syntax should be open to an extension that allows the user to
factor out this set of contract-checking annotations and re-use it, rather than having to repeat
the same set over and over again.

For example (with a hypothetical, not proposed syntax):

template <typename T>

contract nonneg_noneq(T a, T b) // declares a reusable contract
[[pre: a >= 90]]
[[pre: b >=0]]
[[pre: a!=b]];

16

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf

int f(int a, int b) [[nonneg noneq(a, b)]];
int g(int a, int b) [[nonneg_noneq(a, b)]];
int h(int a, int b) [[nonneg_noneq(a, b)]];

No deeper analysis of this requirement, or how it relates to the current syntax proposals, has
been conducted so far.

7.5 Meta-annotations [future.meta]

The Contracts syntax should offer a syntactic place to place a meta-annotation or label on a
contract-checking annotation, to tell the compiler about Standard-defined properties of the
contract-checking annotation which the compiler would not be able to determine for itself,
such as:

e When checking the contract predicate would violate the complexity and/or
performance guarantees of a function (for example, audit from the C++20 Contracts
proposal [P0542R5]),

e When the contract predicate cannot be evaluated at runtime because it refers to
functions that do not have a definition (for example, a magic function determining
whether “r’ is a valid range),

e When the contract predicate should not be evaluated at runtime because the
information it conveys is useful for a standard analyser but not necessarily for the
program itself,

e When the contract annotation is newly introduced into an existing production
codebase,

e When the user wishes to specify an explicit contract semantic (ignore, observe,
enforce, etc.) for the given contract-checking annotation.

It should be possible to add multiple such markers to the same CCA as they might be
orthogonal.

Note that this requirement can be satisfied by adding Standard-defined single-identifier
labels (such as audit, axiom, and default from the C++20 Contracts proposal [P0542R5])

in some appropriate syntactic place, but also through other means such as string tags:

// Hypothetical solutions with attribute-Llike syntax:

[[pre audit v22: x > 0]] // C++20 style
[[pre(x > @), tag("audit"), tag("v22")]] // string tags
[[pre<audit | v22> : x > @]]; // inside angly brackets

// Hypothetical solutions with closure-based syntax:
pre<audit, v22> {x > 0};
pre audit v22 {x > 0};

// Hypothetical solutions with condition-centric syntax:

pre<audit, v22> (x > 0);
pre audit v22 (x > 0);

17

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html

7.6 Parametrised meta-annotations [future.meta.param]

The Contracts syntax should offer a syntactic place to have parameters on such
meta-annotations or labels. Generic programming can require such parameters on labels as
whether a particular label applied can be dependent on the result of a compile-time
metaprogram, for example:

e \Whether a precondition such as "std: :distance(begin,end)’ can be evaluated at
runtime may be dependent on the iterator category of "begin’ and "end’:

template <typename Iter>
void take3(Iter begin, Iter end)
[[pre checked<std::forward iterator<Iter>> :
std::distance(begin, end) >= 3]];

e Whether a contract-checking annotation is audit-level or not might be dependent on
properties of a template parameter, such as its size:

[[pre audit<(sizeof(T) > N)>: x > 0]];

e An audit’ label might be abstracted into a “cost’ label with a numeric parameter, to
provide more fine-grained information about the algorithmic and/or performance cost
of checking a contract predicate:

[[pre cost<audit cost> : x > @]] // equivalent to “audit’
[[pre cost<audit _cost/2> : x > @]] // “half” the cost of “audit’,
// enforced in more configurations

Note that this requirement precludes a Contracts syntax where both the label parameter and
the predicate are placed inside parentheses, because this might introduce a parsing
ambiguity (see also [compat.parse]):

pre audit(sizeof(T) > N); // is (...) the predicate or a param of “audit’?

Note further that unlike simple labels without parameters ([future.metal), this requirement
cannot be fully satisfied if the annotations are restricted to strings.

7.7 User-defined meta-annotations [future.meta.user]

The Contracts syntax should offer a syntactic place and form for users to provide
meta-annotations or labels that they have declared themselves, in a fashion that will not
conflict with standard-provided names. Use cases for such user-provided labels on contract
annotations include:

e Marking that the annotation was added in a specific library version. In this way,

whether the annotation is "new" can be based on what the last stable version
deployed was. For example, for a precondition introduced in library version 3.1.0:

18

// Hypothetical solution with attribute-like syntax:
void f(int x) [[pre mylib::version(3,1,0) : x > 0]];

// Hypothetical solution with condition-centric syntax:
void f(int x) pre<mylib::version<3, 1, 0>> (x > 9);

e Marking that the annotation should be processed explicitly by a particular
static-analysis tool;

e Marking that the annotation has a certain large/small cost of execution relative to the
function being annotated, in case the user needs more granularity than the
Standard-provided properties.

Note that this requirement implies the ability to put user-defined marks into a namespace or
some similar mechanism.

Question: do we want to consider a mechanism akin to a using-declaration for such
namespaced marks to avoid repeating the namespace? This would place further restrictions
on the possible syntax.

7.8 Meta-annotations re-using existing keywords [future.meta.keyword]

It would be nice to be able to use existing C++ keywords as the identifiers for
meta-information on a contract-checking annotation:

e C++20 contracts [P0542R5] used the "default’ keyword to identify
contract-checking annotations with a runtime cost that was not abnormal,

e The ‘new’ keyword is a natural term to use for contracts that have been newly added
into an existing production codebase.

Note that this requirement seems to restrict the syntax to something where the whole
contract-checking annotation is clearly delimited by special tokens from other C++ code, or

at least parsing would be substantially more difficult otherwise.

[[pre new: x > 0]]; // attribute-like syntax
[{ pre new: x > @ }]; // hypothetical non-attribute-Like with delimiters

pre new {x > @}; // closure-based: probably does not work
pre new (x > @); // condition-centric: probably does not work

In addition, such labels could create an additional source of confusion because the same
token might have a different meaning as a label and in an expression that labels are

parameterised on. Consider:

[[pre new<2> cost<sizeof(new int)>: x > 0]];
[[pre template<(X < 4)>: x > 0]];

Depending on the syntax chosen, this would be more or less confusing:

19

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html

[[pre static cast<v> : i > @]]; // clear that the expression "1 > @ 1is
// predicate and not argument of Label

pre static cast<v>(i > 9); // unclear

Note that this is not a "hard" or fundamental requirement because we can always work
around it by choosing identifiers that are not keywords, with the tradeoff that these identifiers
might not be a natural fit for cases like the ones listed above.

7.9 Non-ignorable meta-annotations [future.meta.noignore]

The Contracts syntax should allow for an extension to introduce meta-annotations or labels
as discussed in [future.meta] which do not fit the Ignorability Rules for standard attributes
established in [P2552R3]. For example:

e Any label that restricts the semantics available to a contract-checking annotation to a
checked semantic ("observe" or "enforce") is not itself ignorable (see also discussion
in [basic.lang]);

e Other features that could be attached to a label, such as allowing a label to identify a
local contract-violation handler to use, would not be ignorable.

Note that this requirement means that using standard attribute syntax for labels would not be
suitable (regardless of the primary syntax for contract-checking annotations — shown here
with condition-centric syntax):

// Does not work:
void f(int x) pre (x > @) [[unchecked]];
void f(int x) pre (x > @) [[mylib::use_secure_violation_handler]];

Alternatively, we could use some other non-attribute-like syntax for labels that surrounds
them with delimiter tokens (such as "[{ ... }]), but depending on the choice of the primary
syntax, this could end up looking rather messy and hard-to-read (see [basic.aesthetic],
[basic.brief], [basic.access]), for example with attribute-like syntax:

void f(int x) [[pre: x > @]] [{ unchecked }];

7.10 Primary vs. secondary information [future.prim]

Any secondary information on the contract-checking annotation, such as meta-annotations
(see [future.meta]), should be clearly separated as secondary, and not impede the
identification of the primary information:

the contract kind,
the predicate,
the identifier introduced to refer to the return object in a postcondition, if we choose to
do that (see [func.retval] Question 1),
e any captures, if we choose to introduce them post-MVP (see [future.captures]).

20

https://wg21.link/p2552r3

In short, anything that impacts parsing the expression needs to be considered primary;
conversely, things that only impact the evaluation of the CCA, might be considered
secondary.

Question: What is the ideal way to separate the secondary information from the primary
information? It might be putting the secondary information towards the very end or front of
the contract annotation, additionally surrounding it with parentheses, curly braces, or square
brackets, putting it into a separate attribute nested within the contract annotation, or
associating it with a namespace or module interface rather than an individual contract
annotation. We could also have only a predicate in the CCA and have the secondary
information in an attribute-like annotation that follows. Note that this could conflict with some
of the other requirements, for example with [future.meta.noignore] if we choose standard
attribute syntax for these annotations.

7.11 Invariants [future.invar]

The Contracts syntax should be open to an extension for expressing class invariants. It
should therefore be chosen such that a new kind of contract-checking annotation, "invariant",
can be placed at class scope.

Note that the syntactic space for declarations at class scope is a lot more crowded than that
at the end of a function declaration. This might restrict the choice of Contracts syntax.
Consider:

class X {
[[invariant: is_sorted()]1]; // attribute-like syntax
// members and member functions...

}s
class X {
invariant {is_sorted()}; // closure-based syntax
// members and member functions...
}
class X {
invariant (is_sorted()); // condition-centric syntax
// members and member functions...
}

The attribute-like syntax (or any other syntax with clear delimiter tokens around the
contract-checking annotation) is not going to run into any problems here. For closure-based
and condition-centric syntax, this is less obvious. At first glance, it seems that such
annotations at least cannot represent valid code today; but this requires a deeper analysis.

Syntactic support for such class invariants does not seem to be a hard requirement as class
invariants can be expressed in terms of preconditions and postconditions on member
functions. The verbosity and repetition of such an approach could be somewhat reduced if
we had a way to declare reusable contracts (see [future.reuse]). There is currently no formal

21

proposal to add class invariants; it has been pointed out that making such annotations work
in practice is rather non-trivial and requires a thorough analysis.

7.12 Procedural interfaces [future.interface]

The Contracts syntax should be open to an extension for supporting procedural interfaces as
described in [P0465R0]. Procedural interfaces enable fully and clearly capturing a much
richer set of functionality than can be accomplished with preconditions and postconditions
alone. To give just one example use case, consider a contract check on the statement "this
function will not throw" which cannot be expressed as a predicate that is evaluated only
when the function returns normally. With procedural interfaces, this can be expressed as
follows (for this example, we are using a hypothetical extension of the attribute-like syntax,
instead of the hypothetical syntax from [P0465R0], which was not designed with a Contracts
facility in mind):

void f()
[[interface :
try {
implementation;
} catch (...) {
[[assert : false]]; // contract violation

115

The Contracts syntax should therefore be chosen such that we can extend it with a new kind
of contract annotation, "interface", or possibly a brace-delimited "interface" block, which can
in turn contain nested contract annotations such as assertions, as well as statements such
as the "implementation;’ statement, and has the same functionality for integrating with
other extensions that the existing contract kinds (pre, post, and assert) provide.

7.13 requires clauses [future.requires]

The Contracts syntax should be open to an extension for adding a requires clause to a
contract annotation. This will greatly simplify the writing of contract-checks in generic code.
In generic programming a precondition or postcondition might only be in effect (or even
expressible) for certain template parameters, and for others it will not even be syntactically
well-formed. The implementation of a function itself may even stay the same, such as when
precondition usability is based on the iterator category of a provided iterator.

While SFINAE or concepts can be used to provide different function templates with different
contracts for this purpose, this can quickly lead to a combinatorial explosion of repeated
function declarations and implementations. The Contracts syntax should therefore provide
an appropriate syntactic position to apply, to each individual contract-checking annotation, a
requires clause that controls when that annotation is considered.

Note that such a clause should not clash with a possible requires clause appertaining to

the function itself, which places restrictions on the Contracts syntax. For example, the
following syntax would probably not work:

22

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0465r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0465r0.pdf

template <typename T>

void f(T x)
pre (x != 0) requires std::is_integral_v<T>;
// does this requires-clause appertain to the precondition
// or to “f itself?
7.14 General extensibility [future.general]

This list of requirements, while large, cannot claim to be exhaustive of all things that might
possibly be needed in the future from a Contracts syntax. There should be room for
extensibility within the syntax that will not be hindered by the wide range of possible things
that might be adjacent to a contract-checking annotation in the many places it might be
used.

8 Conclusions

While the main goal of this paper is to establish requirements, not to conduct an in-depth
analysis of the different proposed (or hypothetically possible) Contracts syntaxes, this
exercise does provide some preliminary insights into the advantages, disadvantages, and
existing gaps of the different design directions.

The attribute-like syntax is currently the only option with implementation experience. A
strength of the attribute-like syntax is that it surrounds each contract-checking annotation
with clear delimiter tokens (in this case, '[[...]]) that separates them from all other C++
code. This is more friendly for certain post-MVP extensions: with delimiter tokens around the
annotations, there is less danger of running into parsing ambiguities due to the already
crowded C++ grammar, and more design freedom within the contract-checking annotations
themselves to add various kinds of custom labels and meta-annotations using any kind of
custom grammar (such as supporting the "default’ label from C++20 Contracts which is a
keyword outside of a contract-checking annotation).

The main weaknesses of the attribute-like syntax is that many people perceive it as too
"heavy" and "ugly", and that it treads on design space currently occupied by standard
attributes in both C++ and C. The latter creates potential teaching challenges and
inconsistencies (although to what extent this is the case is a matter of ongoing debate). The
overlap with attributes could be avoided by a hypothetical syntax using different delimiter
tokens, say, '[{ ... }],or'@(...), but depending on personal preference such designs
could potentially be perceived as even more "ugly".

Closure-based syntax, on the other hand, does not seem to suffer from the perceived
aesthetic issues of attribute-like syntax, and it does not overlap with attributes. It does not
offer the full grammar freedom of token-delimited contract-checking annotations, but its
capture syntax provides a very elegant solution for enabling certain other post-MVP
extensions, such as referring to non-const parameters in a postcondition or capturing
arbitrary values for use in predicates. Other syntax proposals would need to offer an

23

equivalent solution to provide a better understanding of how that functionality might fit into
those syntactic frameworks.

A notable weakness of the closure-based syntax is that it places the predicate (i.e., an
expression) between curly braces, which is awkward as in C++ statements normally go
between curly braces while expressions go between parentheses.

Condition-centric syntax solves the problem by placing the predicate between parentheses,
which some consider more elegant and more consistent with existing C++. However,
condition-centric syntax at this point seems the most incomplete design: it is unclear how we
would support naming the return value of a function in the postcondition, or how a number of
post-MVP extensions could be supported by this syntax due to various potential grammar
ambiguities. In addition, it is unfortunate that condition-centric syntax cannot use the
identifier "assert’ for assertions without breaking existing usage of the "assert’ macro from
header <cassert>.

Acknowledgements

Thanks to Jens Maurer, Tom Honermann, and Arthur O'Dwyer for their extensive and helpful
feedback on the material in this paper.

References

[N1613] Thorsten Ottosen: Proposal to add Design by Contract to C++. 2004-03-29

[N1962] Lawrence Crowl and Thorsten Ottosen: Proposal to add Contract Programming to
C++ (revision 4). 2006-02-25

[PO465R0] Lisa Lippincott: Procedural function interfaces. 2016-10-16

[PO542R5] Gabriel Dos Reis, J. Daniel Garcia, John Lakos, Alisdair Meredith, Nathan Myers,
and Bjarne Stroustrup: Support for contract based programming in C++. 2018-06-08

[P1429R3] Joshua Berne and John Lakos: Contracts That Work. 2019-07-23

[P1607R1] Joshua Berne, Jeff Snyder, and Ryan McDougall: Minimizing Contracts.
2019-07-23

[P1680R0] Andrew Sutton and Jeff Chapman: Implementing Contracts in GCC. 2019-06-17

[P1774R8] Timur Doumler: Portable Assumptions. 2022-06-14

[P1995R1] Joshua Berne, Timur Doumler, Andrzej Krzemienhski, Ryan McDougall, and Herb
Sutter: Contracts — Use Cases. 2020-03-02

[P2388R4] Andrzej Krzemienski and Gasper Azman: Minimum Contract Support: either
No_eval or Eval_and_abort. 2021-11-15

[P2461R1] GaSper Azman: Closure-Based Syntax for Contracts. 2021-11-15

[P2487R1] Andrzej Krzemienski: Is attribute-like syntax adequate for contract annotations?
2023-06-11

[P2521R4] Andrzej Krzemienski, GasSper Azman, Joshua Berne, Bronek Kozicki, Ryan
McDougall, and Caleb Sunstrum: Contract support — Record of SG21 consensus.
2023-06-15

24

https://www.open-std.org/JTC1/SC22/WG21/docs/papers/2004/n1613.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1962.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0465r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1429r3.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1607r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1680r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1774r8.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1995r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2388r4.html#rat.att
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf
https://isocpp.org/files/papers/P2487R1.html
https://wg21.link/p2521r4

[P2552R3] Timur Doumler: On the ignorability of standard attributes. 2023-06-14

[P2695R 1] Timur Doumler and John Spicer: A proposed plan for Contracts in C++.
2023-02-09

[P2737R0] Andrew Tomazos: Proposal of Condition-centric Contracts Syntax. 2022-12-04

[P2751R0] Joshua Berne: Evaluation of Checked Contract-Checking Annotations.
2023-01-14

[P2811R7] Joshua Berne: Contract-Violation Handlers. 2023-06-27

[P2884R0] Alisdair Meredith: assert Should Be A Keyword In C++26. 2023-05-15

25

https://isocpp.org/files/papers/P2552R3.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2695r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2751r0.pdf
https://wg21.link/p2811r7
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2884r0.pdf

