
assert Should Be A Keyword In C++26
Supporting standard C++23 macros in module std

Document #: P2884R0
Date: 2023-05-15
Project: Programming Language C++
Audience: Evolution Incubator
Revises: N/A
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 1

2 Revision history 1
2.1 R0: Varna 2023 . 1

3 Introduction 1

4 Proposal 2
4.1 Simple Example . 2

5 Wording 2

6 Acknowledgements 2

7 References 3

1 Abstract
Macros cannot be exported from a C++ module. This proposal claims that the C++23 Standard Library macro
assert would be better specified as a keyword, removing it from the set of library features that are not made
available by importing the standard library module std.

2 Revision history
2.1 R0: Varna 2023
Initial draft of the paper.

3 Introduction
C++23 introduced the standard library module std that is intended to import the whole standard library, see
[P2465R3]. However, this module leaves a gap for all the library facilities that are specified as macros. Paper
[P2654R0] is tracking progress of a set of papers that attempt to support all language facilities that are currently
specified with the aid of macros with that single import. This paper addresses the macro assert.

1

mailto:ameredith1@bloomberg.net

Any serious discussion of assert belongs in SG21, Contract Programming. However, it is worth sufficient
discussion here to determine whether this is a problem we want to see solved directly, and send that feedback
to SG21.

Ultimately, we expect SG21 may prefer to deprecate <cassert> in favor of the new Contracts facility, rather than
adopt assert as a keyword, but the timing of SG21 discussions on syntax mean this paper must be submitted
for initial consideration now.

4 Proposal
This paper proposes reserving the token assert as a keyword for an operator. The proposal satisfies the need
to enable existing assertion in modern C++ code that does not rely on #include to import libraries. We would
then explicitly not define assert as a macro in <cassert> and <assert.h>, much like we did not define bool,
true, and false as macros in <cstdbool>.

In addition to resolving the macro import issue, adopting assert as an operator would resolve issues surrounding
C macros not recognizing C++ matched brackets syntax for brackets other than parens, such as <>, {}, and [],
which are significantly more common in C++ source than in C.

Note that any attempt to turn assert into an operator is going to run into issues around build environments
enabling and disabling its use, interaction with users defining and undefining NDEBUG in existing code, and users
relying on assert expanding to nothing and so containing non-compiling code in certain uses. It is likely that
a C++ assert operator would want to integrate with the configurable violation handling under discussion in
SG21, and so we would recommend moving any non-superficial discussion into that study group.

4.1 Simple Example

import std;
#include <cassert> // not an imoportable heder unit

int main() {
assert(std::is_same_v<int, int>); // too many macro arguments
assert((std::is_same_v<int, int>)); // OK

assert(std::vector{1,2,3}.size() == 3); // too many macro arguments
assert((std::vector{1,2,3}.size() == 3)); // OK

int x = 0;
int y = 0;
assert([x,y]{ return test(x,y);}()); // too many macro arguments
assert(([x,y]{ return test(x,y);}())); // OK, lambda expression

}

5 Wording
Wording is deferring until this proposal makes sufficient progress that the full design is clear.

6 Acknowledgements
Thanks to Michael Parks for the pandoc-based framework used to transform this document’s source from Mark-
down.

2

7 References
[P2465R3] Stephan T. Lavavej, Gabriel Dos Reis, Bjarne Stroustrup, Jonathan Wakely. 2022-03-11. Standard

Library Modules std and std.compat.
https://wg21.link/p2465r3

[P2654R0] Alisdair Meredith. 2023-05-15. Macros And Standard Library Modules.
https://wg21.link/p2654r0

3

https://wg21.link/p2465r3
https://wg21.link/p2654r0

	Abstract
	Revision history
	R0: Varna 2023

	Introduction
	Proposal
	Simple Example

	Wording
	Acknowledgements
	References

