
Undeprecate polymorphic_allocator::destroy For C++26
Document #: P2875R0
Date: 2023-05-15
Project: Programming Language C++
Audience: Library Evolution Incubator
Revises: N/A
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 1

2 Revision history 1
2.1 R0: Varna 2023 . 1

3 Introduction 1

4 Issue History 2
4.1 LWG Poll, 2019 Kona meeting . 2
4.2 2020-10-11 Reflector poll . 2

5 Analysis 2

6 Proposed wording 2

7 Acknowledgements 4

8 References 4

1 Abstract
The member function polymorphic_allocator::destroy was deprecated by C++23 as it defines the same
semantics that would be synthesized automatically by std::allocator_traits. However, some common use
cases for std::pmr::polymorphic_allocator do not involve generic code and thus do not necessarily use
std::allocator_traits to call on the services of such allocators. This paper recommends undeprecating that
function and restoring its wording to the main Standard clause.

2 Revision history
2.1 R0: Varna 2023
Initial draft of this paper.

3 Introduction
At the start of the C++23 cycle, [P2139R2] tried to review each deprecated feature of C++, to see which we
would benefit from actively removing, and which might now be better undeprecated. Consolidating all this

1

mailto:ameredith1@bloomberg.net

analysis into one place was intended to ease the (L)EWG review process, but in return gave the author so much
feedback that the next revision of that paper was not completed.

For the C++26 cycle there will be a concise paper tracking the overall review process, [P2863R0], but all changes
to the standard will be pursued through specific papers, decoupling progress from the larger paper so that delays
on a single feature do not hold up progress on all.

This paper takes up the deprecated member function std::polymorphic_allocator::destroy, D.18
[depr.mem.poly.allocator.mem].

4 Issue History
This feature was deprecated by [#LWG3036].

4.1 LWG Poll, 2019 Kona meeting
Are we in favor of deprecation, pending on paper [P0339R6]
| F | N | A |
| 5 | 3 | 2 |

4.2 2020-10-11 Reflector poll
Moved to Tentatively Ready after seven votes in favour.

5 Analysis
std::pmr::polymorphic_allocator is an allocator that will be used in non-generic circumstances, unlike
std::allocator, so this member function that could otherwise be synthesized should still be part of its pubic
interface. Hence, the recommendation is to undeprecate the destroy member function, as the natural and
expected analog paired with construct.

6 Proposed wording
All changes are relative to [N4944].

20.4.3.1 [mem.poly.allocator.class.general] General
2 A specialization of class template pmr::polymorphic_allocator meets the allocator completeness requirements

(16.4.4.6.2 [allocator.requirements.completeness]) if its template argument is a cv-unqualified object type.
namespace std::pmr {
template<class Tp = byte> class polymorphic_allocator {
memory_resource* memory_rsrc; // exposition only

public:
using value_type = Tp;

// 20.4.3.2[mem.poly.allocator.ctor], constructors
polymorphic_allocator() noexcept;
polymorphic_allocator(memory_resource* r);

polymorphic_allocator(const polymorphic_allocator& other) = default;

template<class U>

2

https://wg21.link/depr.mem.poly.allocator.mem
https://wg21.link/mem.poly.allocator.class.general
https://wg21.link/allocator.requirements.completeness
https://wg21.link/mem.poly.allocator.ctor

polymorphic_allocator(const polymorphic_allocator<U>& other) noexcept;

polymorphic_allocator& operator=(const polymorphic_allocator&) = delete;

// 20.4.3.3[mem.poly.allocator.mem], member functions
[[nodiscard]] Tp* allocate(size_t n);
void deallocate(Tp* p, size_t n);

[[nodiscard]] void* allocate_bytes(size_t nbytes, size_t alignment = alignof(max_align_t));
void deallocate_bytes(void* p, size_t nbytes, size_t alignment = alignof(max_align_t));
template<class T> [[nodiscard]] T* allocate_object(size_t n = 1);
template<class T> void deallocate_object(T* p, size_t n = 1);
template<class T, class... CtorArgs> [[nodiscard]] T* new_object(CtorArgs&&... ctor_args);
template<class T> void delete_object(T* p);

template<class T, class... Args>
void construct(T* p, Args&&... args);

template< class T>
void destroy(T* p);

polymorphic_allocator select_on_container_copy_construction() const;

memory_resource* resource() const;

// friends
friend bool operator==(const polymorphic_allocator& a,

const polymorphic_allocator& b) noexcept {
return *a.resource() == *b.resource();

}
};

}

20.4.3.3 [mem.poly.allocator.mem] Member functions
template<class T, class... Args>
void construct(T* p, Args&&... args);

14 Mandates: Uses-allocator construction of T with allocator *this (see 20.2.8.2 [allocator.uses.construction]) and
constructor arguments std::forward<Args>(args)... is well-formed.

15 Effects: Construct a T object in the storage whose address is represented by p by uses-allocator construction
with allocator *this and constructor arguments std::forward<Args>(args)....

16 Throws: Nothing unless the constructor for T throws.
template<class T>
void destroy(T* p);

X Effects: As if by p->~T().
polymorphic_allocator select_on_container_copy_construction() const;

17 Returns: polymorphic_allocator().
18 [Note 4: The memory resource is not propagated. —end note]

D.18 [depr.mem.poly.allocator.mem] Deprecated polymorphic_allocator member function

3

https://wg21.link/mem.poly.allocator.mem
https://wg21.link/mem.poly.allocator.mem
https://wg21.link/allocator.uses.construction
https://wg21.link/depr.mem.poly.allocator.mem

1 The following member is declared in addition to those members specified in 20.4.3.3 [mem.poly.allocator.mem]:
namespace std::pmr {
template<class Tp = byte>
class polymorphic_allocator {
public:

template <class T>
void destroy(T* p);

};
}

template<class T>
void destroy(T* p);

2 Effects: As if by p->~T().

7 Acknowledgements
Thanks to Michael Parks for the pandoc-based framework used to transform this document’s source from Mark-
down.

8 References
[N4944] Thomas Köppe. 2023-03-22. Working Draft, Standard for Programming Language C++.

https://wg21.link/n4944

[P0339R6] Pablo Halpern, Dietmar Kühl. 2019-02-22. polymorphic_allocator<> as a vocabulary type.
https://wg21.link/p0339r6

[P2139R2] Alisdair Meredith. 2020-07-15. Reviewing Deprecated Facilities of C++20 for C++23.
https://wg21.link/p2139r2

[P2863R0] Alisdair Meredith. 2023-05-15. Review Annex D for C++26.
https://wg21.link/p2863r0

4

https://wg21.link/mem.poly.allocator.mem
https://wg21.link/n4944
https://wg21.link/p0339r6
https://wg21.link/p2139r2
https://wg21.link/p2863r0

	Abstract
	Revision history
	R0: Varna 2023

	Introduction
	Issue History
	LWG Poll, 2019 Kona meeting
	2020-10-11 Reflector poll

	Analysis
	Proposed wording
	Acknowledgements
	References

