
Remove wstring_convert From C++26
Document #: P2872R2
Date: 2023-09-14
Project: Programming Language C++
Audience: Library Evolution
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 1

2 Revision History 2
R2: September 2023 (midterm mailing) . 2
R1: June 2023 (SG16 telecon) . 2
R0: May 2023 (pre-Varna) . 2

3 Introduction 2

4 History 2

5 Deployment Experience 3
5.1 Initial LEWGI review: Telecon 2020/07/13 . 3
5.2 SG16 review: Telecon 2020/07/22 . 3
5.3 LEWGI consensus for C++23 . 3

6 Recommendation for C++26 3

7 C++26 Feedback 4
7.1 SG16 (Unicode) review . 4
7.2 LEWG initial review . 4

8 Wording 4
8.1 Add new identifiers to 16.4.5.3.2 [zombie.names]. 4
8.2 Update Annex C: . 5
8.3 Strike all of D.27 [depr.conversions] Deprecated convenience conversion interfaces 6
8.4 Update cross-reference for stable labels for C++23 . 10
8.5 Resolve open library issues . 10

9 Acknowledgements 10

10 References 10

1 Abstract
The wstring_convert library component has been deprecated since C++17. As noted at that time, the feature
is underspecified and would require more work than we wish to invest to bring it up to the desired level of
quality. This paper proposes removing the deprecated convenience conversion interfaces wstring_buffer and
wbuffer_convert from the C++ Standard Library.

1

mailto:ameredith1@bloomberg.net

2 Revision History
R2: September 2023 (midterm mailing)

— Removed revision history’s redundant subsection numbering
— Wording updates

— Rebased onto latest working draft, [N4958]
— Updated stable label cross-reference to C++23
— Close all open LWG issues on the removed feature

— Removed wording concerns related to [P2874R2] as that paper has landed
— Retested example against MSVC with /W3, the IDE default
— Applied editorial recommendations

— Cleaned up ambiguous pronouns in summary of the July 2020 SG16 review

R1: June 2023 (SG16 telecon)
— Fixed copy/paste where common text was clearly taken from another paper
— Assigned SG16 as reviewer of first resort
— Provided full library wording against current draft, N4950
— Recorded when (or if) popular library implementations first warn of deprecation
— Thanked Matt Godbolt for Compiler Explorer
— Completed SG16 review, advance to LEWG

R0: May 2023 (pre-Varna)
— Initial draft of this paper

3 Introduction
At the start of the C++23 cycle, [P2139R2] tried to review each deprecated feature of C++ to see which would
benefit us to actively remove and which might now be better undeprecated. Consolidating all this analysis into
one place was intended to ease the (L)EWG review process but in return gave the author so much feedback that
the next revision of the paper was not completed.

For the C++26 cycle, a much shorter paper, [P2863R0], will track the overall analysis, but for features that
the author wants to actively progress, a distinct paper will decouple progress from the larger paper so that the
delays on a single feature do not hold up progress on all.

This paper takes up the deprecated convenience conversion interfaces wstring_buffer and wbuffer_convert.

4 History
This feature was originally proposed for C++11 by paper [N2401] and deprecated for C++17 by paper [P0618R0].
As noted at the time, the feature was underspecified and would require more work than we wished to invest to
bring it up to the desired level of quality. Since then, SG16 has convened and is producing a steady stream of
work to bring reliable well-specified Unicode support to C++.

Currently, four open LWG issues relate to this clause; that number would be larger, but we would prefer to see
this feature removed than to keep adding issues to deprecated library features.

— [LWG2478] Unclear how wstring_convert uses cvtstate
— [LWG2479] Unclear how wbuffer_convert uses cvtstate
— [LWG2480] Error handling of wbuffer_convert unclear
— [LWG2481] wstring_convert insufficiently precise regarding “byte-error string” and so on

2

5 Deployment Experience
The following program, based on an example in the Standard, was tested with Godbolt Compiler Explorer to
determine when (or if) libraries started warning about the deprecation.
#include <codecvt>
#include <iostream>
#include <locale>
#include <string>

int main() {
std::wstring_convert<std::codecvt_utf8<wchar_t>> myconv;
std::string mbstring = myconv.to_bytes(L"Hello\n");
std::cout << mbstring;

}

— libc++: First warns in Clang 15 (2022-09-06)
— libstdc++: Does not warn in latest release
— MSVC: Warns with /W3 in MSVC 19.14, oldest available at Godbolt

5.1 Initial LEWGI review: Telecon 2020/07/13
Discussion was broadly in favor of removing from the C++23 specification and relying on library vendors to
maintain source compatibility as long as needed. However, LEWGI explicitly requested to confer with SG16
in case that study group is aware of any reason to delay or to avoid removal, before proceeding with the
recommendation.

5.2 SG16 review: Telecon 2020/07/22
SG16 raises concerns that the original paper that deprecated this feature ([P0618R0]) lacked a strong motivation,
as that proposal was simply recording a recommendation from the LWG review when deprecating the <codecvt>
header for D.26 [depr.locale.stdcvt]. SG16 expressed general concern that codecvt is not fit for its purpose,
notably due to poorly specified error-handling capabilities while transcoding, and these deprecated functions
do not address that underlying issue but are merely a convenience API for using that underspecified library
component. While removing the <codecvt> header might mean there would be fewer codecvt facets in the
C++ Standard, that deprecated API remains just as usable with user-provided codecvt facets as before as well
as with those in the <locale> header. While we would like to see a replacement facility, no such proposal has
been offered at this time.

Polling showed no consensus to recommend the removal for C++23 but no objection to that removal.

5.3 LEWGI consensus for C++23
SG16 has confirmed it has no objection, so the LEWGI consensus is to remove this feature from C++23.

6 Recommendation for C++26
Given vendors’ propensity to provide ongoing support for these names under the Zombie Name reservations and
following the LEWGI consensus for C++23, this paper proposed removing these interfaces from the C++26
Standard and closing LWG issues [LWG2478], [LWG2479], [LWG2480], and [LWG2481] as Resolved by removal
of the feature per this paper.

3

https://wg21.link/depr.locale.stdcvt

7 C++26 Feedback
7.1 SG16 (Unicode) review
SG16 held a telecon on 07 June 2023, and reviewed this paper. The motivation given in the proposed Annex C
wording was accepted, although LWG will likely want to make some updates in the wording review.

The main review comments were that one attendee observed that they had 16 uses in their code base, and all
were an error that should be replaced (and will be shortly)! Another attendee performed a Github code search
and found just five hits in the whole of Github.

The paper is forwarded to LEWG by unanimous consent.

7.2 LEWG initial review
The LEWG review is pending.

8 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N4958], the latest draft at
the time of writing.

8.1 Add new identifiers to 16.4.5.3.2 [zombie.names].
16.4.5.3.2 [zombie.names] Zombie names

1 In namespace std, the following names are reserved for previous standardization:

— auto_ptr,
— auto_ptr_ref,
— binary_function,
— binary_negate,
— bind1st,
— bind2nd,
— binder1st,
— binder2nd,
— const_mem_fun1_ref_t,
— const_mem_fun1_t,
— const_mem_fun_ref_t,
— const_mem_fun_t,
— declare_no_pointers,
— declare_reachable,
— get_pointer_safety,
— get_temporary_buffer,
— get_unexpected,
— gets,
— is_literal_type,
— is_literal_type_v,
— mem_fun1_ref_t,
— mem_fun1_t,
— mem_fun_ref_t,
— mem_fun_ref,
— mem_fun_t,
— mem_fun,
— not1,
— not2,

4

https://wg21.link/zombie.names
https://wg21.link/zombie.names

— pointer_safety
— pointer_to_binary_function,
— pointer_to_unary_function,
— ptr_fun,
— random_shuffle,
— raw_storage_iterator,
— result_of,
— result_of_t,
— return_temporary_buffer,
— set_unexpected,
— unary_function,
— unary_negate,
— uncaught_exception,
— undeclare_no_pointers,
— undeclare_reachable, and
— unexpected_handler.,
— wbuffer_convert, and
— wstring_convert.

2 The following names are reserved as members for previous standardization, and may not be used as a name for
object-like macros in portable code:

— argument_type,
— first_argument_type,
— io_state,
— open_mode,
— preferred,
— second_argument_type,
— seek_dir, and
— strict.

3 The name stossc is reserved as a member function following names are reserved as member functions for
previous standardization, and may not be used as a names for function-like macros in portable code.

— converted,
— from_bytes,
— stossc, and
— to_bytes.

4 The header names <ccomplex>, <ciso646>, <cstdalign>, <cstdbool>, and <ctgmath> are reserved for previous
standardization.

8.2 Update Annex C:
C.1.X Annex D: compatibility features [diff.cpp23.depr]

Change: Remove convenience interfaces wstring_buffer and wbuffer_convert.

Rationale: These features were underspecified with no clear-error reporting mechanism and were deprecated
for the last three editions of this standard. Ongoing support remains at the implementers’ discretion, exercising
freedoms granted by 16.4.5.3.2 [zombie.names].

Effect on original feature: A valid C++ 2023 program using these interfaces will not compile.

5

https://wg21.link/zombie.names

8.3 Strike all of D.27 [depr.conversions] Deprecated convenience conversion inter-
faces

D.27 [depr.conversions] Deprecated convenience conversion interfaces

D.27.1 [depr.conversions.general] General
1 The header <locale> (30.2 [locale.syn]) has the following additions:

namespace std {
template<class Codecvt, class Elem = wchar_t,

class WideAlloc = allocator<Elem>,
class ByteAlloc = allocator<char>>

class wstring_convert;
template<class Codecvt, class Elem = wchar_t,

class Tr = char_traits<Elem>>
class wbuffer_convert;

}

D.27.2 [depr.conversions.string] Class template wstring_convert
1 Class template wstring_convert performs conversions between a wide string and a byte string. It lets you

specify a code conversion facet (like class template codecvt) to perform the conversions, without affecting any
streams or locales.

[Example 1: If you want to use the code conversion facet codecvt_utf8 to output to cout a UTF-8 multibyte
sequence corresponding to a wide string, but you don’t want to alter the locale for cout, you can write something
like:
wstring_convert<std::codecvt_utf8<wchar_t>> myconv;
std::string mbstring = myconv.to_bytes(L"Hello\n");
std::cout << mbstring;

—end example]
namespace std {
template<class Codecvt, class Elem = wchar_t,

class WideAlloc = allocator<Elem>,
class ByteAlloc = allocator<char>>

class wstring_convert {
public:
using byte_string = basic_string<char, char_traits<char>, ByteAlloc>;
using wide_string = basic_string<Elem, char_traits<Elem>, WideAlloc>;
using state_type = typename Codecvt::state_type;
using int_type = typename wide_string::traits_type::int_type;

wstring_convert() : wstring_convert(new Codecvt) {}
explicit wstring_convert(Codecvt* pcvt);
wstring_convert(Codecvt* pcvt, state_type state);
explicit wstring_convert(const byte_string& byte_err,

const wide_string& wide_err = wide_string());
~wstring_convert();

wstring_convert(const wstring_convert&) = delete;
wstring_convert& operator=(const wstring_convert&) = delete;
wide_string from_bytes(char byte);
wide_string from_bytes(const char* ptr);
wide_string from_bytes(const byte_string& str);

6

https://wg21.link/depr.conversions
https://wg21.link/depr.conversions
https://wg21.link/depr.conversions.general
https://wg21.link/locale.syn
https://wg21.link/depr.conversions.string

wide_string from_bytes(const char* first, const char* last);

byte_string to_bytes(Elem wchar);
byte_string to_bytes(const Elem* wptr);
byte_string to_bytes(const wide_string& wstr);
byte_string to_bytes(const Elem* first, const Elem* last);

size_t converted() const noexcept;
state_type state() const;

private:
byte_string byte_err_string; //exposition only
wide_string wide_err_string; //exposition only
Codecvt* cvtptr; //exposition only
state_type cvtstate; //exposition only
size_t cvtcount; //exposition only

};
}

2 The class template describes an object that controls conversions between wide string objects of class
basic_string<Elem, char_traits<Elem>, WideAlloc> and byte string objects of class basic_string<char, char_traits<char>, ByteAlloc>.
The class template defines the types wide_string and byte_string as synonyms for these two types. Conver-
sion between a sequence of Elem values (stored in a wide_string object) and multibyte sequences (stored in a
byte_string object) is performed by an object of class Codecvt, which meets the requirements of the standard
code-conversion facet codecvt<Elem, char, mbstate_t>.

3 An object of this class template stores:

— byte_err_string — a byte string to display on errors
— wide_err_string — a wide string to display on errors
— cvtptr — a pointer to the allocated conversion object (which is freed when the wstring_convert object

is destroyed)
— cvtstate — a conversion state object
— cvtcount — a conversion count

size_t converted() const noexcept;

4 Returns: cvtcount.

wide_string from_bytes(char byte);
wide_string from_bytes(const char* ptr);
wide_string from_bytes(const byte_string& str);
wide_string from_bytes(const char* first, const char* last);

5 Effects: The first member function converts the single-element sequence byte to a wide string. The second
member function converts the null-terminated sequence beginning at ptr to a wide string. The third member
function converts the sequence stored in str to a wide string. The fourth member function converts the sequence
defined by the range [first, last) to a wide string.

6 In all cases:

— If the cvtstate object was not constructed with an explicit value, it is set to its default value (the initial
conversion state) before the conversion begins. Otherwise it is left unchanged.

— The number of input elements successfully converted is stored in cvtcount.
7 Returns: If no conversion error occurs, the member function returns the converted wide string. Otherwise, if the

object was constructed with a wide-error string, the member function returns the wide-error string. Otherwise,

7

the member function throws an object of class range_error.

state_type state() const;

8 Returns: cvtstate.

byte_string to_bytes(Elem wchar);
byte_string to_bytes(const Elem* wptr);
byte_string to_bytes(const wide_string& wstr);
byte_string to_bytes(const Elem* first, const Elem* last);

9 Effects: The first member function converts the single-element sequence wchar to a byte string. The second
member function converts the null-terminated sequence beginning at wptr to a byte string. The third member
function converts the sequence stored in wstr to a byte string. The fourth member function converts the sequence
defined by the range [first, last) to a byte string.

10 In all cases:

— If the cvtstate object was not constructed with an explicit value, it is set to its default value (the initial
conversion state) before the conversion begins. Otherwise it is left unchanged.

— The number of input elements successfully converted is stored in cvtcount.
11 Returns: If no conversion error occurs, the member function returns the converted byte string. Otherwise, if the

object was constructed with a byte-error string, the member function returns the byte-error string. Otherwise,
the member function throws an object of class range_error.

explicit wstring_convert(Codecvt* pcvt);
wstring_convert(Codecvt* pcvt, state_type state);
explicit wstring_convert(const byte_string& byte_err,

const wide_string& wide_err = wide_string());

12 Preconditions: For the first and second constructors, pcvt is not null.
13 Effects: The first constructor stores pcvt in cvtptr and default values in cvtstate, byte_err_string, and

wide_err_string. The second constructor stores pcvt in cvtptr, state in cvtstate, and default values in
byte_err_string and wide_err_string; moreover the stored state is retained between calls to from_bytes
and to_bytes. The third constructor stores new Codecvt in cvtptr, state_type() in cvtstate, byte_err in
byte_err_string, and wide_err in wide_err_string.

~wstring_convert();

14 Effects: delete cvtptr.

D.27.3 [depr.conversions.buffer] Class template wbuffer_convert
1 Class template wbuffer_convert looks like a wide stream buffer, but performs all its I/O through an underlying

byte stream buffer that you specify when you construct it. Like class template wstring_convert, it lets you
specify a code conversion facet to perform the conversions, without affecting any streams or locales.
namespace std {
template<class Codecvt, class Elem = wchar_t, class Tr = char_traits<Elem>>
class wbuffer_convert : public basic_streambuf<Elem, Tr> {
public:

using state_type = typename Codecvt::state_type;
wbuffer_convert() : wbuffer_convert(nullptr) {}
explicit wbuffer_convert(streambuf* bytebuf,

Codecvt* pcvt = new Codecvt,
state_type state = state_type());

8

https://wg21.link/depr.conversions.buffer

~wbuffer_convert();

wbuffer_convert(const wbuffer_convert&) = delete;
wbuffer_convert& operator=(const wbuffer_convert&) = delete;

streambuf* rdbuf() const;
streambuf* rdbuf(streambuf* bytebuf);

state_type state() const;
private:

streambuf* bufptr; //exposition only
Codecvt* cvtptr; //exposition only
state_type cvtstate; //exposition only

};
}

2 The class template describes a stream buffer that controls the transmission of elements of type Elem, whose
character traits are described by the class Tr, to and from a byte stream buffer of type streambuf. Conversion
between a sequence of Elem values and multibyte sequences is performed by an object of class Codecvt, which
shall meet the requirements of the standard code-conversion facet codecvt<Elem, char, mbstate_t>.

3 An object of this class template stores:

— bufptr — a pointer to its underlying byte stream buffer
— cvtptr — a pointer to the allocated conversion object (which is freed when the wbuffer_convert object

is destroyed)
— cvtstate — a conversion state object

state_type state() const;

4 Returns: cvtstate.

streambuf* rdbuf() const;

5 Returns: bufptr.

streambuf* rdbuf(streambuf* bytebuf);

6 Effects: Stores bytebuf in bufptr.
7 Returns: The previous value of bufptr.

explicit wbuffer_convert(
streambuf* bytebuf,
Codecvt* pcvt = new Codecvt,
state_type state = state_type());

8 Preconditions: pcvt is not null.
9 Effects: The constructor constructs a stream buffer object, initializes bufptr to bytebuf, initializes cvtptr to

pcvt, and initializes cvtstate to state.

~wbuffer_convert();

10 Effects: delete cvtptr.

9

8.4 Update cross-reference for stable labels for C++23
Cross-references from ISO C++ 2023

All clause and subclause labels from ISO C++ 2023 (ISO/IEC 14882:2023, Programming Languages — C++)
are present in this document, with the exceptions described below.

container.gen.reqmts see
container.requirements.general

depr.conversions removed
depr.conversions.buffer removed
depr.conversions.general removed
depr.conversions.string removed
depr.res.on.required removed

8.5 Resolve open library issues
The following library issues should be resolved as NAD as they no longer apply to the C++ Standard due to
the removal of the feature.

— [LWG2478] Unclear how wstring_convert uses cvtstate
— [LWG2479] Unclear how wbuffer_convert uses cvtstate
— [LWG2480] Error handling of wbuffer_convert unclear
— [LWG2481] wstring_convert insufficiently precise regarding “byte-error string” and so on

9 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from
Markdown.

Thanks again to Matt Godbolt for maintaining Compiler Explorer, the best public resource for C++ compiler
and library archaeology, especially when researching the history of deprecation warnings!

Thanks to Lori Hughes for reviewing this paper and providing editorial feedback.

10 References
[LWG2478] Jonathan Wakely. Unclear how wstring_convert uses cvtstate.

https://wg21.link/lwg2478

[LWG2479] Jonathan Wakely. Unclear how wbuffer_convert uses cvtstate.
https://wg21.link/lwg2479

[LWG2480] Jonathan Wakely. Error handling of wbuffer_convert unclear.
https://wg21.link/lwg2480

[LWG2481] Jonathan Wakely. wstring_convert should be more precise regarding “byte-error string” etc.
https://wg21.link/lwg2481

[N2401] P.J. Plauger. 2007-09-03. Code Conversion Facets for the Standard C++ Library.
https://wg21.link/n2401

[N4958] Thomas Köppe. 2023-08-14. Working Draft, Programming Languages -- C++.
https://wg21.link/n4958

10

https://wg21.link/lwg2478
https://wg21.link/lwg2479
https://wg21.link/lwg2480
https://wg21.link/lwg2481
https://wg21.link/n2401
https://wg21.link/n4958

[P0618R0] Alisdair Meredith. 2017-03-02. Deprecating <codecvt>.
https://wg21.link/p0618r0

[P2139R2] Alisdair Meredith. 2020-07-15. Reviewing Deprecated Facilities of C++20 for C++23.
https://wg21.link/p2139r2

[P2863R0] Alisdair Meredith. 2023-05-19. Review Annex D for C++26.
https://wg21.link/p2863r0

[P2874R2] Alisdair Meredith. 2023-06-12. Mandating Annex D.
https://wg21.link/p2874r2

11

https://wg21.link/p0618r0
https://wg21.link/p2139r2
https://wg21.link/p2863r0
https://wg21.link/p2874r2

	Abstract
	Revision History
	R2: September 2023 (midterm mailing)r2-september-2023-midterm-mailing
	R1: June 2023 (SG16 telecon)r1-june-2023-sg16-telecon
	R0: May 2023 (pre-Varna)r0-may-2023-pre-varna

	Introduction
	History
	Deployment Experience
	Initial LEWGI review: Telecon 2020/07/13
	SG16 review: Telecon 2020/07/22
	LEWGI consensus for C++23

	Recommendation for C++26
	C++26 Feedback
	SG16 (Unicode) review
	LEWG initial review

	Wording
	Add new identifiers to 16.4.5.3.2 [zombie.names].
	Update Annex C:
	Strike all of D.27 [depr.conversions] Deprecated convenience conversion interfaces
	Update cross-reference for stable labels for C++23
	Resolve open library issues

	Acknowledgements
	References

