
Questions on P2680 “Contracts for
C++: Prioritizing Safety”
Timur Doumler (papers@timur.audio)

Andrzej Krzemieński (akrzemi1@gmail.com)

John Lakos (jlakos@bloomberg.net)

Joshua Berne (jberne4@bloomberg.net)

Brian Bi (bbi10@bloomberg.net)

Peter Brett (pbrett@cadence.com)

Oliver Rosten (oliver.rosten@googlemail.com)

Herb Sutter (hsutter@microsoft.com)

Document #: P2700R1
Date: 2022-12-17
Project: Programming Language C++
Audience: SG21

Abstract
In this paper, we have collated questions to the author of P2680 "Contracts for C++:
Prioritizing Safety" from SG21 experts. The goal of the paper is to contribute towards a
better understanding of what is being proposed in P2680 and what consequences the
proposed direction would have for the C++ language, the C++ standard library, third-party
libraries, compiler implementations, and users of C++. Of particular interest are so-called
non-relaxed contract-checking predicates, which are subject to novel restrictions and
guarantees that we seek to understand.

0 Introduction
Contracts are one of the most powerful and potentially impactful C++ language feature
proposals currently in development. In [P2695R0], SG21 adopted a roadmap to get a
Contracts MVP into C++26. The next milestone in that roadmap is to reach consensus on
how side effects should behave in a contract-checking predicate. In [P2680R0], the author
advocates for a novel approach to this problem. According to that paper, contract
annotations should be side-effect free when seen from outside of their cone of evaluation. In
the discussion at the SG21 meeting in Kona, the author further argued that contract
annotations should be free of undefined behavior (UB) by definition. According to our
understanding of [P2680R0], the author's goal is to design a Contracts facility for C++ that is
safe by construction.

1

However, the paper leaves a number of questions open about how this approach would work
in practice and what implications this would have on users of C++. To facilitate further
discussion, we have collected questions to the author of [P2680R0] from SG21 experts. We
hope that these questions will be helpful. We believe that if the author could provide answers
to these questions in an updated revision of their paper, it could provide important
clarification of what is being proposed, which in turn will help SG21 reach consensus on a
design for Contracts.

In a revision, [P2680R1], the author refined the original paper to distinguish between
non-relaxed contract-checking predicates (the proposed default), and relaxed contract
checking-predicates (using an explicit opt-in syntax [[pre relaxed : expression]]).
Relaxed contract-checking predicates are not subject to the restrictions and guarantees
proposed in the paper. Most of the questions in this paper are targeting non-relaxed
predicates. However, for the sake of clarity we still state explicitly in most cases whether the
question relates to non-relaxed or relaxed contract-checking predicates.

Note that this paper is intended to complement, not replace response papers to [P2680R1]
or the ongoing discussion on the SG21 mailing list. Noteworthy response papers are
[P2570R1] and [P2712R0].

Below, we have grouped the questions we collected into five main topics, one topic per
section:

1. Use of the standard library within non-relaxed contract-checking predicates
2. Ramifications for third-party libraries when used within non-relaxed contract-checking

predicates
3. Differences in behavior between the current rules of evaluation and those proposed

for safe evaluation in non-relaxed contract-checking predicates
4. Specifics regarding the compile-time detection of potential UB in non-relaxed

contract-checking predicates
5. General design goals of P2680 and their implications

1 Use of the standard library
Q1.1: Given the standard library as it exists today (with no normative changes such as
annotations), which standard library functions (if any) could be called in a non-relaxed
contract-checking predicate? For example, would the following compile?

#include <vector>

void test(const std::vector<int> &v)

[[pre : v.begin() < v.end()]] { /* ... */ }

Q1.2: Which (if any) normative changes to the specification of std::vector in the standard
would have to be made to make the example above well-formed?

2

Q1.3: Assuming the answer to Q1.1 is “yes, it would compile”, would this code still compile
with the debug Microsoft STL, where std::vector::begin is known to allocate? If so, by
what mechanism would this call be allowed considering that memory allocation, under the
rules of the framework of P2680 that have been explained so far, is never permitted in
non-relaxed contract-checking predicates?

Q1.4: Assuming the answer to Q1.3 is “no, it would not compile”, how could someone, as
part of a contract-checking predicate, construct a std::vector that allocates memory or
otherwise causes a side effect? Is using relaxed predicates for all such cases the only
option?

Q1.5: Would the following example be allowed (which includes an STL algorithm, a
user-provided function object, and indirection through iterators, in a non-relaxed
contract-checking predicate)?

void test(auto begin, auto end)

[[pre: std::all_of(begin, end, is_cute{})]];

2 Third-party libraries
Q2.1: Assuming a non-relaxed contract-checking predicate will still compile with the debug
Microsoft STL, where std::vector::begin is known to allocate, how could a third-party
library (not a standard library implementation) with similar behavior be written in a way that
provides clients with the same guarantee of being usable in predicates while, in some builds,
allocating to increase safety (similar to the Microsoft STL)?

Q2.2: If I am a 3rd party library vendor, and I provide a function like this:

int lib3::mul_add(int a, int b, int c)

{

return a * b + c;

}

and a user of my library decides to use lib3::mul_add as part of their non-relaxed
contract-checking predicates:

void g(int a, int b, int c)

[[pre: lib3::mul_add(a, b, c) < 1000]] { /* ... */ }

What would happen if I change one line in the body of lib3::mul_add so that it performs a
contract-illegal side effect? For example,

int lib3::mul_add(int a, int b, int c)

{

log("mul_add() called");

return a * b + c;

}

3

Would g then fail to compile? If so, what would the error look like? Is there any way I can
avoid breaking my users' code in this way? Would using the function in a non-relaxed
contract-checking predicate require an additional annotation on the function, and if yes, what
would such an annotation look like and how would it work?

Q2.3: If I am a 3rd party library vendor, and I provide a function lib3::mul_add defined as
in Q2.2, what would happen if I, without changing the body of lib3::mul_add at all, move it
from an inline function in a header into a separately compiled .cpp file linked in a static
library? Would g then fail to compile? If so, what would the error look like? Is there any way I
can avoid breaking my users' code in this way? Would using the function in a non-relaxed
contract-checking predicate require an additional annotation on the function, and if yes, what
would such an annotation look like and how would it work?

Q2.4: If I am a 3rd party library vendor, and I provide a function lib3::mul_add defined as
in Q2.2, what would happen if I, without changing the body of lib3::mul_add at all, put it
into a dynamic library (Windows .dll) that is loaded after main() begins but before any
attempt to call g()? Would g then fail to compile? If so, what would the error look like? Is
there any way I can avoid breaking my users' code in this way? Would using the function in a
non-relaxed contract-checking predicate require an additional annotation on the function,
and if yes, what would such an annotation look like and how would it work?

Q2.5: How would non-relaxed contracts in new code be able to make use of state validation
predicates provided by pre-existing 3rd party libraries, possibly without source code and/or
implemented in a different language? For example, defining a new function that uses such a
library:

lib3::handle createLine(lib3::point start, lib3::point end)

[[post hnd: lib3::isValid(hnd) && lib3::isLine(hnd)]];

3 New behaviors for contract-checking predicate
evaluation
Q3.1: Would signed-integer math work differently in a non-relaxed contract-checking
predicate than in the rest of the language, to avoid UB due to overflow? If so, how?

Q3.2: If signed-integer math would work differently inside a non-relaxed contract-checking
predicate, this suggests that the same expression could evaluate differently in a
contract-checking predicate than in non-contract C++ code. One consequence of this
inconsistency would be that a predicate could evaluate to true in a contract-checking
predicate, but later evaluate to false inside the function body. Thus, the function might be
called out of contract even though the precondition check would say it is called within
contract.

Here is a concrete example assuming that contract-checking predicates would have
wrap-around arithmetic for type int.

4

int f (int i, int j)

[[pre : i > 0]]

[[pre : j > 0]]

[[pre : j + i < 0]] // possible after "wrap around" effect

// upon overflow, which is now legal

{

if (i > 0)

if (j > 0)

if (j + i < 0) // obviously false in "old style” code,

// as `int`s can be assumed never to overflow

return 0;

_Undefined_behavior(); // UB is hit.

}

The inconsistency arises when we call f with the following parameters:

f(INT_MAX, 2);

a) Is it correct to presume that inconsistencies such as that demonstrated by the concrete
example above can arise in practice? If not, why not?

b) Can this kind of difference in interpretation of expressions – inside vs. outside of
contract-checking predicates – be a source of a different kind of unsafety in itself? If not, why
not? If so, is that acceptable and why?

Q3.3: What other forms of UB would need to be changed to defined behavior under the
P2680 framework for non-relaxed contract-checking predicates, and why? It would be helpful
to provide a reasonably comprehensive list. What behavior is proposed for each such
construct, and why?

Q3.4 Is the floating-point environment within a non-relaxed contract-checking predicate the
same as in the rest of the program?

Q3.5 Can floating-point operations within a non-relaxed contract-checking predicate raise
floating-point exceptions and/or set errno?

Q3.6 If the answer to Q3.5 is yes, would the following compile?

void foo(double x)

[[pre: x/3.0 < 1.0]] { /* ... */ }

Q3.7 If the answer to Q3.6 is yes, what would happen at runtime if the combination of
floating-point environment and x is such that FE_INEXACT is raised?

5

4 Compile-time detection of potential UB
P2680 proposes that non-relaxed predicates would have no side effects outside of the cone
of evaluation and would be evaluated with no UB. Some of the questions below concern
situations in which UB might occur, or code that does not cause UB but is similar to code
that can cause UB. Since we are specifying a language, we must have specific answers to
all of these questions if we are to define a special mode of evaluation for non-relaxed
contract-checking predicates. If a general model is proposed, a detailed explanation is
required of how that model would deal with all the specific examples, in order to aid in
understanding that model.

In each of the following questions, it should be assumed that appropriate restrictions on
non-relaxed contract-checking predicates under the framework of P2680 would be enforced
by the compiler, i.e., when a question asks whether some code would compile, it is implied
that the compiler would reject code that is deemed not provably safe under the framework of
P2680. If the compiler would reject a piece of code, criteria that are specific enough to be
checked by a compiler are required.

Q4.1: Suppose a function is given, bool f(int), that has a call tree N function calls deep
(e.g., f calls f2 calls … calls fN, and each fN can call 0..M other functions). Assume that it is
acceptable to use f in a non-relaxed contract-checking predicate because it and its whole
cone of evaluation meet the requirements (definition is available, definition doesn’t do illegal
side effect things, etc.). Further suppose that f is used in a non-relaxed contract-checking
predicate, e.g.,

void g(int x) [[pre: f(x)]] { /* ... */ }

Would all compilers give the same answer, that f is legal to be used in a non-relaxed
contract-checking predicate, regardless of the values of N and M (the depth and width of the
cone of evaluation)? Are there any limits to how deep or wide the analysis should
deterministically go?

Q4.2: Would the following code compile? If not, are there (existing or proposed) annotations
that could be added to make it compile? If so, what are they?

bool checkNotNull(int* p)

{

int* q = p;

return q != nullptr;

}

void f(int* p) [[pre : checkNotNull(p)]] {}

Q4.3: Assuming the answer to Q4.2 is yes, would the following compile and link? If yes,
what should it do at runtime?

6

int main()

{

int* p = nullptr;

f(p);

return 0;

}

Q4.4: Would the following code compile? If not, are there annotations that could be added to
make it compile?

bool checkSum(int x, int y)

{

return x + y < 100;

}

void g(int x, int y) [[pre : checkSum(x,y)]];

Q4.5: Assuming the answer to Q4.4 is yes, would the following compile? If yes, what should
it do at runtime?

int main()

{

g(1 << 18, 1 << 18);

}

Q4.6: Suppose a function f has a precondition C that dereferences a pointer parameter in a
non-relaxed contract-checking predicate. Would the compiler be required to produce a
compile-time error if it cannot be proven that, on all control flow paths on which the
dereference occurs, the pointer has a provenance that makes it valid to dereference?

Q4.7: If the answer to Q4.6 is "yes", then in addition to checking the declaration of f to
determine whether C is safe, would the compiler also be required to check all call sites of f
and reject some calls to f (including calls that may not occur within a contract predicate) on
the grounds that they may cause pointer dereference UB during the ensuing evaluation of
C?

Q4.8: If the answer to Q4.7 is "no", then it would be impossible for a contract-checking
predicate to ever dereference any parameter of pointer type because, although the
contract-checking predicate may check for null prior to any dereference, e.g.:

void foo(const int* p) [[pre: p && *p > 0]];

It seems that it is not possible, within the current language, for the contract-checking
predicate to first check that p is not a past-the-end pointer value before dereferencing it. Is
this claim correct? If not, then how so?

7

Q4.9: If the answer to Q4.7 is "yes", then what are the criteria for a call to foo as declared
above to be well-formed under the framework of P2680 for non-relaxed contract-checking
predicates? For example, would the call to foo (as defined below) below be considered
well-formed? If not, why not?

const int array[5] = {1, 2, 3, 4, 5};

void foo(const int* p) [[pre: p && *p > 0]] {}

void bar(bool cond, int idx, int alt)

[[pre: idx >= 0 && idx < 5]]

[[pre: foo(cond ? array + idx : &alt)]];

Assuming this example is well-formed, would it become ill-formed if the check idx < 5 were
replaced by idx <= 5? Why or why not?

Q4.10: If the answer to Q4.7 is "yes", and if the address of foo were taken, then, under the
framework of P2680, compile-time restrictions on what could be done with such a pointer
would be required, otherwise there may eventually be a call through a function pointer where
it cannot be determined whether that function pointer points to a function that has a
contract-checking predicate. What are the criteria for what can be done with a pointer to
foo? For example, would all the definitions below be well-formed? If not, why not?

void foo(const int* p) [[pre: p && *p > 0]] {}

void bar(const int*) {}

auto baz(bool cond)

{

return [cond] { return cond ? &foo : &bar; };

}

void qux()

{

const int array[5] = {1, 2, 3, 4, 5};

baz(true)()(array + 4);

}

Assuming this example is well-formed, would it become ill-formed if the argument
array + 4 were to be replaced by array + 5? If so, then why?

Q4.11: Are there any other rules, not previously discussed, that are required to support the
use of raw int* parameters in non-relaxed contract-checking predicates while preventing
UB? If so, what are they?

Q4.12: Note that almost all implementations put a limit on allocated stack space and make it
UB to have chains of invocation in a thread of execution needing more than that limit in

8

space as storage for function parameters and automatic variables. This particular kind of UB
is commonly referred to as a stack overflow, and hence UB might occur whenever invoking
any non-completely-inlined function at runtime. Would the following code compile, and what
would b do at runtime when contracts are checked?

bool pred(unsigned int x)

{

if (x == 171717) { return false; }

if (x == 343434) { return true; }

return pred(x - 1);

}

void b(int x) [[pre : pred(x)]];

Q4.13: Note that concurrent modification of a non-atomic variable is UB. This kind of UB
can occur during any read of a variable created outside the cone of evaluation of a
predicate, as the compiler is unable to determine whether that variable may potentially
undergo concurrent modification in another thread. With that in mind, would the following
code compile and, if so, what would functions c and d do at runtime when contracts are
checked?

bool pred(int& x)

{

return x > 0;

}

void c(int* x) [[pre : pred(*x)]];

void d(int& x) [[pre : pred(x)]];

Q4.14: Note that passing a pointer to storage past the end of its duration is
implementation-defined behavior. Would the following code compile and, if so, what would
function e do at runtime when contracts are checked?

int *p1(int x)

{

int y = x;

return &y;

}

int *p2(int * p)

{

int *pp = p;

return pp;

}

9

bool pred(int x)

{

int *p = p1(x);

p = p2(p);

return p;

}

void e(int x) [[pre : pred(x)]];

Q4.15: Note that i = i++ + 1 has UB for primitive types. Would the following code compile
and, if so, what would function h do at runtime when contracts are checked?

bool pred(int x)

{

x = x++ + 1;

return x > 0;

}

void h(int x) [[pre : pred(x)]];

Q4.16: Note that accessing an object past the end of its lifetime has UB. Would the
following code compile and, if so, what would function j do at runtime when contracts are
checked?

bool pred(int x)

{

std::optional<int> y = x;

if (y.value() > 34) { y.reset(); }

return y.value() > 17;

}

void j(int x) [[pre : pred(x)]];

Q4.17: What would be the behavior if, instead of using std::optional, an object is first
created using placement new in an array of bytes on the stack, then destroyed, and then
accessed after the end of its lifetime?

Q4.18: Note that creating a new object within the storage of a const complete object with
static storage duration is UB. Would the following code compile and, if so, what would
function k do at runtime when contracts are checked?

bool pred(int x)

{

static const int y = 17;

new (&y) int(x);

return y == 17;

}

10

void k(int x) [[pre : pred(k)]];

Q4.19: Note that invocation of std::unreachable is UB. Would the following code compile
and, if so, what would function l do at runtime when contracts are checked?

bool pred(int x)

{

switch (x)

{

case 17: case 34: case 51: return true;

case 42: case 84: case 132: return false:

default: std::unreachable();

}

}

void l(int x) [[pre : pred(x)]];

Q4.20: Note that returning from a function having [[noreturn]] on it is UB. Would the
following code compile and, if so, what would function m do at runtime when contracts are
checked?

[[noreturn]] bool inner(int x)

{

if (x % 17 == 11) { throw "hi"; }

return false;

}

bool pred(int x)

{

try

{

return inner(x);

}

catch (...)

{

return false;

}

}

void m(int x) [[pre : pred(x)]];

Q4.21: Note that falling off the end of a function having a non-void return value is UB.
Would the following code compile and, if so, what would function n do at runtime when
contracts are checked?

11

bool pred(int x)

{

if (x % 34 == x % 57) { return true; }

}

void n(int x) [[pre : pred(x)]];

5 General design
The indicated goal of [P2680R1] is to make contracts safer for some definition of safety. The
proposal is to introduce non-relaxed contract-checking predicates that are a self-contained
expression and free from side effects when seen from their cone of evaluation. The
implication seems to be that these are necessary and sufficient conditions to make contract
predicates safe. The following two questions, Q5.1 and Q5.2, seek to either get a clear
statement that this implication was a misinterpretation, or to get clarity in understanding the
reasoning behind the implication.

Q5.1 Are these conditions sufficient to make non-relaxed contract predicates safe? Being
sufficient implies that safety somehow results from a predicate having these properties. If
this is the case, how does safety follow from these properties?

Q5.2 Are these conditions necessary to make non-relaxed contract predicates safe? Being
necessary implies that somehow contract predicates without these properties are unsafe. If
this is the case, how does not having these properties makes a contract predicate unsafe?

Q5.3: Will all compilers be expected to accept and reject (exactly) the same set of
non-relaxed predicates? If not, how will what is accepted be determined?

Q5.4: In the proposal, what properties would be checked on a non-relaxed predicate at
compile time? It would be helpful to provide a reasonably exhaustive list.

a) How would the checks for each property be accomplished?

b) Do these properties lead to a predicate with no UB?

c) How do these properties increase safety?

d) How does not having these properties reduce safety?

Q5.5: Consider how the restrictions on non-relaxed predicates that [P2680R1] proposes
evolve with future changes. What are the properties of non-relaxed contract-checking
predicates (e.g., certain kinds of non-local side effects, some forms of potential UB) that
would be disallowed initially, but might become allowed in a future proposal?

For each such property:

a) What conditions would need to be met before these properties could be allowed?

12

b) What would stop them from being included in the initial proposal?

Q5.6: It appears that [P2680R1] proposes that non-relaxed contract-checking predicates
(that are by construction free from UB and free from side effects outside of their cone of
evaluation) are the default, and relaxed contract-checking predicates (that are not subject to
such restrictions and guarantees) are opt-in.

a) Is this understanding correct?

b) Should only non-relaxed predicates be part of the Contracts MVP, or both non-relaxed
and relaxed predicates?

c) Is it technically possible to instead have only relaxed predicates as part of the Contracts
MVP, and add non-relaxed predicates later as an explicit opt-in? If not, why not?

d) What are some concrete advantages of making non-relaxed predicates the default?

e) What, if any, are some concrete advantages of making relaxed predicates the default?

Q5.7: Assuming that it is not merely non-relaxed contract-checking predicates themselves
that need to be checked, but also the call sites (i.e., Q4.7 is answered with “yes”), it is
understood that there will be certain "excluded" uses of functions that have non-relaxed
contract-checking predicates, such that, although a human might be able to prove based on
analysis of the call site that the execution of the predicate is safe in a given context, the
compiler is unable to make such a determination. Such “excluded” uses will thus generate a
compile-time error. Does this observation, assuming it is correct, imply that the option to
specify a relaxed contract that is free of these restrictions is an essential part of a usable
Contracts feature? If not, why not?

Q5.8: Are the proposed rules to deal with the situations listed in Section 4 sufficiently precise
that a compiler could check them? If so, what might be the approximate wording? If not
available now, then how long might it take to provide wording for these and all other cases in
which UB might, in the absence of such compile-time checking, occur in a non-relaxed
contract-checking predicate? In particular, would this allow us to meet the roadmap that
SG21 adopted in Kona to successfully ship Contracts in C++26?

Q5.9: For non-relaxed predicates, does the paper propose only the prevention of side
effects, or also the prevention of predicates that can return a different answer for the same
values of function arguments at different points in time?

a) Consider:

void f(const int* p)

[[pre: global_counter < 100]];

13

Is this contract predicate acceptable? Note that the expression in the precondition of f is
side-effect-free but, if evaluated twice in a row, could return a different answer, since
global_counter is a non-const global variable.

b) Consider:

void g(const int* p)

[[pre: object_address(p) && *p > 0]];

int i = 1;

int* const p = &i;

g(p); // check passes

i = 0;

g(p); // check fails

Is the contract predicate object_address(p) && *p > 0 acceptable, even though it
returns different answers for the same value of p?

Q5.10: It appears that [P2680R1] proposes that relaxed predicates do allow expressions that
have observable side-effects.

a) Is this understanding correct?

b) In the framework of [P2680R1], how should such relaxed predicates with side effects
behave? Are side effects UB? Are they executed once? Zero or once? Zero or an
unspecified number of times?

Revision history

R0 → R1
● Revised the paper to account for the existence of both non-relaxed and relaxed

predicates
● Clarified and/or expanded questions Q1.4, Q5.1, Q5.2, and Q5.9
● Added new question Q5.10

References

[P2570R1] https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2570r1.html
[P2680R0] https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2680r0.pdf
[P2680R1] https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2680r1.pdf
[P2695R0] https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2695r0.pdf
[P2712R0] https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2712r0.pdf

14

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2570r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2680r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2680r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2695r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2712r0.pdf

