Document Number: P2545R4

Date: 2023-03-08

Revises: None

Reply to: Paul E. McKenney
Meta

paulmckrcu@gmail.com

Read-Copy Update (RCU)

Authors:
Paul McKenney, Michael Wong, Maged M. Michael, Andrew Hunter, Daisy Hollman, JF Bastien, Hans
Boehm, David Goldblatt, Frank Birbacher, Erik Rigtorp, Tomasz Kaminski, Olivier Giroux, David Vernet,
Timur Doumler

email:
paulmckrcu@gmail.com, michael@codeplay.com, maged.michael@acm.org, andrewhhunter@gmail.com,
dhollman@google.com, cxx@jfbastien.com, hboehm@google.com, davidtgoldblatt@gmail.com,
frank.birbacher@gmail.com, erik@rigtorp.se, tomaszkam@gmail.com, ogiroux@apple.com, dvernet@meta.com,
papers@timur.audio

©ISO/IEC P2545R4

Contents

1 Introduction 1
1.1 Proposed Entry to C++26 IS L 1
1.2 Feature-Test Macro e 3
1.3 Comparison Tables 3
1.4 History o . o e e 5
1.5 Source-Code ACCESS v o v i e e e e e 8
1.6 Acknowledgments e e 10

2 Safe reclamation 11
2.1 General 11
2.2 Read-copy update (RCU) 12

Contents ii

©ISO/IEC P2545R4

1 Introduction

We propose RCU for inclusion into C++26. This paper contains proposed rationale to support RCU into
C++26 as well as the interface and wording for RCU, a technique for safe deferred reclamation. We further
propose that the wording in Section 2.2 be adopted as a new “Safe reclamation” chapter of the IS, and we
anticipate that hazard pointers would be covered by another section of this same chapter.

The purpose of adding RCU to the IS is to provide a small number of known-good implementations of RCU
in standard libraries. RCU is easy to get wrong, and one purpose standard libraries is to provide good
implementations of things that are easy to get wrong.

1.1 Proposed Entry to C++426 IS

A near-superset of this proposal is implemented in the Folly RCU library. This library has used in production
for several years, so we have good implementation experience for the proposed variant of RCU.

This proposal is identical to that in Concurrency TS 2. We expect that the proposal in Concurrency TS 2
will change over time, for example, adding some of the features that are present in the Folly RCU library or
in the Linux kernel. Such features might include:

1. Multiple RCU domains. For example, SRCU provides these in the Linux kernel. However, RCU was in
the Linux kernel for four years before this was needed, so it is not in this proposal for C++26.

2. Special-purpose RCU implementations. For example, the Linux kernel has specialized implementations
for preemptible environments, single-CPU systems, as well as three additional implementations required
by the Linux kernel’s tracing and extended Berkeley Packet Filter (eBPF) use cases. However, none of
these seem applicable to userspace applications, so none of them are in this proposal for C++426.

3. Polling grace-period-wait APIs. These allow non-blocking algorithms to interface with RCU grace
periods, for example, in the Linux kernel, they allow NMI handlers to do RCU updates. (NMI handlers
could do RCU readers from the get-go.) However, RCU was in the Linux kernel for more than a decade
before such APIs were needed, so they are not in this proposal for C++26.

4. Async-friendly APIs for RCU’s blocking APIs. These might leverage the aforementioned polling APIs.
However, more work is required to determine exactly what support is required, so they are not in
this proposal for C+426. In the meantime, async code can avoid rcu_synchronize() in favor of
rcu_retire(), with the scheduled deleter interacting as needed with async. Although there is no
similar asynchronous variant of rcu_barrier (), one could be created if it is shown to be useful. One
reason for doubting its utility is that rcu_barrier () tends to be used for cleanup operations.

5. A free function similar to rcu_retire() that uses an rcu_obj_base if available, but which invokes
rcu_retire() if not. (Suggested by Tomasz Kaminski.) However, this facility has not yet been spotted
in the wild, so it is not in this proposal for C++26.

6. A memory allocator might be supplied for the use of rcu_retire(). Please note that if different
allocators can be supplied to different calls to rcu_retire(), then there must be a way to tag the
allocated memory with the corresponding deleter. However, this facility has not yet been spotted in
the wild, so it is not in this proposal for C++26.

In the meantime, users needing full control over memory allocation can use the rcu_obj_base class’s
.retire() member function. With this instrusive approach, RCU need never allocate memory.

In their turn, library implementers have a number of rcu_retire() memory-provisioning strategies at
their disposal given the current RCU API proposed for C++26:

a) Never allocate. Instead, on each call to rcu_retire(), invoke rcu_synchronize() then invoke
the deleter.

b) Preallocate at least two blocks of memory, each containing some reasonable number of slots to
record retired objects awaiting deletion. Each block must also inherit from rcu_obj_base. Fill in
slots of the current block until either it fills, memory runs low, or some reasonable period of time
has elapsed, then pass that block to .retire(). Switch to the next block. When a given block’s
deleter is invoked, in turn invoke the deleter on each slot and then make the block available for

§1.1 1

©ISO/IEC P2545R4

10.

11.

§1.1

use by subsequent rcu_retire() invocations. If rcu_retire() runs out of blocks, fall back to
strategy #a.

¢) Proceed as in strategy #b, but if rcu_retire() runs out of blocks, allocate some more. If memory
allocation fails, fall back to strategy #a.

d) Proceed as in strategy #c, but free blocks if a glut builds up.
e) Proceed as in strategy #d, but free each block within its deleter.

APIs could be provided to allow the user control over when deleters are scheduled and in what
context they are invoked. Possibilities for this control include special worker threads, a “perform RCU
reclamation now” function, use of timer handlers, or use of non-thread executors. In the meantime,
implementations can choose to invoke deleters from rcu_synchronize() and rcu_barrier (). They
may also choose to invoke deleters from .retire() and rcu_retire(), but doing so restricts users
from acquiring a given resource when invoking these functions that is also acquired in a deleter passes
to either of these functions. However, there is very little implementation experience with such a facility,
with the only C++ example being the Folly library, which permits an executor to be associated with
a newly created rcu_domain, which the Folly library provides as an extention to the functionality
proposed for initial standardization. This facility is thus not included in this proposal for C++26.

Memory-allocator interfaces providing RCU-mediated typesafe memory could be provided similar to
the Linux kernel’s SLAB_TYPESAFE_BY_RCU. In this scheme, an object from such an allocator can be
freed and reallocated immediately, even in presence of pre-existing region of RCU protection. However,
given such a region, such an object cannot be reallocated as some other type. The object can change
type only after all pre-existing regions of RCU protection complete. The readers must do some sort
of verification, for example, mediated by reference counting, locking, or sequence locking. However, a
C++ implementation of this facility has not yet been spotted in the wild, so it is not in this proposal
for C++26.

. In order to wait for all pre-existing regions of RCU protection, the implementation must find them

all. There are a number of ways of doing this, including: (1) Having rcu_domain::lock make
the running thread known to RCU if it is not already known (used by one of the userspace RCU
implementations), (2) Providing some means for iterating over all threads (used by some Linux-kernel
RCU flavors), and (3) Using a hashing or sharding technique to track readers independently of the
running threads (used by some textbook implementations adapted for small constrained systems). One
alternative not explicitly supported by this initial proposal is to provide thread-registration API members.
There is implementation experience with this technique, for example, the C-language userspace RCU
provide rcu_register_thread() and rcu_unregister_thread() to cause userspace RCU’s grace-
period computation to start or stop paying attention to the calling std: :thread, respectively.

However, the only C++ implementation experience that we are aware of is in the Folly library. This
facility is thus not included in this proposal for C++26, however, later proposals might draw on
additional Folly-library experience over time.

Numerous efficiency-oriented APIs. For but one example, the Linux kernel has an alternative rcu_-
access_pointer () that can be used in place of rcu_dereference() (Linux-kernelese for “consume
load”) when the resulting pointer will not be dereferenced (for example, when it is only going to be
compared to NULL). But it is not clear which (if any) of these would be accepted into the Linux kernel
today, given the properties of modern computer hardware. Therefore, these are not in this proposal for
C++26.

A future version of the standard might say something about memory-leak detectors. In the meantime,
an RCU user can ensure clean shutdown as follows:

a) Ceasing to invoke both .retire() and rcu_retire().
b) Invoking rcu_barrier().

Implementations wishing to assist users in this task may invoke rcu_barrier () before destructing the
default rcu_domain object, but after destructing all user objects. Any standard-library invocations
of .retire() and rcu_retire() would also need to be carried out before destructing the default
rcu_domain object. Users of implementations that do not assist in this manner should further refrain
from invoking either .retire() or rcu_retire(), whether directly or indirectly, from the destructor
of a global static object.

©ISO/IEC

P2545R4

Property Reference Counting Hazard Pointers RCU

Readers Slow and unscalable Fast and scalable Fast and scalable
Unreclaimed Objects Bounded Bounded Unbounded
Traversal Retries? If object deleted If object deleted Never
Reclamation latency? | Fast Slow Slow

Table 1: High-Level Comparison

of Deferred-Reclamation Techniques

With Reader-Writer Locking

With RCU in the intrusive style

struct Data /* members */ ;

struct Data : std::rcu_obj_base<Data> /* members */ ;

Datax data_;

std: :shared_mutex m_;

std::atomic<Datax*x> data_;

template <typename Func>

Result reader_op(Func fn) {

std: :shared_lock<std::shared_mutex> 1(m_);

Data* p = data_;

// fn should not block too long or call update()

return fn(p);

}

template <typename Func>

Result reader_op(Func fn) {

std: :scoped_lock 1l(std::rcu_default_domain());
Data* p = data_;

// fn should not block too long or call

// rcu_synchronize(), rcu_barrier(), or

// rcu_retire(), directly or indirectly
return fn(p);

}

// May be called concurrently with reader_op
void update(Data* newdata) {
Data* olddata;
{
std: :unique_lock<std::shared_mutex> wlock(m_);
olddata
}
delete olddata; // reclaim *olddata immediately
}

std::exchange(data_, newdata);

// May be called concurrently with reader_op
void update(Data* newdata) {
Data* olddata

data_.exchange(newdata) ;

olddata->retire(); // reclaim *olddata when safe

}

Table 2: Comparison Table for Reader-Writer Locking and Intrusive RCU

Of course, those wanting clean shutdown should avoid the rare but real use case in which an evaluation
scheduled by .retire() or rcu_retire() unconditionally schedules another evaluation, and so on
indefinitely. Such use cases should instead include some mechanism that prevents subsequent invocations
of .retire() and rcu_retire() before the shutdown-time call to rcu_barrier().

The snapshot library described in P0561R5 (“RAII Interface for Deferred Reclamation”) provides an easy-to-
use deferred-reclamation facility applying only to a single object which is intended to be based upon either
RCU or Hazard Pointers. It cannot replace either RCU or Hazard Pointers.

The Hazard Pointers library is described in P2530R3 (“Hazard Pointers for C4++26”). As a very rough rule
of thumb, Hazard Pointers can be considered to be a scalable replacement for reference counters and RCU
can be considered to be a scalable replacement for reader-writer locking. A high-level comparison of reference

counting, Hazard Pointers, and RCU is displayed in

Table 1.

Note that we are making this working paper available before Concurrency TS2 been published, which some
might feel is unconventional. On the other hand, Paul was asked to begin this effort in 2014, it is now 2022,
and C++ implementations have been used in production for some time, perhaps most notably the Folly RCU

library.

1.2 Feature-Test Macro

We propose a new feature-test macro __cpp_lib_rc

1.3 Comparison Tables

u be added to Section 17.3.2 of the IS.

Although RCU can be applied to a great many use cases, its most common use case is as a replacement for
reader-writer locking. The reader-writer usage patterns most susceptible to conversion to RCU are those
where a value is computed while read-holding that lock, then used after releasing that same lock.

§1.3

©ISO/IEC

P2545R4

With Reader-Writer Locking

With RCU in the non-intrusive style

struct Data /* members */ ;

struct Data /* members */ ;

Datax data_;

std: :shared_mutex m_;

std::atomic<Data*> data_;

template <typename Func>
Result reader_op(Func fn) {

std: :shared_lock<std::shared_mutex> 1(m_);

Data* p = data_;

// fn should not block too long or call update()

return fn(p);

}

template <typename Func>
Result reader_op(Func fn) {

std: :scoped_lock 1(std::rcu_default_domain());
Data* p = data_;

// fn should not block too long or call

// rcu_synchronize(), rcu_barrier(), or

// rcu_retire(), directly or indirectly
return fn(p);

}

// May be called concurrently with reader_op
void update(Data* newdata) {
Datax olddata;
{
std: :unique_lock<std::shared_mutex> wlock(m_);
olddata = std::exchange(data_, newdata);
}
delete olddata; // reclaim *olddata immediately
}

// May be called concurrently with reader_op
void update(Data* newdata) {

Data* olddata = data_.exchange(newdata) ;

std::rcu_retire(olddata); // reclaim *olddata when safe

}

Table 3: Comparison Table for Reader-Writer Locking and Non-Intrusive RCU

With Reader-Writer Locking

With RCU in the synchronous style

struct Data /* members */ ;

struct Data /* members */ ;

Datax data_;

std: :shared_mutex m_;

std::atomic<Data*> data_;

template <typename Func>
Result reader_op(Func fn) {
std: :shared_lock<std: :shared_mutex> 1(m_);

Data* p = data_;

return fn(p);

}

// fn should not block too long or call update()

template <typename Func>

Result reader_op(Func fn) {

std: :scoped_lock 1(std::rcu_default_domain());
Data* p = data_;

// fn should not block too long or call

// rcu_synchronize(), rcu_barrier(), or

// rcu_retire(), directly or indirectly
return fn(p);

}

// May be called concurrently with reader_op
void update(Data* newdata) {

Data* olddata;

{

olddata = std::exchange(data_, newdata);
}

}

std::unique_lock<std::shared_mutex> wlock(m_);

delete olddata; // reclaim *olddata immediately

// May be called concurrently with reader_op
void update(Data* newdata) {

Data* olddata = data_.exchange(newdata);

std::rcu_synchronize(); // wait until it’s safe
delete olddata; // then reclaim *olddata
}

Table 4: Comparison Table for Reader-Writer Locking and Synchronous RCU

Table 2 compares reader-writer locking and intrusive RCU, that is, when the RCU-protected data items
inherit from std::rcu_obj_base<T> and use the ->retire() member function.

Table 3 compares reader-writer locking and non-intrusive RCU, that is, when the RCU-protected data items
do not inherit from std: :rcu_obj_base<T> and instead use the std::rcu_retire() free function.

Table 4 compares reader-writer locking and synchronous RCU, that is, when the RCU updater does an
explicit wait for readers. When using this style, RCU-protected data items need not inherit from std: :rcu_-
obj_base<T>.

§1.3 4

©ISO/IEC P2545R4

1.4

History

More detailed history may be found here: https://github.com/paulmckrcu/wg2i-rcu-C-26.git.

1.4.1 Changes From D2545R4 to P2545R4
These changes were requested at the March 8, 2023 Library Working Group teleconference:

Correct the name of P2530R3 to “Hazard Pointers for C++26” (but on own volition).
Add a 2.2.4.1 section to avoid a hanging paragraph.
Change 2.2.4.3 immutable name from [saferecl.rcu.domain.nonmembers] to [saferecl.rcu.domain.func].

Eliminate the “Updater free function” section in favor of pulling rcu_synchronize, rcu_barrier, and
rcu_retire into 2.2.4.3.

Adjust section references, including refactoring the history list for the March 1, 2023 Library Working
Group teleconference to be less dependent on low-level IXTEX labels.

1.4.2 Changes From P2545R3 to D2545R4
These changes were requested at the March 1, 2023 Library Working Group teleconference:

Title changed from “Why RCU Should be in C++26” to “Read-Copy Update (RCU)".
Guessed at the updated title for the hazard-pointers paper.

Added a detailed change history for the February 8, 2023 Library Working Group review at the Issaquah
meeting.

2.2.1p2: Added “it has” to produce “.. and that base is public and non-virtual, and it has no base
classes of type ...”

2.2.3p8: Changed “deleter” to italized fixed font to indicate an expository identifier. Also changed “if
that evaluation throws an exception” to “if that evaluation exits via an exception”.

2.2.4:

— Add try_lock() in order to meet the requirements of Cpp17Lockable instead of Cpp17BasicLockable.
This change allows the user to add RCU readers to a list of locks that are to be acquired in a
deadlock-free manner. This is strictly a convenience to the user (RCU readers cannot deadlock).

— Change “the function lock” to just “lock”.

— Change “the function unlock” to just “unlock”.

— Change “the default object” to “a static-duration object”.

— Add a note stating that neither of rcu_synchronize and rcu_barrier imply the other.
— Refactor the mandates, preconditions (AKA expects), and effects clauses for rcu_retire.

— Rely on common Library wording to avoid special rcu_retire wording for bad_alloc subclasses.

1.4.3 Changes From P2545R2 to P2545R3

Most of these changes were motivated by an LWG review of parallel sections of P2530R3 (“Hazard Pointers
for C++26”) that was carried out at the 2023 Issaquah meeting.

Editorial updates.

Add additional non-normative user advice for use of memory-leak detectors.
Add non-normative user advice for interacting with async code.

Use immutable references to sections of the IS.

Remove “A client-supplied template argument” from the description of rcu_obj_base. (Given that D
is a parameter, it is clearly supplied by the client.)

Add the other five constructors, assignment operators, and destructor to rcu_obj_base.

Expand the point about parameter T being an incomplete type to include the fact that it must be
complete before any resulting specialization of rcu_obj_base is referenced.

Move the point about .retire(), .unlock(), and rcu_retire() invoking scheduled evaluations from
remarks to normative text. The point about potential deadlock remains in a non-normative note.

§1.4.3 5

https://github.com/paulmckrcu/wg21-rcu-C-26.git

©ISO/IEC P2545R4

— Convert from L’ and U’ to L2 and U2, respectively.

— Note that rcu_obj_base must be non-virtual.

— Updates based on February 8 LWG review:

2.2.1p3.1: Added a comma.
2.2.1p6: Deleted “such” from “any other such scheduled evaluation”.

2.2.3: Remove “const” in order to produce a valid move constructor and a valid move-assignment
operator.

Moved 2.2.3p1 and 2.2.3p3 to follow 2.2.3p4, so that these became 2.2.3p3, 2.2.3p4, and 2.2.3p2,
respectively.

2.2.3p7: Removed “The expression deleter (addressof (x)) has well-defined behavior and does
not throw an exception.”

2.2.3p8: Added “the behavior is undefined if that evaluation throws an exception”.
Note 1 following 2.2.3p8: Put “retire” into code font.

These changes nevertheless need LWG review, given that there might be both typos and subtle differences
between hazard pointers and RCU that require different modifications to the RCU paper.

1.4.4 Changes From P2545R1 to P2545R2

— Prototype a private constructor for rcu_domain in response to guidance during 2022 Kona LEWG
review. (Minor wording change.)

— Record straw polls from 2022 Kona LEWG review and from September 2022 virtual LEWG review.

— Update “Tony Tables” to “Comparison Tables” in response to guidance during 2022 Kona LEWG
review.

— Mention a number of longer-term possible changes:

Provide means for user to control the context in which deleters are invoked and the timing of their
invocation.

RCU-mediated typesafe memory, perhaps similar to the Linux kernel’s SLAB_TYPESAFE_BY_RCU.

Manual thread registration for threads other than std: :thread, in response to discussions during
2022 Kona LEWG review.

Give user and implementer advice on rcu_retire() metadata handling.

Interactions with memory-leak detectors.

1.4.5 Kona 2022

This paper updates P2545R1 based on discussions in LEWG and offline at the Kona meeting. Notes may be
found here:

— https://docs.google.com/document/d/1QWFqucJ6W2Q0YrOofyigUBEj-XiNLGQfkTUf _6PZLZk/edit#

— https://github.com/cplusplus/papers/issues/1206#issuecomment-1310849132

LEWG straw polls were as shown in the following sections.

1.4.5.1 Poll1l

Remove the defaulted rcu_domain parameter from rcu_synchronize, rcu_barrier, rcu_retire, and rcu_-

obj_base:

:retire.

SF|F | N |A|SA

45]12]1] 0
Attendance: 23 (in-person) + 7 (online)

of Authors: 2
Author Position: 2 x N

Outcome:

§1.4.5.1

No consensus

https://docs.google.com/document/d/1QWFqwcJ6W2QOYr0ofyigU6Ej-XiNLGQfkTUf_6PZLZk/edit#
https://github.com/cplusplus/papers/issues/1206#issuecomment-1310849132

©ISO/IEC P2545R4

1.4.5.2 Poll 2

Remove rcu_domain (but keep rcu_default_domain that returns a BasicLockable object).
SF|F|NJ|A|SA
381 [7]0

Attendance: 22 (in-person) + 7 (online)

of Authors: 2

Author Position: 2 x WA
Outcome: No consensus

1.4.5.3 Poll 3

Send P2545R1 (why RCU should be in C++26) to Library for C++26 classified as B3 - addition, to be
confirmed with a Library Evolution electronic poll.
SF | F | N|A|SA
10[7]1]2]0
Attendance: 25 (in-person) + 7 (remote)
of Authors: 2
Author Position: 2 x SF
Outcome: Consensus

Statement from “weakly against” voter: I want to get rid of the object and have a private constructor.
(Addressed by making the constructor private.)
1.4.5.4 Action Items

— Add a section discussing thread registration (done).

— Get feedback from implementers.

— Bikeshed rcu_obj_base.

— Make rcu_domains constructor private (done).

1.4.6 September 20 2022 LEWG Teleconference

This paper updates P2545R0 based on discussions at LEWG and offlist. Notes may be found here:
— https://wiki.edg.com/bin/view/Wg2ltelecons2022/P25457twiki_redirect_cache=93b9b23e9c2596b6802a091
— https://github.com/cplusplus/papers/issues/1206#issuecomment-1256428844

1.4.6.1 Poll

RCU should target the International Standard instead of the Concurrency Technical Specification v2.
SF|F [N |A|SA
0[7]1]2]0

Attendance: 25

of Authors: 4

Author Position: 4 x SF
Outcome: Consensus in favor.

Statements from “weakly against” voters:
— More fleshed out motivation could change my “A” to “F”.
— More evidence of existing practice might change my mind.

Added motivation and existing practice to address these statements.

1.4.7 Changes From P2545R0 to P2545R1

These changes to P2545R0 resulted in P2545R 1, based on discussions in virtual SG1 and LEWG meetings:
— Add “Tony Tables” for intrusive, non-intrusive, and synchronous use cases.
— Switch from experimental to std:: namespace.
— Provide rationale for adding RCU to the IS.

— Add a feature-test macro.

§1.4.7 7

https://wiki.edg.com/bin/view/Wg21telecons2022/P2545?twiki_redirect_cache=93b9b23e9c2596b6802a09f9f5ffb9bd
https://github.com/cplusplus/papers/issues/1206#issuecomment-1256428844

©ISO/IEC P2545R4

— Add a list of C++ RCU implementations.
— Add Fedor Pikus quote about large concurrent applications and inadvertent uses of RCU.
— Add a list of publications showing performance benefits of RCU.
— Mention a number of longer-term possible changes:
— Async-friendly RCU APIs.

— A free function similar to rcu_retire() that uses an rcu_obj_base if available and invokes
rcu_retire() if not.

1.4.8 Older History
This paper updates P2545R0 based on discusssions in SG1 and LEWG.
P2545R0 was derived from N4895, which was in turn based on P1122RA4.

P1122R4 is a successor to the RCU portion of PO566R5, in response to LEWG’s Rapperswil 2018 request
that the two techniques be split into separate papers.

This is proposed wording for Read-Copy-Update [P0461], which is a technique for safe deferred resource
reclamation for optimistic concurrency, useful for lock-free data structures. Both RCU and hazard pointers
have been progressing steadily through SG1 based on years of implementation by the authors, and are in
wide use in MongoDB (for Hazard Pointers), Facebook, and Linux OS (RCU).

We originally decided to do both papers’ wording together to illustrate their close relationship, and similar
design structure, while hopefully making it easier for the reader to review together for this first presentation.
As noted above, they have been split on the committee’s request.

This wording is based P0566r5, which in turn was based on that of on n4618 draft [N4618].

1.5 Source-Code Access

This section presents C++ reference implementations, other C++ implementations, additional implementa-
tions and use cases, and performance implications.

Counting the two reference implementation, this section points out eleven implementations of RCU-like
mechanisms in C++.

1.5.1 Reference C++ Implementations

The Folly library is open source, and its RCU implementation may be accessed here:
— https://github.com/facebook/folly /blob/main/folly /synchronization/Rcu.h
— https://github.com/facebook/folly /blob/main/folly /synchronization/Rcu-inl.h
— https://github.com/facebook/folly /blob/main/folly /synchronization/Rcu.cpp

There is an additional reference implementation of this proposal. Unlike the Folly library’s version, this
reference implementation is not production quality. However, it is quite a bit simpler, having delegated the
difficult parts to the C-language userspace RCU library:

— https://github.com/paulmckrcu/RCUCPPbindings/tree/master/Test /paulmck
— https://liburcu.org

1.5.2 Other C++ Implementations

Maxim Khizhinsky added a C++ implementation of RCU to his libeds around 2017. URL: https://github.
com/khizmax/libcds/tree/master/cds/urcu

Avi Kivity added a C++ implementation of RCU to the OSv kernel in 2010. URL: https://github.com/
cloudius-systems/osv/blob/master/include/osv/rcu.hh

Google uses an internally developed C++ RCU implementation alluded to by Andrew Hunter’s and Geoffrey
Romer’s P0561 C++ working paper. This implementation makes use of restartable sequences in addition to
facilities defined in the standard. URL: https://www.open-std.org/jtcl/sc22/wg21/docs/papers/2020/
p0561r5.html

Isaac Gelado and Michael Garland describe use of a CUDA/C++ RCU in GPU programming in their 2019
PPoPP paper entitled “Throughput-Oriented GPU Memory Allocation”. URL: https://dl.acm.org/doi/
10.1145/3293883.3295727

§1.5.2 8

https://github.com/khizmax/libcds/tree/master/cds/urcu
https://github.com/khizmax/libcds/tree/master/cds/urcu
https://github.com/cloudius-systems/osv/blob/master/include/osv/rcu.hh
https://github.com/cloudius-systems/osv/blob/master/include/osv/rcu.hh
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0561r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0561r5.html
https://dl.acm.org/doi/10.1145/3293883.3295727
https://dl.acm.org/doi/10.1145/3293883.3295727

©ISO/IEC P2545R4

Marton et al. present a sample C++ implementation in their paper entitled “High-level C++ Implementation
of the Read-Copy-Update Pattern”, which appeared in the 2017 IEEE 14*® International Scientific Conference
on Informatics. URL: https://martong.github.io/high-level-cpp-rcu_informatics_2017.pdf The
corresponding journal paper appeared in the September 2018 Acta Electrotechnica et Informatica.

In 2016, Pedro Ramalhete and Andreia Correia produced a C++ prototype implementation of RCU in the
ConcurrencyFreaks GitHub repository. URL: https://github.com/pramalhe/ConcurrencyFreaks/tree/
master/CPP/papers/gracesharingurcu This appeared in the August 2017 issue of ACM SIGPLAN Notices.
URL: https://dl.acm.org/doi/abs/10.1145/3155284.3019021

Peter Goodman produced a prototype C+-+ implementation of RCU in his GitHub repository in 2012. URL:
https://github.com/pgoodman/rcu

StackExchange user Jamal posted a C++ RCU-like linked-list algorithm in 2017. URL: https://codereview.
stackexchange.com/questions/151936/rcu-in-cll-using-stdshared-ptr-and-a-little-more.

Gamsa et al. describe an RCU-like implementation within the Tornado and K42 research operating systems,
both of which were coded in C++. Sections 5.2 and 5.3 of their 1999 OSDI paper entitled “Tornado:
Maximizing Locality and Concurrency in a Shared Memory Multiprocessor Operating System” gives an
overview of their RCU-like mechanism for providing what they call “existence guarantees”. URL: https:
//www.usenix.org/legacy/events/osdi99/full_papers/gamsa/gamsa.pdf

There are implementations of RCU-like mechanisms in proprietary applications, but these cannot be divulged
to the committee without the permission of their respective copyright holders. However, in the words of
Fedor Pikus:

In fact, you may already be using the RCU approach in your program without realizing it!
Wouldn’t that be cool? But careful now: you may be already using the RCU approach in your
program in a subtly wrong way. I'm talking about the kind of way that makes your program pass
every test you can throw at it and then crash in front of your most important customer (but only
when they run their most critical job, not when you try to reproduce the problem).

URL: https://cppcon2017.sched.com/event/BgtF/read-copy-update-then-what-rcu-for-non-kernel-programmers

With these words, Fedor has pinpointed a major motivation for adding RCU to the C++4 standard: To
provide a smaller number of known-good RCU implementations to C++ users.

1.5.3 Other Use Cases

The C-language userspace RCU library appeared around 2009. The QEMU project created its own version of
this library in 2015. URL: https://liburcu.org

A list of additional RCU implementations in a variety of languages may be found in Sections 9.5.5, 9.5.5.2,
and 9.6.3.3 of “Is Parallel Programming Hard, And, If So, What Can You Do About It?”. URL: https:
//kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e2.pdf

RCU is used heavily in the Linux kernel:
1. http://www.rdrop.com/~paulmck/RCU/linuxusage.html
2. http://www.rdrop.com/~paulmck/techreports/survey.2012.09.17a.pdf
3. http://www.rdrop.com/~paulmck/techreports/RCUUsage.2013.02.24a.pdf
4. https://dl.acm.org/doi/10.1145/3421473.3421481

1.5.4 Performance Implications

RCU provides the best results in read-mostly situations involving linked data structures, and is most often
used as a replacement for reader-writer locking. Experience in the Linux kernel indicates that well over
half of the situations to which reader-writer locking is applied can be handled by RCU. RCU has provided
orders-of-magnitude performance and scalability improvements in many situations, a few of which are listed
below:

1. https://lwn.net/Kernel/Index/#Read-copy-update

2. http://www2.rdrop.com/~paulmck/RCU/hart_ipdps06.pdf
3. https://1lkml.org/1kml/2004/8/20/137

4. https://www.linuxjournal.com/article/7124

§1.5.4 9

https://martong.github.io/high-level-cpp-rcu_informatics_2017.pdf
https://github.com/pramalhe/ConcurrencyFreaks/tree/master/CPP/papers/gracesharingurcu
https://github.com/pramalhe/ConcurrencyFreaks/tree/master/CPP/papers/gracesharingurcu
https://dl.acm.org/doi/abs/10.1145/3155284.3019021
https://github.com/pgoodman/rcu
https://codereview.stackexchange.com/questions/151936/rcu-in-c11-using-stdshared-ptr-and-a-little-more
https://codereview.stackexchange.com/questions/151936/rcu-in-c11-using-stdshared-ptr-and-a-little-more
https://www.usenix.org/legacy/events/osdi99/full_papers/gamsa/gamsa.pdf
https://www.usenix.org/legacy/events/osdi99/full_papers/gamsa/gamsa.pdf
https://cppcon2017.sched.com/event/BgtF/read-copy-update-then-what-rcu-for-non-kernel-programmers
https://liburcu.org
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e2.pdf
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e2.pdf
http://www.rdrop.com/~paulmck/RCU/linuxusage.html
http://www.rdrop.com/~paulmck/techreports/survey.2012.09.17a.pdf
http://www.rdrop.com/~paulmck/techreports/RCUUsage.2013.02.24a.pdf
https://dl.acm.org/doi/10.1145/3421473.3421481
https://lwn.net/Kernel/Index/#Read-copy-update
http://www2.rdrop.com/~paulmck/RCU/hart_ipdps06.pdf
https://lkml.org/lkml/2004/8/20/137
https://www.linuxjournal.com/article/7124

©ISO/IEC P2545R4

https://www.linuxjournal.com/article/6993
http://www2.rdrop.com/~paulmck/RCU/rcu.FREENIX.2003.06.14.pdf
http://www2.rdrop.com/~paulmck/RCU/rcu.2002.07.08.pdf
http://www2.rdrop.com/~paulmck/RCU/rclock_0LS.2001.05.01c.pdf

https://docs.google.com/document/d/1X01Thx80K0ZgLMqVoXiR4ZrGURHrXK6NyLRbeXe3Xac/edit?
usp=sharing

© ®» N> o

Additional information may be found in Section 9.5.4 of the aforementioned “Is Parallel Programming Hard,
And, If So, What Can You Do About 1t7”.

1.6 Acknowledgments

We owe special thanks to Jens Maurer, Arthur O’'Dwyer, and Geoffrey Romer for their many contributions to
this effort.

§1.6 10

https://www.linuxjournal.com/article/6993
http://www2.rdrop.com/~paulmck/RCU/rcu.FREENIX.2003.06.14.pdf
http://www2.rdrop.com/~paulmck/RCU/rcu.2002.07.08.pdf
http://www2.rdrop.com/~paulmck/RCU/rclock_OLS.2001.05.01c.pdf
https://docs.google.com/document/d/1X0lThx8OK0ZgLMqVoXiR4ZrGURHrXK6NyLRbeXe3Xac/edit?usp=sharing
https://docs.google.com/document/d/1X0lThx8OK0ZgLMqVoXiR4ZrGURHrXK6NyLRbeXe3Xac/edit?usp=sharing

©ISO/IEC P2545R4

2 Safe reclamation [saferecl]

2.1 General [saferecl.general]

This clause adds safe-reclamation techniques, which are most frequently used to straightforwardly resolve
access-deletion races.

§2.1 11

(3.1)

(3.2)

1

©ISO/IEC P2545R4

2.2 Read-copy update (RCU) [saferecl.rcu]

2.2.1 General [saferecl.rcu.general]

RCU is a synchronization mechanism that can be used for linked data structures that are frequently read, but
seldom updated. RCU does not provide mutual exclusion, but instead allows the user to schedule specified
actions such as deletion at some later time.

A class type T is rcu-protectable if it has exactly one base class of type rcu_obj_base<T,D> for some D, and
that base is public and non-virtual, and it has no base classes of type rcu_obj_base<X,Y> for any other
combination X, Y. An object is rcu-protectable if it is of rcu-protectable type.

An invocation of unlock U on an rcu_domain dom corresponds to an invocation of lock L on dom if L is
sequenced before U and either

— no other invocation of lock on dom is sequenced after L and before U, or

— every invocation of unlock U2 on dom such that L is sequenced before U2 and U2 is sequenced before
U corresponds to an invocation of lock L2 on dom such that L is sequenced before L2 and L2 is
sequenced before U2.

[Note 1: This pairs nested locks and unlocks on a given domain in each thread. — end note]

A region of RCU protection on a domain dom starts with a lock L on dom and ends with its corresponding
unlock U.

Given a region of RCU protection R on a domain dom and given an evaluation E that scheduled another
evaluation F' in dom, if E does not strongly happen before the start of R, the end of R strongly happens
before evaluating F'.

The evaluation of a scheduled evaluation is potentially concurrent with any other scheduled evaluation. Each
scheduled evaluation is evaluated at most once.

2.2.2 Header <rcu> synopsis [saferecl.rcu.syn]

namespace std {
// 2.2.3, class template rcu_obj_base
template<class T, class D = default_delete<T>>
class rcu_obj_base;

// 2.2.4, class rcu_domain
class rcu_domain;
rcu_domain& rcu_default_domain() noexcept;
void rcu_synchronize(rcu_domain& dom = rcu_default_domain()) noexcept;
void rcu_barrier(rcu_domain& dom = rcu_default_domain()) noexcept;
template<class T, class D = default_delete<T>>

void rcu_retire(T* p, D d = D(), rcu_domain& dom = rcu_default_domain());

}

2.2.3 Class rcu_obj_base [saferecl.rcu.base]
Objects of type T to be protected by RCU inherit from a specialization of rcu_obj_base<T,D>.

template<class T, class D = default_delete<T>>
class rcu_obj_base {
public:
void retire(D d = D(), rcu_domain& dom = rcu_default_domain()) noexcept;
protected:
rcu_obj_base() = default;
rcu_obj_base(const rcu_obj_base&) = default;
rcu_obj_base(rcu_obj_base&&) = default;
rcu_obj_base& operator=(const rcu_obj_base&) = default;
rcu_obj_base& operator=(rcu_obj_base&&) = default;
~rcu_obj_base() = default;
private:
D deleter; // exposition only
};

The behavior of a program that adds specializations for rcu_obj_base is undefined.

§2.2.3 12

t

©ISO/IEC P2545R4

T may be an incomplete type. It shall be complete before any member of the resulting specialization of
rcu_obj_base is referenced.

D shall be a function object type ([function.objects]) for which, given a value d of type D and a value ptr of
type T*, the expression d(ptr) is valid.

D shall meet the requirements for Cpp17DefaultConstructible and Cpp17MoveAssignable.

If D is trivially copyable, all specializations of rcu_obj_base<T,D> are trivially copyable.

void retire(D d = D(), rcu_domain& dom = rcu_default_domain()) noexcept;

Mandates: T is an rcu-protectable type.

Preconditions: *this is a base class subobject of an object x of type T. The member function rcu_-
obj_base<T,D>::retire was not invoked on x before. The assignment to deleter does not throw an
exception.
Effects: Evaluates deleter = std::move(d) and schedules the evaluation of the expression deleter (ad-
dressof (x)) in the domain dom; the behavior is undefined if that evaluation exits via an exception.
May invoke scheduled evaluations in dom.
[Note 1: If such evaluations acquire resources held across any invocation of retire on dom, deadlock can occur.
— end note]
2.2.4 Class rcu_domain [saferecl.rcu.domain)]
2.2.4.1 General [saferecl.rcu.domain.general]

This class meets the requirements of Cpp17Lockable ([thread.req.lockable.req]) and provides regions of RCU
protection.

[Ezample 1:
std: :scoped_lock<rcu_domain> rlock(rcu_default_domain());
— end ezample]

class rcu_domain {

public:
rcu_domain(const rcu_domain&) = delete;
rcu_domain& operator=(const rcu_domain&) = delete;

void lock() noexcept;

bool try_lock() noexcept;

void unlock() noexcept;
};

rcu_domain& rcu_default_domain() noexcept;

The functions lock and unlock establish (possibly nested) regions of RCU protection.

2.2.4.2 Member functions [saferecl.rcu.domain.members]

void lock() noexcept;
Effects: Opens a region of RCU protection.

Remarks: Calls to lock do not introduce a data race ([intro.races]) involving *this.

bool try_lock() noexcept;
Effects: Equivalent to lock().

Returns: true.

void unlock() noexcept;

Preconditions: A call to lock that opened an unclosed region of RCU protection is sequenced before
the call to unlock.

Effects: Closes the unclosed region of RCU protection that was most recently opened. May invoke
scheduled evaluations in *this.

[Note 1: If such evaluations acquire resources held across any invocation of unlock on *this, deadlock can
occur. — end note|

§2.2.4.2 13

10

©ISO/IEC P2545R4

Calls to unlock do not introduce a data race involving *this.

[Note 2: Evaluation of scheduled evaluations can still cause a data race. — end note]

2.2.4.3 Non-member functions [saferecl.rcu.domain.func]

rcu_domain& rcu_default_domain() noexcept;
Returns: A reference to a static-duration object of type rcu_domain. A reference to the same object is
returned every time this function is called.

void rcu_synchronize(rcu_domain& dom = rcu_default_domain()) noexcept;

Effects: If the call to rcu_synchronize does not strongly happen before the lock opening an RCU
protection region R on dom, blocks until the unlock closing R happens.

Synchronization: The unlock closing R strongly happens before the return from rcu_synchronize.

void rcu_barrier(rcu_domain& dom = rcu_default_domain()) noexcept;

Effects: May evaluate any scheduled evaluations in dom. For any evaluation that happens before the
call to rcu_barrier and that schedules an evaluation F in dom, blocks until E has been evaluated.

Synchronization: The evaluation of any such E strongly happens before the return from rcu_barrier.

[Note 1: A call to rcu_barrier does not imply a call to rcu_synchronize and vice versa. — end note|

template<class T, class D = default_delete<T>>
void rcu_retire(T* p, D d = D(), rcu_domain& dom = rcu_default_domain());

Mandates: is_move_constructible_v<D> is true and the expression d(p) is well-formed.
Preconditions: D meets the Cppl7MoveConstructible and Cpp17Destructible requirements.

Effects: May allocate memory. It is unspecified whether the memory allocation is performed by invoking
operator new. Initializes an object d1 of type D from std::move(d). Schedules the evaluation of
d1(p) in the domain dom; the behavior is undefined if that evaluation exits via an exception. May
invoke scheduled evaluations in dom.

[Note 2: If rcu_retire exits via an exception, no evaluation is scheduled. — end note]
Throws: bad_alloc or any exception thrown by the initialization of d1.

[Note 3: If scheduled evaluations acquire resources held across any invocation of rcu_retire on dom, deadlock
can occur. — end note]

§2.243 14

	1 Introduction
	1.1 Proposed Entry to C++26 IS
	1.2 Feature-Test Macro
	1.3 Comparison Tables
	1.4 History
	1.4.1 Changes From D2545R4 to P2545R4
	1.4.2 Changes From P2545R3 to D2545R4
	1.4.3 Changes From P2545R2 to P2545R3
	1.4.4 Changes From P2545R1 to P2545R2
	1.4.5 Kona 2022
	1.4.5.1 Poll 1
	1.4.5.2 Poll 2
	1.4.5.3 Poll 3
	1.4.5.4 Action Items

	1.4.6 September 20 2022 LEWG Teleconference
	1.4.6.1 Poll

	1.4.7 Changes From P2545R0 to P2545R1
	1.4.8 Older History

	1.5 Source-Code Access
	1.5.1 Reference C++ Implementations
	1.5.2 Other C++ Implementations
	1.5.3 Other Use Cases
	1.5.4 Performance Implications

	1.6 Acknowledgments

	2 Safe reclamation
	2.1 General
	2.2 Read-copy update (RCU)
	2.2.1 General
	2.2.2 Header <rcu> synopsis
	2.2.3 Class rcu_obj_base
	2.2.4 Class rcu_domain
	2.2.4.1 General
	2.2.4.2 Member functions
	2.2.4.3 Non-member functions

