

Senders and Receivers

P2479

Composition, for real

Composition across multiple layers

Component A Component B Component C Component D

Create sender,
Add continuation

Further layers add their own
continuations...

Component A Component B Component C Component D

Add continuation

...without having to know about
previous or next ones

Component A Component B Component C Component D

Add continuation

The work graph is run once it’s
complete...

Component A Component B Component C Component D

Add continuation
Start

Execution
context

...on a context that none of these
components created

Component A Component B Component C Component D

Execution
context

What does this buy us?
● Separation of concerns

– The components don’t know about the continuations of the
other components (or other algorithms applied in them)..

– ..but separate algorithms can be applied that affect how
the continuations are combined.

– The execution context is also separate, and can be
changed without affecting the rest of the code.

It’s more than just dumb wrapping
● The algorithms can deal with values and errors.
● They can intercept calls, divert calls, filter calls..

– ..and they can filter, translate, and otherwise
process the value arguments..

– ..and error arguments.

It fits into the same framework
● The algorithms are generic; applying them in

one component doesn’t change the code in
another component.

● The senders and algorithms form a common
vocabulary.

An executor can’t do this
● All there is for an executor is “dumb wrapping”..
● ..but that can’t deal with the values and errors.
● A refined executor maybe could, but then we

have an infinite set of different ad-hoc
frameworks with no common vocabulary.

P2469 doesn’t address any of this
● Yes, I know that an executor is “just the tail call completion”;

to the calling client, that’s The Most Important Thing, not a
hidden implementation detail.

● A completion_handler exposes an associated executor,
neither of them has a common composable API that allows
filtering, intercepting, chaining and translating the
operations using a common API and common vocabulary.

● So, nice try, but it doesn’t resolve any of the concerns.

Let’s go for a frickin’ Pony Stable
● So, I want to make my program algorithm-

pluggable, adaptable, with a common API:

NetTS Roll your own, define asynchronous
operations that have a pluggable common
API.

Senders and Receivers The common API is built-in, and used
throughout.

Let me translate that for you, to
plain&frank Ville-speak

● So, I want to make my program algorithm-
pluggable, adaptable, with a common API:

NetTS Invent your own API and hope that other
people use the same API. This wish is
unrealistic.

Senders and Receivers The common API is built-in, and used
throughout.

Let’s rephrase that once again

● So, I want to make my program algorithm-
pluggable, adaptable, with a common API:

The approach I can realistically expect to use the same
algorithms and thus similar code over
different work abstractions and execution
context abstractions, everywhere, globally,
across the entire C++ user base?

NetTS Yes () No (x)

Senders and Receivers Yes (x) No ()

Conclusion
● The NetTS design is so model-agnostic that it doesn’t

really have a model, and it doesn’t establish a common
API and a common vocabulary
– but it has parts that make it not play together with our best

understanding of such a common API, since it has P0443
executors in it.

● S&R does provide a common model, a common API,
and a common vocabulary.

Here’s a bonus point
● Write me a piece of code that takes any

asynchronous work result and posts it onto a
GUI event loop.

● What do you need to write?

Here’s a bonus point
● With senders and receivers, you

– adapt your event loop to be a scheduler
– you take your sender that represents your work
– and then you transfer() it.

● This works with any piece of work. Always the same. Just transfer()
it. A bazillion different things that you might run as your async work,
and they all transfer the same way. Every one of them.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

