Closure-Based Syntax for Contracts

Document #: P2461R1

Date: 2021-11-15

Project: Programming Language C++
Audience: WG21 SG21 (Contracts)
Reply-to: Gasper AZman

<gasper.azman@gmail.com>
Caleb Sunstrum
<calebs@edg.com>

Bronek Kozicki
<brok@spamcop.net>

Contents
1 Introduction 2
1.1 On Extensions and Viability L 2
2 Changelog 3
2.1 ROto R1 . . o e 3
3 Proposal 3
3.1 Exampleo e 3
3.2 Proposed syntax e 3
3.2.1 MVP Restrictions e 4
4 Semantics 4
4.1 Evaluation order e e b)
411 ASSertionso e e 5
4.1.2 pre and postconditions e 5
4.2 postcondition reference-capture limitations in the MVPo 5
4.3 Side-effect elision L 6
4.3.1 An alternative model (from P2388) Lo oo 6
5 Future Extensions (not a proposal) 6
5.1 Explicit Captures e 6
5.1.1 Capturing view contents by value L oL L 7
5.1.2 Checking whether a call didn’t exceed its time budget 7
5.1.3 Checking a call didn’t leak memory oL 7
5.1.4 Grabbing only the interesting part of an input 7
5.1.5 Mutation semantics checking L oL oL 8
5.2 Destructuring the return value L Lo 8
5.3 Attributes appertaining to contract annotationso 8
5.4 “trust” annotations (NeW) L 8
5.5 “cost” annotations L. L e 9
5.6 Multithreaded usage / locking 9
5.7 Testing and fuzzing preconditions and postconditions L. 10
5.8 SUMIMATY e e e 11
6 Comparison tables with attribute-based syntax 11

mailto:gasper.azman@gmail.com
mailto:calebs@edg.com
mailto:brok@spamcop.net

6.1 Referencing function arguments in postconditions 0oL 11

6.2 Introducing the return variable L Lo 12
6.3 preconditions and assertions that need copies L L Lo 12
6.4 postconditions that need destructuring [when lambda-captures get it] 13
6.5 SUMINATY o o ot e e e e e e e e e e 13
7 Mutation and Static Analyzers 13
7.1 Capture design Space e e 13
7.2 Slight difference between P2388 and this proposal L L. 14
8 C-compatibility 15
9 Considered and rejected ideas 15
9.1 Abbreviated lambdas 15
10 Not-yet-rejected ideas 16
10.1 Abbreviated lambdas with forced parentheses L o oL 16
10.2 Semicolon separators in the body (a-la requires blocks)o oL 16
11 Proposed Wording 17
12 Acknowledgements 17
13 References 17

1 Introduction

The attribute-based syntax for contracts is limiting and steps on the shared space between C and C++4. This
paper explores an alternative syntax that should offer an easier extension path.

This paper proposes almost the same semantics as [P2388R2].

The only significant change from [P2388R2] is the semantics of effect elision - this paper specifies it as all-or-
nothing, per correctness-annotation.

The main non-syntactic difference between the two papers is the manner of spelling future ex-
tensions.

Due to the way this paper models annotations, it may leave fewer things undefined compared to [P2388R2],
despite the fact that that it does not propose explicit closures yet.

Note: this paper is an exploration. The authors do not strongly object to the attributes-based syntax from the
P2388 series; but the syntax does seem to present certain challenges that this paper tries to address.

Note: WG14 has communicated that their vendors don’t have a blocking problem with the attribute-like syntax,
though they have reservations; in addition, WG21 members have expressed difficulties with teaching the : means
it’s not an attribute intricacies.

1.1 On Extensions and Viability

The authors believe that any MVP must clearly show plausible syntax for all known extensions. This
does not mean propose. It means show. Specifying precise semantics for the entire extension space is not in the
spirit of a minimum viable product, but viability implies that all desired features can at some point be supported.
This means there must be syntax, so syntax we show.

2 Changelog

2.1 ROtoR1

— general clarifications and better choice of words, fixed loads of typos.

— The grammar specification separated into preconditions, postconditions, and assertions, to enable more
precision in specification.

— the return-value parameter to a postcondition was made optional.

— The default capture case for member functions was changed to [&, this]. This fixes an oversight.

— We clarify that the closure was always supposed to be as-if mutable in the by-value capturing extensions.

— Greatly expanded examples, and clarified which ones are extensions and which ones are proposed here.

— Removed “lambda” from the paper and consistently use “closure”, as the mechanism for capturing values
at function entry relies on lambda closures and their syntax, but we don’t rely on the lambda body syntax.

— Split the “future extensions” sketch chapter into subclauses highlighting individual separable extensions.

— Highlight the different models of side-effect elision (see “An alternative model”), and what we give up by
using a looser one than proposed here.

— Changed the destructuring of the return value example into an actually interesting one.

— Changed the location of the attribute-specifier-seq,,, in the extension allowing attributes appertaining to
contract annotations.

— Added a section on testing and fuzzing contract specifications themselves.

— Clarified the relationship to abbreviated lambdas

— Added the “capture design space” section.

— Added section on considered and rejected ideas

— Clarified that contract checks are ODR-used even in nocheck mode.

3 Proposal

3.1 Example

We introduce three context-sensitive keywords: pre, post, and assert. pre and post are only keywords in the
top level context of a function declarator.

pre and post can appear in function declarations after the optional trailing requires clause.
Example:

auto plus(auto const x, auto const y) -> decltype(x + y)
pre { x > 0 }
pre { p1(x) && p2(x) } // compound check
// 7 is as-if autofss
post (r) {r==(x+y) }

{
assert { x > 0 }; // this is currently "valid" syntaz,
// but we should reclaim it.
auto cx = Xx;
return cx += y;
}

One may note that this is strikingly similar to the syntax proposed in [N1962], way back in 2006. Our thanks
to Andrzej Krzeminski for digging this up.

3.2 Proposed syntax

Let’s take a look at the generic syntax of a correctness-annotation (to use the term from [P2388R2]):

correctness-specifier:
precondition
postcondition
assertion

precondition:
pre lambda-introducer,,, correctness-specifier-body

postcondition:
post lambda-introducer,,, return-value-decl,,, correctness-specifier-body

assertion:
assert lambda-introducer,,, correctness-specifier-body

return-value-decl:

(identifier)

correctness-specifier-body:
{ conditional-expression }

For the MVP, the lambda-introducer is required to be omitted.

If the lambda-introducer is omitted, the correctness-specifier-body behaves as-if the lambda-introducer was [&]
for free functions and [&, this] for member functions.

In a postcondition, the return-value-decl, if present, introduces the name for the prvalue or the glvalue result
object of the function. This identifier is valid within the correctness-specifier-body. This is to support annotating
void-returning functions, as well as postconditions that don’t operate on the return value.

All closures behave as-if their associated lambda body was declared mutable. This makes no difference to [&],
but it does make a difference for by-value capture extensions.

3.2.1 MVP Restrictions

Naming a non-const value parameter in a postcondition is ill-formed for now. This can be lifted by allowing
copy-capture later, when we allow the lambda-introducer to appear. This is to both prevent referencing moved-
from objects, and to allow the calling code to reason about the properties of the result object, such as in
the example:

int min(int x, int y)
post (r) { r<=x&& r <=y }; // error, © and y are not const

int min(int const x, int const y)
post (r) {r<=x & r <=y }; // ok

int min(int x, int y)
post [x, y] (r) { r <=x && r <=y }; // OK (extension, explicit copy)

The closure definition works with this - the function arguments are captured by reference, which happens to be
reference-to-const, given that they are const, which gives the exact semantics of [P2388R2].

4 Semantics

We specify the future in a somewhat more general manner than strictly required for the MVP, to indicate the
inner workings of the future extensions.

4.1 Evaluation order

This section describes the order of evaluation if contract checking is enabled. 1f it’s disabled, there is no evaluation,
but the contract check bodies are still ODR~used.

4.1.1 Assertions

Any assertion is executed as if it was an immediately-invoked lambda expression.

4.1.2 pre and postconditions

We need to make preceding preconditions protect both the lambda-introducer and the correctness-specifier-body
of any subsequent correctness-specifier.

Therefore, preconditions are first execute the correctness-specifier-introducer (if any), and then immediately their
correctness-specifier-body.

postconditions are evaluated in two parts; their correctness-specifier-introducer is evaluated in-sequence along
with preconditions; and their bodies are, evaluated after the function exits.

If a precondition B follows a precondition A in a function’s declaration, then no part of B shall be executed
before A has been proven;

If a postcondition P follows a precondition A in a function’s declaration, then not even P’s correctness-specifier-
introducer shall be executed before A is proven. This is to protect initialization from out-of-contract behavior.

No postcondition closure is executed before all preconditions are proven.
This means that the following execution orders are all OK:

— A, B P

— A, A, B, B P

— A, B, A B P

— (prove A at compile time), B, P

— (inherit proof of A from caller precondition), B, P

Note: proven above refers to either evaluated to true, or otherwise pseudo-evaluated by a static analyzer or
code folding so that it is known that, should it be evaluated, it would evaluate to true.

4.2 postcondition reference-capture limitations in the MVP

Capturing function parameters by mutable-reference in postconditions may cause difficulties for static analysis,
as some expressions containing these will require interprocedural/inter-TU analysis, which may be beyond the
capabilities of a compiler. Dedicated static analysis tools should still be able to handle these, however. [P2388R2]
forbids mutating function arguments.

Example (courtesy of Tomasz Kaminski):

int pickRandom(int beg, int end)
post [&] (r) {
ret >= beg &&
ret <= end

Ipg
Given that we don’t know the function body, and we could have changed beg and end, this conveys no information
for static analysis (you’d have to mark beg and end const).
We therefore have a choice of how to start out with this proposal:

— forbid capturing parameters by mutable reference

— forbid capturing parameters by reference altogether
— do nothing and just expect degraded static analysis performance

The stated goal of feature-bijection with [P2388R2] for this paper says we should forbid reference-capture for
parameters in postconditions.

4.3 Side-effect elision

This MVP defines that for the purposes of optimization, the compiler is allowed to either execute, or not,
entire correctness specifiers, together with their closures. Subexpression elimination is only permitted under the
(stricter) as-if rule.

This is because, while it should not be lippincott-discernible to the program whether a specifier was actually
executed, this might only actually be true if the specifier gets to clean up after itself. In other words, the sum
of the parts is assumed “pure”, the parts are not.

Note: an operation is lippincott-indiscernible if and only if program correctness (as defined by the business
purpose of the program) is not affected by the operation. Logging is one example of a class of operations which
are usually considered lippincott-indiscernible, but again, the final arbiter is the business purpose of the program.

4.3.1 An alternative model (from P2388)

P2388 has a looser model, which the authors of this paper do not oppose. In that model, the compiler is allowed
to elide any and all side-effects indiscriminately, from any subexpression.

That model effectively disallows lock/unlock pairs inside the body of a check, but is unclear about lock/unlock
pairs inside closure initialization, which P2388 does not speak of.

5 Future Extensions (not a proposal)

As noted in the introduction, the reason to prefer this paper to an attribute-based syntax is the way evolution
is handled.

This section shows the various ways future extensions could look like under this proposal. These are not
hypothetical, and will be proposed immediately after this MVP is accepted.

5.1 Explicit Captures

The main task of this proposal is enabling explicit parameter captures in the future. The main consumer of that
are postconditions.

auto plus(auto x, auto y) -> decltype(x + y)
post [x, y]l (x) {
// capture z, y by value, *explicitly*, at point of call
r==(x+y)

return x += y;

}

Modeling using lambda-captures allows us to explain why postconditions can’t usefully refer to rvalue-reference
arguments (since they might be moved-from), and all the other possible implementation-limitations as well.

5.1.1 Capturing view contents by value

Explicit captures allow capturing views by value for later checking. No “magic” oldof implementation can do
this - but closures do this easily.
template <typename T, size_t n>
void sort_contiguous(std::span<T, n> elems)
post [on_entry = std::vector(elems), elems] { is_permutation(on_entry, elems) }

post [elems] { std::is_sorted(elems.begin(), elems.end()) }
{

std: :sort(elems.begin(), elems.end());

}

It should be noted that an attribute-based syntax could allow this as follows (from P2388):

template <typename T, size_t n>

void sort_contiguous(std::span<T, n> elems)
[[post 77, on_entry = std::vector(elems), elems=elems: is_permutation(on_entry, elems)]]
[[post 77, elems=elems: std::is_sorted(elems.begin(), elems.end())]]

{
std: :sort(elems.begin(), elems.end());

}

the 77 is there because the return value specifier makes little sense for a void-returning function.

5.1.2 Checking whether a call didn’t exceed its time budget

A yet-unserved use-case is checking whether a realtime function actually runs in the time promised; this syntax
makes it easy:

int runs_in_under_10us()
post [start=gettime()] { gettime() - start <= 10us };

The authors thank Lisa Lippincott for this wonderful idea during a conversation in Aspen a few years ago.

Note: Writing a contract like this in a hosted environment might not be ideal, but in a realtime embedded chip,
it might make perfect sense in the absence of preemption.

5.1.3 Checking a call didn’t leak memory

With a tracking allocator, we can check we didn’t leak any memory:

int does_not_leak(allocator auto alloc)
post [usage=alloc.usage(), &alloc] { usage == alloc.usage() }

{
// do stuff that should not leak
return O;

}

5.1.4 Grabbing only the interesting part of an input

We can optimize contracts by “remembering” just the required properties of an input:

void append(auto& container, auto&& item)
post [s=container.size()] { container.size() == s+1 }

{

container.push_back(std: :forward<decltype (item)>(item));
}

5.1.5 Mutation semantics checking

Sometimes we want to check that two operations are equivalent for the given inputs, because the algorithm is
taking advantage of that.
auto cat(auto x, auto y)
// check += has the same semantics as (copy, +)
pre [cx=x] { (cxt+=y) == x+y }
{

return std::move(x += y);

}

The above example might seem contrived, but checking the semantics of an operation on a template type seems
perfectly reasonble to the authors.

5.2 Destructuring the return value

There have been rumours of a proposal for destructuring in function arguments. When the language gets that,
we can just inherit that directly. A teaser that we could just adopt directly:

auto returns_triple()
post ([a, b, c]) { c >0}

{
struct __private { int __a; int __b; int __c; };
return __private{l, 2, 3};

5.3 Attributes appertaining to contract annotations

The syntax allows for attributes on annotations. We could use those for vendor-defined control of execution.

int f(int * n)
pre {n != nullptr}
pre [[acme::audit]] {*n >= 0};

An alternative (although the authors are not completely sure this does not conflict with the attribute-specifier-seq
that appertains to the function type):

int f(int * n)
[[acme::audit]] pre {*n >= 0};

This one courtesy of Andrzej Krzeminski.

5.4 “trust” annotations (new)

Comparison from [P2388R2]/8:

Extension of this proposal [P2388R2]

int f(int* p) // after ; at end
pre new {xp > 0} int f(int* p)
H [[pre: *p > 0; new]]
int f(int* p) // after ; at end
pre new('"call @me") {*p > 0} int f(int* p)
; [[pre: *p > 0; new("call @me")]]

5.5 “cost” annotations

In the same way, we can add convenient cost annotations:

Extension of this proposal [P2388R2]
void sort(auto first, auto last) void sort(auto first, auto last)
post audit("really expensive") [[post r: r > 0: audit("really expensive")]];

[s=vector(first, last)] {
is_permutation({first, last}, s) }

void sort(auto first, auto last)
[[post audit("really expensive") r: r > 0:]1];

void sort(auto first, auto last)
post [[audit("really expensive")]]
[s=vector(first, last)] {
is_permutation({first, last}, s) }

5.6 Multithreaded usage / locking

Issue courtesy of Aaron Ballman:

A potential issue with P2388R2 that is carried over into D2461R0 is with side effect operations. Given that
they re unspecified, does this mean there’s no safe way to write a portable contract which accesses an object shared
between threads? e.q., multithreaded program where a function is passed a mutex and a pointer to a shared object;
can the contract lock the mutex, access the pointee, then unlock the mutex?

With closure-based semantics, we can avoid this:

void frobnicate_concurrently(auto&& x)
// closures-are-a-future-extension.disclaimer
pre [g=std::lock_guard(x)] { is_uniquely_owned(x); I};

In this MVP, we allow the compiler to assume there are no side-effects to an expression for the purposes of
optimisation, but they can either all be omitted, or none may, for a given statement, including the closure.

We therefore have a plausible RAII-based metaphor that people already understand.

5.7 Testing and fuzzing preconditions and postconditions

It’s important to be able to test the actual precondition and postcondition specification independent of the
function they are guarding.

This is due to

— enabling contracts should ideally not introduce additional bugs.

— contracts necessarily narrow from the wide contract specification; therefore the contract specification of
the check is wider than the contract of the function.

— Contracts need to “expect the unexpected”. This makes them excellent candidates for fuzzing.

We could introduce a pair of reflection traits for functions:

// unchecked precondition: y != 0
int f(int x, int y)

pre {x/ y>01}

pre [x] {x%=31!=01%

post (r) {r==x/7y}

>

// assume untit-test framework with CHECK macro, like catch2

// all preconditions

CHECK (false == std::preconditions<f>(/*z*/3, /*y*/2)); // z}=3 == 0
// by-indezx

CHECK(true == std::preconditions<f>[0](3, 2)); // 3/ 2 >=0
CHECK(false == std::preconditions<f>[1](3, 2)); // 3 / 2 ==

// all postconditions

CHECK (true == std::postconditions<f>(/*z*/3, /*y*/2) (/*r*/1));
CHECK (true == std::postconditions<f>[0] (3, 2)(1));

CHECK (false == std::postconditions<f>[0](4, 2)(1); // 1 != 4 / 2

// fuzzer could evaluate
std: :postconditions<f>[0] (3, 0)(1); // UB, ubsan files bugreport

postconditions have to be fuzzable independently of their functions. If the algorithm is wrong (the very condition
the postcondition is there to detect), the postcondition should absolutely not segfault, but instead report false.
Traits such as above absolutely must be independently executable.

We could also introduce names:

int g(int x)
pre("nonnegativity") { x >= 0 }
post("nonnegativity") (r) { r >= 0 }

)

std: :preconditions<g>["nonnegativity"](1); // true
std: :postconditions<g>["nonnegativity"](1); // true

We could propose the same for attribute-based syntax, but the closure + argument model has clear
semantics, and with the other alternative we’d have to additionally specify how it works. Support for names
takes some syntactic space, which is already scarce in the attribute-based syntax.

10

5.8 Summary

— We get improvements in lambda-capture grammar “for free”. Once lambda-introducers get destructuring

support, so do contracts.

— We don’t have to re-specify anything regarding pack expansions, etc; lambda-introducers get us that, too.

— We can check time/environment-based contracts (see example below).
— It’s consistent with the rest of the language, instead of inventing a yet-another minilanguage.

6 Comparison tables with attribute-based syntax

This section explores future extensions as envisaged by [P2388R2] and previous papers. The comparison is also

is explored in [P2487R0].

6.1 Referencing function arguments in postconditions

There are issues with arguments that change value during function evaluation and postconditions. They are
described in [P2388R2]/6.4 and 8.1. [P2388R2] side-steps this issue by attempting to prevent referencing modified

arguments, requiring that referenced arguments should be const-qualified (in definitions).

The ideas using the [P2388R2] syntax look like this (all from [P2388R2]/8.1):

// Exztension of this proposal
int f(int& i, array<int, 8>& arr)
post [i] (r) { r >=1i }
post [old_7=arr([7]] (xr)
{r>=01d 7 }

// p2388r2 3)

int f(int& i, array<int, 8>& arr)
[[post r: r >= oldof(i)]]
[[post r: r >= oldof(arr[7])]1];

// p2388r2 1)

int f(int& i, array<int, 8>& arr)
[[post r, 0old_i = i: r >= o0ld_i]]
[[post r, 01d_7 = arr[7]: r >= old_71];

// p2388r2 2)

int f(int& i, array<int, 8>& arr)
[[post r: r >= oldof(i)]]
[[post r: r >= oldof(arr[7])]1];

11

Table 4: Another oldof example:

Extension of this proposal P2388R2
template<class ForwardIt, class T> template<class ForwardIt, class T>
ForwardIt find(ForwardIt first, ForwardIt find(ForwardIt first,

ForwardIt last, ForwardIt last,
const T& value) const T& value)
post [first] (r) [[post r: distance(oldof(first), r) >= Oul]
{ distance(first, r) >= Ou }
post [&last] (r) [[post r: distance(r, last) >= Oull
{ distance(r, last) >= Ou }
{ {
for (; first !'= last; ++first) { for (; first !'= last; ++first) {
if (xfirst == value) { if (xfirst == value) {
return first; return first;
+ }
¥ }
return last; return last;
} }

6.2 Introducing the return variable

Extension of this proposal P2388R2
int f(int* i, array<int, 8>& arr) int f(int& i, array<int, 8>& arr)
post [&i] (r) { r >= 1 }; [[post r: r >= il];

// alternative
int f(int& i, array<int, 8>& arr)
[[post(xr): r >= 0]]

6.3 preconditions and assertions that need copies

Table 6: [P2388R2] has no answer for preconditions that need to
mutate a copy, which is a problem:

Extension of this proposal [P2388R2] Does not work
int f(forward_iterator auto first, int f(forward_iterator auto first,
forward_iterator auto last) forward_iterator auto last)
pre { first != last } [[pre: first != last]] // ok
pre [first] { std::advance(first, 1), [[pre: std::advance(first, 1), // error
first != last }; first != lastll];

12

6.4 postconditions that need destructuring [when lambda-captures get it]

Table 7: Functions could conceivably have destructure-only APIs:

Extension of this proposal [P2388R2]
auto returns_triple() auto returns_triple()
post ([x, y, z]) { x>y & y >z} [[post [x, y, z]l: x>y & y >z 1];

This syntax kind-of works, but is not proposed, and there is nowhere to specify the binding type in either of the
possibilities, so we must choose reference.

The non-attribute based syntax has one advantage here, which is a clear place for the return value. If we put an
additional closure initialization somewhere before the colon, we end up in visual ambiguity of what [] means.

6.5 Summary

— The closure-based syntax makes it obvious when values are captured, and even hints at an implementation
- just put the closures on the stack before the function arguments.

— It doesn’t invent another language for capturing values, which means the syntax will grow together with
lambda captures.

— It makes it obvious how to do stateful postconditions that check before/after: the closure runs with
pre, the body runs after return. This is far from obvious with the [P2388R2] syntax.

7 Mutation and Static Analyzers

Static analyzers should be able to handle limited mutation in order to analyze C++, and many contracts that
describe function behaviour will require some mutation of a copy. Allowing copies to be made is therefore
immensely useful in a contract facility.

We have assurances from at least some analyzer vendors they see no issue with allowing copies and mutation in
contract annotations in the future.

7.1 Capture design space

There is design space in what kind of captures we allow of parameters of different kinds.

The case space spans between condition (pre, post) by parameter kind (value, lvalue, rvalue) by qualifier
(non-const, const) by kind-of-capture (reference, value), which gives us 2 % 3 %2 % 2 = 24 cases.
The example is

auto f(param x)
pre cap { x }
post cap { x }

param cap cond MVP Ext

1 T [&] pre y y

13

param cap cond MVP Ext

2 T [&] post 0 M
3 T [=] pre y
4 T [=] post y
5 T const [&] pre y y
6 T const [&] post y y
7 T const =] pre y
8 T const =] post y
9 T& [&] pre y y
10 T & [&] post y y
11 T & =] pre y
12 T & =] post y
13 T const & [&] pre y y
14 T const & [&] post y y
15 T const & =] pre y
16 T const & [=] post y
17 T && [&] pre y y
18 T && [&] post y y
19 T & [=] pre y
20 T && [=] post y
21 T const && [&] pre y y
22 T const && [&] post y y
23 T const && = pre y
24 T const && [= post y

— MYVP: this paper.

— Ext: this paper plus minimal “allow captures” extension.

— (!): Capturing value arguments by reference in postconditions gives no information to the caller, therefore
it’s not a well-behaved contract and we should diagnose (2).

— All the [=]-captures are missing for the MVP due to the lack of explicit captures, which means there is
no way to spell that.

The reader is encouraged to specify their own “acceptability mask” if they want to limit this further, and
propose it in discussion. However, the authors don’t really see how any further restriction from Ext couldn’t be
circumvented by the user, and (2) is protection from Murphy, not Machiavelli.

7.2 Slight difference between P2388 and this proposal

In P2388, the declarations and definitions don’t have to match in the constness of the value parameters to
generate the same contract, but this paper requires it.

Extension of this proposal [P2388R2]
int min(int x, int y) int min(int x, int y)
post (r) {r<=x&& r <=y }; // not ok [[post r: r <=x & r <=y 1]1; // ok
int min(int x, int y) int min(int x, int y)

post (r) {r<=x&& r <=y } {} // not ok [[post r: r <= x && r <=y 1] {} // not ok

14

8 C-compatibility

C and C++ implementations often share a set of system headers, and there will naturally be a desire to add
contracts to entities in those headers.

One of the motivating reasons behind the attribute-like syntax in [P2388R2] is that a C compiler can be reason-
ably updated to ignore the contracts unless/until C gets Contracts as well. It’s worth noting that the proposed
syntax in [P2388R2] is still ill-formed for attributes, and a properly conforming C compiler that has not been
updated to handle (ignore) the contracts would still issue diagnostics.

There is some debate as to whether it’d be a good thing if a C compiler were to still accept code that has
Contracts in it when the C compiler is unaware of Contracts, and it has been noted that some implementations
may simply consume all tokens in an unrecognized attribute until reaching the closing 1], regardless of whether
the internal structure of the attribute is properly conforming. Upon survey, no implementations behave this
way.

The syntax proposed in this paper, however, cannot be ignored by a C compiler that is unaware of Contracts -
it is unarguably ill-formed C code.

This syntax lends itself easily to conditional compilation, especially with a feature-test macro:

int my_func(int x)

#if __cpp_contracts /* Perhaps just __contracts to allow C to easily opt-in? */
pre { x > 0; }

#endif /* __cpp_contracts */

{
VE S V4

}

This is not a motivating difference from [P2388R2] - conditional compilation can just as easily be used to guard
Contracts there; the main difference in C-compatibility between these two proposals is that [P2388R2| has a
greater potential of a Contracts-unaware C compiler ignoring any contracts without a meaningful diagnostic or
programmer opt-in.

9 Considered and rejected ideas

This section is a log of things the authors considered and rejected, and for which reason, so that we need not
revisit prior discussions.

9.1 Abbreviated lambdas

The postcondition syntax naturally looks like a shorthand lambda:

post [closure 1 (tdentifier) { conditional-expression }

This topic was explored in [P0573R2] by Barry Revzin, who proposed this syntax as point 2.3. (alternative
syntax). Notably, this was not the main proposed syntax, which was

post [closure 1 (<dentifier) => conditional-expression

In function declarations, this syntax ends up looking like

int f(auto x) pre => x > 0 pre => 42 , x == 0 post [x](r) => x *x r == 42 {
return 42 / x ;

}

It’s parsable, but it doesn’t scan well to the human eye. Contrast with the proposed

15

int f(auto x) pre { x > 0 } pre { 42 % x == 0 } post [x](xr) { x *x r == 42 } {
return 42 / x ;

}

It has the same number of characters, but the visual terminator that } provides makes everything a lot more
readable.

Reasons to reject:

— We do not want to wait for EWG to express a stance on abbreviated lambdas

— We want the closure to be optional, which is a departure

— The proposal does not consider making the closure mutable by default, which we want. The author said
this was not considered at all and may be revisited in a future revision, but that does not exist at present.

10 Not-yet-rejected ideas

10.1 Abbreviated lambdas with forced parentheses

The section on abbreviated lambdas notwithstanding, putting parentheses around the expression after the =>
restores readability, and in addition screams this is an expression.

int f(auto x) pre => (x > 0) pre => (42 % x == 0) post [x](r) => (x * r == 42) {

return 42 / x ;

}

This might be a plausible future direction if the group likes parentheses better than braces; it also allows a future
extension by allowing an init-statment echoing an if-condition with an initializer. Conversely, allowing only one
semicolon inside a braced-expression will raise questions about why there may only be one.

10.2 Semicolon separators in the body (a-la requires blocks)

The authors also considered separating conditions with semicolons, similarly to requires blocks.

int f(auto x)
requires {
{x % 2} -> integral;
{as_signed(x)} -> convertible_to<int>;

}

pre {
x % 2 == 0; // short-circuits
as_signed(x) == x;

}

>

While it makes sense with requires blocks, the behavior of ; in pre- and postconditions is identical to the
&&-operator, because we want short-circuiting. In addition, the lack of a return keyword in the body makes the
individual conditions seem disembodied.

Requiring chaining using && solves this comprehension issue — it behaves the way it looks, and the lack of a
semicolon in the body hints at the fact that the thing between {3} is an expression and not a statement.

In other words, we say what we mean, and we disallow the syntax that doesn’t mean what it looks like.

16

11 Proposed Wording

TODO. Writing it will be an exercise, and the authors want to see if there is any enthusiasm for this at all before

spending the time.

12 Acknowledgements

The entire WG21. This is a huge effort, and since contracts were pulled from C++20, the group has been
showing an extraordinary level of determination to get to consensus.

Andrzej Krzemieriski, who has been a steadfast integrator of opinion in P2338 - the MVP paper sequence.
T’ve helped a bit, but he’s been extraordinary, and also dug up more prior art and contributed examples.
I thrice presented him co-authorship, which he did thrice refuse.

Tom Honermann, who saw the interplay with function try-blocks.

Phil Nash, for quite a few insightful comments, and the function-parameter syntax for return values
Peter Brett, for encouraging me to drop the complex sequence of ;-separated conditions and stick to a
single condition (subconditions separated by &&).

The BSI for reviewing this paper early.

Lisa Lippincott, for her study of stateful function contracts and all the hours she’s spent explaining the
point and their shape to Gasper.

Tomasz Kaminski, for also pointing out the function parameter syntax for return values, and reminding
the authors that reference-captures for non-const parameters render postconditions less useful for static
analysis in the absence of the function body.

Ville Voutilainen, for always connecting all of the weird bits of impact everything has on everything else.

— Bengt Gustaffson, for an amazingly long and thorough review of the RO.

13 References

[N1962] L. Crowl, T. Ottosen. 2006-02-25. Proposal to add Contract Programming to C++ (revision 4).
https://wg21.link/n1962

[P0573R2] Barry Revzin, Tomasz Kaminski. 2017-10-08. Abbreviated Lambdas for Fun and Profit.
https://wg21.link /p0573r2

[P2388R2] Andrzej Krzemienski, Gasper Azman. 2021-09-10. Minimum Contract Support: either Ignore or

Check and_abort.
https://wg21.link /p2388r2

[P2487R0] Andrzej Krzemienski. Attribute-like syntax for contract annotations.
https:/ /isocpp.org/files/papers/P2487R0.html

17

https://wg21.link/n1962
https://wg21.link/p0573r2
https://wg21.link/p2388r2
https://isocpp.org/files/papers/P2487R0.html

	Introduction
	On Extensions and Viability

	Changelog
	R0 to R1

	Proposal
	Example
	Proposed syntax
	MVP Restrictions

	Semantics
	Evaluation order
	Assertions
	pre and postconditions

	postcondition reference-capture limitations in the MVP
	Side-effect elision
	An alternative model (from P2388)

	Future Extensions (not a proposal)
	Explicit Captures
	Capturing view contents by value
	Checking whether a call didn't exceed its time budget
	Checking a call didn't leak memory
	Grabbing only the interesting part of an input
	Mutation semantics checking

	Destructuring the return value
	Attributes appertaining to contract annotations
	``trust'' annotations (new)
	``cost'' annotations
	Multithreaded usage / locking
	Testing and fuzzing preconditions and postconditions
	Summary

	Comparison tables with attribute-based syntax
	Referencing function arguments in postconditions
	Introducing the return variable
	preconditions and assertions that need copies
	postconditions that need destructuring [when lambda-captures get it]
	Summary

	Mutation and Static Analyzers
	Capture design space
	Slight difference between P2388 and this proposal

	C-compatibility
	Considered and rejected ideas
	Abbreviated lambdas

	Not-yet-rejected ideas
	Abbreviated lambdas with forced parentheses
	Semicolon separators in the body (a-la requires blocks)

	Proposed Wording
	Acknowledgements
	References

