
Document number: P2291R0
Project: Programming Language C++
Audience: LEWGI, LEWG, LWG

Daniil Goncharov neargye@gmail.com
Karaev Alexander akaraevz@mail.ru

Date: 2021-01-26

Add Constexpr Modifiers to Functions to_chars and
from_chars for Integral Types in <charconv> Header

I. Introduction and Motivation
There is currently no standard way to make conversion between numbers and strings at compile time.

std::to_chars and std::from_chars are fundamental blocks for parsing and formatting being locale-
independent and non-throwing without memory allocation, so they look like natural candidates for constexpr
string conversions. The paper proposes to make std::to_chars and std::from_chars functions for
integral types usable in constexpr context.

Consider the simple example:

constexpr std::optional<int> to_int(std::string_view s) {
 int value;

 if (auto [p, err] = std::from_chars(s.begin(), s.end(), value); err ==
std::errc{}) {
 return value;
 } else {
 return std::nullopt;
 }
}

static_assert(to_int("42") == 42);
static_assert(to_int("foo") == std::nullopt);

⚠ We do not propose constexpr for floating-point overloads, see design choices below.

constexpr std::format and reflection

In C++20 constexpr std::string was adopted, so we can already build strings at compile-time:

static_assert(std::string("Hello, ") + "world" + "!" == "Hello, world");

mailto:neargye@gmail.com
mailto:akaraevz@mail.ru

In addition, std::format was also adopted in C++20 and now its original author actively proposes various
improvements like P2216 for compile-time format string checking. The current proposal is another step
towards fully constexpr std::format which implies not only format string checking but also compile-time
formatting (the only non-constexpr dependency of std::format is <charconv>):

static_assert(std::format("Hello, C++{}!", 23) == "Hello, C++23!");

This can be very useful in context of reflection, i.e. to generate unique member names:

// consteval function
for (std::size_t i = 0; i < sizeof...(Ts); i++) {
 std::string member_name = std::format("member_{}", i);
}

No standard way to parse integer from string at compile-time

There are too many ways to convert string-like object to number - atol, sscanf, stoi, strto*l, istream
and the best C++17 alternative - from_chars. However, none of them are constexpr. This leads to
numerous hand-made constexpr int detail::parse_int(const char* str) or template <char...>
constexpr int operator"" _foo() in various libraries:

boost::multiprecision and similar examples with constexpr user-defined literals for my-big-
integer-type construction at compile-time.
boost::metaparse — yet another template <> struct digit_to_int_c<'0'> :
boost::mpl::int_<0> {};
lexy — parser combinator library with manually written constexpr std::from_chars equivalent for
integers (any radix, overflow checks).
ctre (compile time regular expressions) — number parsing is an important part of regex pattern
processing (ctre::pcre_actions::hexdec).

II. Design Decisions
The discussion is based on the implementation of to_chars and from_chars from Microsoft/STL, because it
has full support of <charconv>.

During testing, the following changes were made to the original algorithm to make the implementation
possible:

Add constexpr modifiers to all functions
Replace internal assert-like macro with simple assert (_Adl_verify_range, _STL_ASSERT,
_STL_INTERNAL_CHECK)
Replace static constexpr variables inside function scope with constexpr
Replace std::memcpy, std::memmove, std::memset with constexpr equivalents:
third_party::trivial_copy,third_party::trivial_move, third_party::trivial_fill. To
keep performance in a real implementation, one should use std::is_constant_evaluated

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2216r2.html
https://github.com/boostorg/multiprecision/blob/develop/include/boost/multiprecision/cpp_int/literals.hpp
https://github.com/boostorg/metaparse/blob/master/include/boost/metaparse/v1/util/digit_to_int_c.hpp
https://github.com/foonathan/lexy/blob/main/include/lexy/dsl/integer.hpp
https://github.com/hanickadot/compile-time-regular-expressions/blob/main/include/ctre/actions/hexdec.inc.hpp
https://github.com/microsoft/STL

Testing

All the corresponding tests were constexprified and checked at compile-time and run-time. The modified
version passes full set tests from Microsoft/STL test.

Floating-point

std::from_chars/std::to_chars are probably the most difficult to implement parts of a standard library.
As of January 2021, only one of the three major implementations has full support of P0067R5:

Vendor <charconv> support (according to cppreference.com)

libstdc++ ❌ no floating-point std::to_chars

libc++ ❌ no floating-point std::from_chars/std::to_chars

MS STL ✔ full support

So at least for now we don't propose constexpr for floating-point overloads.

III. Conclusions
to_chars and from_chars are basic building blocks for string conversions, so marking them constexpr
provides a standard way for compile-time parsing and formatting.

IV. Proposed Changes relative to N4861
All the additions to the Standard are marked with green.

A. Modifications to "20.19.1 Header <charconv> synopsis" [charconv.syn]

constexpr to_chars_result to_chars(char* first, char* last, see below value, int base = 10);

to_chars_result to_chars(char* first, char* last, bool value, int base = 10) = delete;

to_chars_result to_chars(char* first, char* last, float value);

to_chars_result to_chars(char* first, char* last, double value);

to_chars_result to_chars(char* first, char* last, long double value);

to_chars_result to_chars(char* first, char* last, float value, chars_format fmt);

to_chars_result to_chars(char* first, char* last, double value, chars_format fmt);

to_chars_result to_chars(char* first, char* last, long double value, chars_format fmt);

to_chars_result to_chars(char* first, char* last, float value, chars_format fmt, int precision);

to_chars_result to_chars(char* first, char* last, double value, chars_format fmt, int precision);

to_chars_result to_chars(char* first, char* last, long double value, chars_format fmt, int precision);

constexpr from_chars_result from_chars(const char* first, const char* last, see below & value, int base = 10);

https://github.com/Neargye/charconv-constexpr-proposal/tree/integral/test
https://github.com/microsoft/STL/tree/master/tests/std/tests/P0067R5_charconv
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0067r5.html

from_chars_result from_chars(const char* first, const char* last, float& value, chars_format fmt =
chars_format::general);

from_chars_result from_chars(const char* first, const char* last, double& value, chars_format fmt =
chars_format::general);

from_chars_result from_chars(const char* first, const char* last, long double& value, chars_format fmt =
chars_format::general);

D. Modify to "17.3.2 Header <version> synopsis" [version.syn]

#define __cpp_lib_to_chars DATE OF ADOPTION

V. Revision History
Revision 0:

Initial proposal

VI. Acknowledgements
Thanks to Antony Polukhin for reviewing the paper and providing valuable feedback.

VII. References
[N4861] Working Draft, Standard for Programming Language C++. Available online at
https://github.com/cplusplus/draft/releases/download/n4861/n4861.pdf
Microsoft's C++ Standard Library https://github.com/microsoft/STL, commit
2b4cf99c044176637497518294281046439a1bcc
Proof of concept for to_chars and from_chars functions for integral types
https://github.com/Neargye/charconv-constexpr-proposal/tree/integral
[P0067R5] Elementary string conversions http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2016/p0067r5.html
[P2216R2] std::format improvements http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2021/p2216r2.html

https://github.com/cplusplus/draft/releases/download/n4861/n4861.pdf
https://github.com/microsoft/STL
https://github.com/Neargye/charconv-constexpr-proposal/tree/integral
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0067r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2216r2.html

