Document number: P2291R0
Project: Programming Language C++
Audience: LEWGI, LEWG, LWG

Daniil Goncharov neargye@gmail.com
Karaev Alexander akaraevz@mail.ru

Date: 2021-01-26

Add Constexpr Modifiers to Functions to_chars and
from_chars for Integral Types in <charconv> Header

l. Introduction and Motivation
There is currently no standard way to make conversion between numbers and strings at compile time.

and are fundamental blocks for parsing and formatting being locale-
independent and non-throwing without memory allocation, so they look like natural candidates for constexpr
string conversions. The paper proposes to make and functions for
integral types usable in constexpr context.

Consider the simple example:

constexpr ::optional<int> to_int {
int value;
if (auto [p, err] = ::from_chars(s.begin(), s.end(), value); err ==
iterrc{}) {
return value;
} else {
return ::nullopt;
}
}
static_assert(to_int("42") ==)
static_assert(to_int("foo") == ::nullopt);
/\ We do not propose for floating-point overloads, see design choices below.

and reflection

In C++20 was adopted, so we can already build strings at compile-time:

static_assert(M ("Hello, ") + "world" + "!" == "Hello, world");

mailto:neargye@gmail.com
mailto:akaraevz@mail.ru

In addition, was also adopted in C++20 and now its original author actively proposes various
improvements like P2216 for compile-time format string checking. The current proposal is another step

towards fully which implies not only format string checking but also compile-time
formatting (the only non- dependency of is):
static_assert(::format("Hello, C++{}!",) == "Hello, C++23!");

This can be very useful in context of reflection, i.e. to generate unique member names:

for (t:size t i = 0; i < sizeof...(Ts); i++) {
- member name = ::format("member {}", i);

No standard way to parse integer from string at compile-time

There are too many ways to convert string-like object to number -) .) '
and the best C++17 alternative - . However, none of them are . This leads to
numerous hand-made or

in various libraries:

. and similar examples with user-defined literals for my-big-
integer-type construction at compile-time.

. — yet another

. — parser combinator library with manually written equivalent for
integers (any radix, overflow checks).

. (compile time regular expressions) — number parsing is an important part of regex pattern
processing ().

. Design Decisions

The discussion is based on the implementation of and from Microsoft/STL, because it

has full support of

During testing, the following changes were made to the original algorithm to make the implementation

possible:

* Add constexpr modifiers to all functions
® Replace internal assert-like macro with simple assert (, ,
)
* Replace variables inside function scope with
* Replace , , with constexpr equivalents:
.To

7 1

keep performance in a real implementation, one should use

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2216r2.html
https://github.com/boostorg/multiprecision/blob/develop/include/boost/multiprecision/cpp_int/literals.hpp
https://github.com/boostorg/metaparse/blob/master/include/boost/metaparse/v1/util/digit_to_int_c.hpp
https://github.com/foonathan/lexy/blob/main/include/lexy/dsl/integer.hpp
https://github.com/hanickadot/compile-time-regular-expressions/blob/main/include/ctre/actions/hexdec.inc.hpp
https://github.com/microsoft/STL

Testing

All the corresponding tests were constexprified and checked at compile-time and run-time. The modified
version passes full set tests from Microsoft/STL test.

Floating-point

/ are probably the most difficult to implement parts of a standard library.
As of January 2021, only one of the three major implementations has full support of PO067R5:

support (according to cppreference.com)

X no floating-point

X no floating-point /

« full support

So at least for now we don't propose for floating-point overloads.

I1l. Conclusions

and are basic building blocks for string conversions, so marking them
provides a standard way for compile-time parsing and formatting.

IV. Proposed Changes relative to N4861

All the additions to the Standard are marked with green.

A. Modifications to "20.19.1 Header <charconv> synopsis" [charconv.syn]
constexpr to_chars_result to_chars(char* first, char* last, see below value, int base = 10);
to_chars_result to_chars(char* first, char* last, bool value, int base = 10) = delete;
to_chars_result to_chars(char* first, char* last, float value);

to_chars_result to_chars(char* first, char* last, double value);

to_chars_result to_chars(char* first, char* last, long double value);

to_chars_result to_chars(char* first, char* last, float value, chars_format fmt);

to_chars_result to_chars(char* first, char* last, double value, chars_format fmt);
to_chars_result to_chars(char* first, char* last, long double value, chars_format fmt);
to_chars_result to_chars(char* first, char* last, float value, chars_format fmt, int precision);
to_chars_result to_chars(char* first, char* last, double value, chars_format fmt, int precision);
to_chars_result to_chars(char* first, char* last, long double value, chars_format fmt, int precision);

constexpr from_chars_result from_chars(const char* first, const char* last, see below & value, int base = 10);

https://github.com/Neargye/charconv-constexpr-proposal/tree/integral/test
https://github.com/microsoft/STL/tree/master/tests/std/tests/P0067R5_charconv
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0067r5.html

from_chars_result from_chars(const char* first, const char* last, float& value, chars_format fmt =
chars_format:general);

from_chars_result from_chars(const char* first, const char* last, double& value, chars_format fmt =
chars_format::general);

from_chars_result from_chars(const char* first, const char* last, long double& value, chars_format fmt =
chars_format::general);

D. Modify to "17.3.2 Header <version> synopsis" [version.syn]

#define __cpp_lib_to_chars DATE OF ADOPTION

V. Revision History
Revision 0:

¢ Initial proposal

VI. Acknowledgements

Thanks to Antony Polukhin for reviewing the paper and providing valuable feedback.

VII. References

* [N4861] Working Draft, Standard for Programming Language C++. Available online at
https://github.com/cplusplus/draft/releases/download/n4861/n4861.pdf

* Microsoft's C++ Standard Library https://github.com/microsoft/STL, commit
2b4cf99c044176637497518294281046439a1bcc

® Proof of concept for and functions for integral types
https://github.com/Neargye/charconv-constexpr-proposal/tree/integral

* [PO067R5] Elementary string conversions http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2016/p0067r5.html

e [P2216R2] improvements http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2021/p2216r2.html

https://github.com/cplusplus/draft/releases/download/n4861/n4861.pdf
https://github.com/microsoft/STL
https://github.com/Neargye/charconv-constexpr-proposal/tree/integral
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0067r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2216r2.html

