
Document number: P1122R3
Date: 20210124
Project: Programming Language C++, WG21, LEWG & LWG
Authors: Paul McKenney, Michael Wong, Maged M. Michael, Geoffrey Romer, Andrew Hunter,
Arthur O'Dwyer, Daisy Hollman, JF Bastien, Hans Boehm, David Goldblatt, Frank Birbacher,
Erik Rigtorp, Tomasz Kamiński
Email: paulmckrcu@fb.com, michael@codeplay.com, maged.michael@acm.org,
gromer@google.com, andrewhhunter@gmail.com, arthur.j.odwyer@gmail.com,
dshollm@sandia.gov, jfbastien@apple.com, hboehm@google.com, davidtgoldblatt@gmail.com,
frank.birbacher@gmail.com, erik@rigtorp.se, tomaszkam@gmail.com
Reply to: paulmckrcu@fb.com
​

Proposed Wording for Concurrent Data
Structures: Read-Copy-Update (RCU)

1. Introduction 3

2. History/Changes from Previous Release 3
2020-08-28 [D1122R3] after virtual LWG meeting 3
2020-08-25 [D1122R3] preparation for virtual LWG meeting 4
2018-11-06 [P1122R2] post-San Diego meeting 4
2018-07-06 [D1122R1] pre-San Diego meeting 4
2018-06-07 [P1122R0] post-Rapperswil meeting 4
2018-03-12 [P0566R5] pre-Rapperswil meeting 5
2017-11-08 [P0566R4] pre-JAX meeting 5
2017-10-15 [P0566R3] pre-ABQ meeting 6
2017-07-30 [P0566R2] post-Toronto meeting 6
2017-06-18 [P0566R1] pre-Toronto meeting 7

3. Guidance to Editor 7

4. Proposed wording 9

5. Issues Requiring TS Implementation Experience 13

6. Acknowledgements 14

7. References 14

8. Appendix 15
8.1 Removed Text 15

1

mailto:paulmck@linux.ibm.com
mailto:michael@codeplay.com
mailto:maged.michael@acm.org
mailto:gromer@google.com
mailto:andrewhhunter@gmail.com
mailto:arthur.j.odwyer@gmail.com
mailto:dshollm@sandia.gov
mailto:jfbastien@apple.com
mailto:hboehm@google.com
mailto:davidtgoldblatt@gmail.com
mailto:frank.birbacher@gmail.com
mailto:erik@rigtorp.se
mailto:tomaszkam@gmail.com
mailto:paulmck@linux.ibm.com

8.1.1. From Proposed Wording Section ?.1 15
8.1. Proposed Text 16

2

1. Introduction

This paper is a successor to the RCU portion of P0566R5, in response to LEWG’s Rapperswil
2018 request that the two techniques be split into separate papers.

This is proposed wording for Read-Copy-Update [P0461], which is a technique for safe deferred
resource reclamation for optimistic concurrency, useful for lock-free data structures. Both RCU
and hazard pointers have been progressing steadily through SG1 based on years of
implementation by the authors, and are in wide use in MongoDB (for Hazard Pointers),
Facebook, and Linux OS (RCU).

We originally decided to do both papers' wording together to illustrate their close relationship,
and similar design structure, while hopefully making it easier for the reader to review together
for this first presentation. As noted above, they have been split on request.

This wording is based P0566r5, which in turn was based on that of on n4618 draft [N4618]

2. History/Changes from Previous Release

2020-08-28 [D1122R3] after virtual LWG meeting
● Apply initial feedback from the meeting.
● Awaiting LEWG decision on reuse of lock_guard and unique_lock:

○ Just add rcu_reader to the list in 32.5.3.2 [[thread.mutex.requirements.mutex]?
This would require adding an always-successful “try” variant of the counterpart to
the Linux kernel’s rcu_read_lock(), but that is straightforward.

○ Or is there a class similar to mutex that implements Cpp17BasicLockable? A
quick search through the current working draft fails to find one. The downside of
introducing (say) a basic_mutex is that it seems to require replicating 32.5.3.2
[thread.mutex.requirements.mutex], which seems a bit heavy weight.

○ Whether or not deleters may be invoked from rcu_retire(), retire(), or
rcu_domain::unlock() is implementation defined. Allowing such invocation
allows implementations to create fewer threads, but also means that a deleter
cannot acquire any resource held across any invocation of rcu_retire(),
retire(), or rcu_domain::unlock() destructor without risking deadlock.
Some implementations (for example, the Linux kernel) may therefore choose to
guarantee that deleters will be invoked from a separate thread in order to provide
users more flexibility in resource acquisition while still avoiding deadlock.

3

○ Switch from rcu_reader to rcu_domain, which implements Cpp17BasicLockable.
LEWG might wish to review this change.

○ Fine-tuning of the various clauses.
● Significant changes against P1122R2 are in green highlighting, including Jens Maurer’s

wording feedback noted below.

2020-08-25 [D1122R3] preparation for virtual LWG meeting
● Remove “RAII” from wording because it is not defined in the standard.
● Change bogus “jstring” to “string”
● Ω

2018-11-06 [P1122R2] post-San Diego meeting
● Adjusted sections to new naming schema introduced at the Rapperswil Meeting 2018 for

C++20. (Requires->(Mandates (compile-time), Expects(contract)),
Remarks->Constraints, Postconditions->Ensures as documented in the
[structure.specifications] section of N4762).

● Improve wording (courtesy of Geoff Romer).
● Markup reflects changes since P1122R0.

2018-07-06 [D1122R1] pre-San Diego meeting
● Added list of open issues to be addressed by TS implementation experience.

2018-06-07 [P1122R0] post-Rapperswil meeting
● Extracted the RCU portion of P0566R5 per request by LEWG.
● Add the explicit keyword to the defer_lock_t constructor of rcu_reader per request

by LEWG.
● Add the destructor description per request by LEWG.
● Andrej Krzemienski of LEWG: Have reset to pre-destruct an rcu_reader? Defer to TS

experience because we don’t know this use case will actually appear.
● Anthony Williams via email: Allow the deleter to be specified at construction time in

addition to at retire time. Defer to TS experience.
● Remove swap declaration, thus relying on default definition per request by LEWG.
● Moved Preamble to D0940R2.
● Archival version:

https://docs.google.com/document/d/1wls6q2mE60l5uZFug5U5i21N75j--s0wFOJA3e7M
uKY/edit

4

2018-03-12 [P0566R5] pre-Rapperswil meeting
● Updated RCU ordering guarantees for readers and deleters.
● Remove noexcept from rcu_reader destructor.
● Drop the detailed description of the rcu_reader destructor.
● Word the retire member function based on the rcu_retire free function.
● Word the synchronize_rcu free function based on rcu_retire.
● Rename synchronize_rcu to rcu_synchronize, as requested by LEWG in JAX.
● Confirmed that rcu_synchronize has SC fence semantics, and added a section to the

RCU litmus-tests paper (P0868R1)
● Added feature test macros __cpp_hazard_pointers and __cpp_read_copy_update.
● Added wording constraining deleters.
● Hazard pointer changes:

○ Changed the introduction and the wording for hazptr_cleanup(), hazptr_obj_base
retire(), hazptr_holder try_protect() to consider the lifetime of each hazard pointer
as a series of epochs to facilitate specifying memory ordering (based on JAX
evening session).

○ Changed the name of hazptr_holder get_protected() to protect(), as instructed by
LEWG.

○ Changed the default constructor for hazptr_holder to return an empty
hazptr_holder, as instructed by LEWG.

○ Removed the hazptr_holder member function make_empty(), by implication of
changing the default constructor.

○ Added the free function make_hazptr(), which constructs a non-empty
hazptr_holder, to replace the functionality of the hazptr_holder constructor.

○ Changed the name of hazptr_holder reset() to reset_protected() for clarity.

2017-11-08 [P0566R4] pre-JAX meeting
● Full RCU wording review was done at this meeting. A repeat HP wording done at this

meeting for any small design deltas, although HP was approved to move to LEWG in
Toronto

● Three related bugzillas tracking this:
○ 382 C++ Concurre parallel@lists.isocpp.org CONF --- Proposed Wording for

Concurrent Data Structures: Hazard Pointer and Read-Copy-Update (RCU) Tue
23:01

○ 291 C++ Library fraggamuffin@gmail.com SG_R --- Hazard Pointers 2017-07-06
○ 376 C++ Concurre maged.michael@acm.org SG_R --- Hazard Pointers Mon

22:58
● Rewrote the RCU preamble to give a better introduction to RCU’s concepts and use

cases, including adding example code.

5

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0868r1.pdf
https://issues.isocpp.org/show_bug.cgi?id=382
https://issues.isocpp.org/show_bug.cgi?id=382
https://issues.isocpp.org/show_bug.cgi?id=382
https://issues.isocpp.org/show_bug.cgi?id=291
https://issues.isocpp.org/show_bug.cgi?id=291
https://issues.isocpp.org/show_bug.cgi?id=291
https://issues.isocpp.org/show_bug.cgi?id=376
https://issues.isocpp.org/show_bug.cgi?id=376

● Updated the ordering guarantees to be more like the C++ memory model and less like
the Linux kernel memory model. (There is still some refining that needs to be done, and
this is waiting on an RCU litmus-test paper by Paul E. McKenney, now available as
P0868R1.)

● Removed the lock and unlock member functions from the rcu_reader class. These
member functions are not needed because rcu_reader directly provides the needed
RAII functionality.

● Numerous additional wording changes were made, none of which represent a change to
the design, implementation, or API.

● Added some authors.
● Hazard pointer wording changes:

○ Added hazptr_cleanup() free function, a stronger replacement for
hazptr_barrier(). There was no consensus in Albuquerque on the
requirements for a such a function. The decision on whether to provide one and
its semantics was left to the authors.

○ Significant rewrite of the wording for hazptr_obj_base::retire() to address
the issues with memory ordering raised in Toronto.

○ Rewrite of the wording for hazptr_holder::try_protect() for clarity.
○ Other minor editorial changes and corrections.

2017-10-15 [P0566R3] pre-ABQ meeting
● Changed the syntax for the polymorphic allocator passed to the constructor of

hazptr_domain. The constructor is no longer constexpr.
● Added the free function hazptr_barrier() that guarantees the completion of

reclamation of all objects retired to a domain.
● Changed the syntax of constructing empty hazptr_holder-s.
● Changed the syntax of the hazptr_holder member function that indicated whether a

hazptr_holder is empty or not.
● Added a note that an empty hazptr_holder is different from a hazptr_holder that

owns a hazard pointer with null value.
● Added a note to clarify that it acceptable for hazptr_holder try_protect to return true

when its first argument has null value.
● Update RCU presentation to reduce member-function repetition.
● Fix RCU s/Void/void/ typo
● Remove RCU’s std::nullptr_t in favor of the new-age std::defer_lock_t.
● Remove RCU’s barrier() member function in favor of free function based on BSI

comment

2017-07-30 [P0566R2] post-Toronto meeting
● Allow hazptr_holder to be empty. Add a move constructor, empty constructor, move

assignment operator, and a bool operator to check for empty state.

6

● A call by an empty hazptr_holder to any of the following is undefined behavior: reset(),
try_protect() and get_protected().

● Destruction of an hazptr_holder object may be invoked by a thread other than the one
that constructed it.

● Add overload of hazptr_obj_base retire().

2017-06-18 [P0566R1] pre-Toronto meeting
● Addressed comments from Kona meeting
● Removed Clause numbering 31 to leave it to the committee to decide where to inject

this wording
● Renamed hazptr_owner hazptr_holder.
● Combined hazptr_holder member functions set() and clear() into reset().
● Replaced the member function template parameter A for hazptr_holder

try_protect() and get_protected with atomic<T*>.
● Moved the template parameter T from the class hazptr_holder to its member functions

try_protect(), get_protected(), and reset().
● Added a non-template overload of hazptr_holder::reset() with an optional

nullptr_t parameter.
● Removed the template parameter T from the free function swap(), as hazptr_holder is

no longer a template.
● Almost complete rewrite of the hazard pointer wording.

--

3. Guidance to Editor
RCU is a proposed addition to the C++ standard library, for the concurrency TS. It has been
approved for addition through multiple SG1/SG14 sessions.

As RCU (and Hazard Pointers) are related to a concurrent shared pointer, we are looking at
building a new clause 33 for Concurrency Utilities Library through P0940 [P0940].In P0940, we
plan to introduce subclause on Safe Reclamation which will support RCU, Hazard Pointer, as
well as a other similar features.

We will not make any assumption for now as to the placement of this wording and leave it to
SG1/LEWG/LWG to decide and have used ? as a Clause placeholder. We believe that Hazard
Pointers and RCU should appear in the same section.

7

8

4. Proposed wording
?.1 Read-Copy Update (RCU) [rcu]

RCU is a synchronization mechanism that can be used for linked data structures that are
frequently read, but seldom updated. RCU does not provide mutual exclusion, but
instead allows the user to defer specified actions to a later time.

Header <rcu> synopsis

namespace std::experimental::inline concurrency_v2 {

// ?.2.1, struct template rcu_obj_base

template<class T, class D = default_delete<T>>

struct rcu_obj_base;

// ?.2.2, struct rcu_domain: RCU domain of which there is
// only one. This class meets the requirements of
// Cpp17BasicLockable [thread.req.lockable.basic] so as to
// provide RAII RCU readers
struct rcu_domain;

// ?.2.3 rcu_synchronize

void rcu_synchronize(rcu_domain& domain = rcu_domain::global) noexcept;

// ?.2.4 rcu_barrier

void rcu_barrier(rcu_domain& domain = rcu_domain::global) noexcept;

// ?.2.5 template rcu_retire

template<class T, class D = default_delete<T>>

void rcu_retire(T* p, D d = {}, rcu_domain& domain = rcu_domain::global);

}

?.2.1, class template rcu_obj_base [rcu.base]

Objects of type T to be protected by RCU inherit from rcu_obj_base<T>.

template<class T, class D = default_delete<T>>

struct rcu_obj_base {

// ?.2.1.1, rcu.base.retire: Retire a removed object and pass the

// responsibility for reclaiming it to the RCU library.

9

void retire(D d = {}, rcu_domain& domain = rcu_domain::global) noexcept;

};

1. Mandates: is_move_constructible_v<D> and is_default_constructible_v<D> are
true.

2. Preconditions: D meets the Cpp17MoveConstructible requirements.
3. A template parameter D shall be a function object type ([function.objects]), lvalue

reference to function, or lvalue reference to function object type for which, given a value
d of type D and a value ptr of type T*, the expression d(ptr) is valid. and has the effect
of disposing of ptr as appropriate for that deleter.

4. When the template argument passed to D is trivially copyable, the resulting instance of
rcu_obj_base will also be trivially copyable.

5. T may be an incomplete type.

void retire(D d = {}, rcu_domain& domain = rcu_domain::global) noexcept;

1. Expects: Neither the move-construction of D nor the expression
d(static_cast<T*>(this)) exits via an exception.

2. Effects: Causes the deleter d(static_cast<T*>(this)) to be invoked later at an
unspecified point on an unspecified execution agent. Guarantees that for each
invocation L of domain.lock, where U is the invocation of the corresponding
domain.unlock, one of two things hold:
- retire strongly happens before L, or
- U strongly happens before the invocation of the deleter.
[Note: If L happens before retire, then U strongly happens before the deleter. If the
deleter happens before U, then retire strongly happens before L. --- end note]
Once the retire function has been invoked on an rcu_obj_base object x, the end of
the lifetime of x shall happen after the invocation of the deleter. [Note: The deleter may
destroy x. --- end note]

3. Remarks: If the object pointed to by static_cast<T*>(this) is passed to any other
invocation of a retire function, the behavior is undefined. It is implementation defined
whether or not deleters may be invoked from within the context of the retire function,
so portable deleters should avoid acquiring resources held across any invocation of
retire.

?.2.2, class rcu_domain [rcu.domain]

This class provides RCU domains and meets the requirements of Cpp17BasicLockable
[thread.req.lockable.basic] so as to provide RAII RCU readers, for example as follows:
std::scoped_lock<rcu_domain> rlock(rcu_domain::global);

// ?.2.2, class rcu_domain
struct rcu_domain {

10

public:
// ?.2.2.1, rcu_domain: RCU domain, or instance
constexpr rcu_domain() = delete;
rcu_domain(const rcu_domain&) = delete;
rcu_domain& operator=(const rcu_domain&) = delete;
~rcu_domain() = delete;
void lock() noexcept;
void unlock() noexcept;

};
constinit rcu_domain rcu_domain::global(/implementation defined)/;

?.2.2.1, lock [rcu.domain.lock]

void lock() noexcept;

1. Effects: Begins an RCU reader.
2. Synchronization: For each retire-function (rcu_obj_base::retire or rcu_retire)

invocation such that this lock does not happen after (C++Std [intro.races]) that
retire-function invocation, invocation of the corresponding deleter strongly happens after
invocation of the corresponding unlock.

3. Remarks: Calls to lock and unlock nest.

?.2.2.2, unlock [rcu.domain.unlock]

void unlock() noexcept;

1. Effects: Ends an RCU reader.
2. Remarks: It is implementation defined whether or not deleters may be invoked from

within the context of the unlock function, so portable deleters should avoid acquiring
resources held across any invocation of unlock.

?.2.3, rcu_synchronize [rcu.synchronize]

void rcu_synchronize(rcu_domain& domain = rcu_domain::global) noexcept;

1. Effects: Guarantees that for each invocation L of rcu_domain::lock, where U is the
invocation of the corresponding rcu_domain::unlock, one of two things hold:
- The call to rcu_synchronize strongly happens before L, or
- U strongly happens before the return from rcu_synchronize.
[Note: If L happens before the call to rcu_synchronize, then U strongly happens
before the return from rcu_synchronize. If the return from rcu_synchronize

11

happens before U, then the call to rcu_synchronize strongly happens before L. ---
end note]

?.2.4, rcu_barrier [rcu.barrier]

void rcu_barrier(rcu_domain& domain = rcu_domain::global) noexcept;

1. Effects: For each invocation of a retire function (rcu_obj_base::retire or
rcu_retire) that happens before this call, blocks until the corresponding deleter has
completed. [Note: An implementation may additionally wait for the completion of
deleters corresponding to other retire function calls. --- end note]

2. Synchronization: The completion of each corresponding deleter strongly happens before
the return from rcu_barrier.

?.2.5, template rcu_retire [rcu.retire]

template<class T, class D = default_delete<T>>

void rcu_retire(T* p, D d = {}, rcu_domain& domain = rcu_domain::global);

1. Mandates: is_move_constructible_v<D> is true.
2. Preconditions: D meets the Cpp17MoveConstructible requirements.
3. Expects: The parameter D shall be a function object type ([function.objects]), lvalue

reference to function, or lvalue reference to function object type for which, given a value
d of type D and a value ptr of type T*, the expression d(ptr) is valid and has the effect
of disposing of the pointer as appropriate for that deleter.
Neither the move-construction of D nor the expression d(p) exits via an exception.
If the deleter’s type D is not a reference type, D shall meet the Cpp17Destructible
requirements (Table 30).

4. Effects: Causes the deleter d(p) to be invoked later at an unspecified point on
unspecified execution agents. Guarantees that for each invocation L of domain::lock,
where U is the invocation of the corresponding domain::unlock, one of two things hold:
- rcu_retire strongly happens before L, or
- U strongly happens before the invocation of the deleter.
[Note: If L happens before rcu_retire, then U strongly happens before the invocation
of the deleter. If the deleter happens before U, then rcu_retire strongly happens
before L. --- end note]
Once the rcu_retire function has been invoked on p, the end of the lifetime of *p
shall happen after the invocation of the deleter. [Note: The deleter may destroy *p. ---
end note]

5. Remarks: If the object pointed to by p is passed to any other invocation of a retire
function, the behavior is undefined. It is implementation defined whether or not deleters
may be invoked from within the context of the rcu_retire function, so portable
deleters should avoid acquiring resources held across any invocation of rcu_retire.

12

5. Issues Requiring TS Implementation Experience
We expect that implementation experience will help shed light on the following open issues:

1. Should the standard provide RCU domains, such that readers in one domain have no
effect on updaters in any other domain? Although these have proven useful in other
environments (e.g., Linux-kernel SRCU), they are rarely used and it has usually taken
some years in any given environment for the need for them to arise. In addition, RCU
can take advantage of extremely effective batching optimizations that are partially or
even wholly defeated by excessive use of domains. These considerations have resulted
in the initial proposal to exclude RCU domains. (The discussions covering this topic
have been primarily face to face.)

2. Should the rcu_obj_base class provide an additional constructor that takes a deleter
argument, thus allowing the deleter to be omitted from the call to retire() or
rcu_retire()? (Note that this result in an extra store at constructor time when the
deleter is specified at retire time.) Should this class delete copy constructors? (See the
isocpp-parallel email thread in May 2018 with subject line “Feedback on Proposed
wording for RCU (p0566R5)”.)

3. Should the type specifier for the deleter more closely resemble that of unique_ptr?
(See the isocpp-parallel email thread in May 2018 with subject line “Feedback on
Proposed wording for RCU (p0566R5)”.) The following options have been suggested:

a. “D must be DefaultConstructible (for the constructors without an explicit deleter)
(23.11.1.2.1p1 and p5)”, or

b. “D must be constructible from std::forward<decltype(D)>(d), where d is the
supplied deleter (which probably means MoveConstructible, but also accounts for
reference types) (23.11.1.2.1p9-12)”

4. Should the [[no_unique_address]] attribute be applied to the deleter to take
advantage of the C++20 equivalent of empty base optimization (EBO)? (See the
isocpp-parallel email thread in May 2018 with subject line “Feedback on Proposed
wording for RCU (p0566R5)”.)

5. What constraints need to be placed on the context in which deleters are invoked? If
there are background threads, what control do users need over the time at which they
are spawned and terminated? Should it be possible to construct an implementation with
no background threads, and, if so, in what context do the destructors run? What
additional constraints (e.g., deadlock avoidance) need to be placed on users of
implementations with no background threads? (See the isocpp-parallel email thread in
July 2018 with subject line “Background threads and P0561”.)

6. Is special handling required for Microsoft dynamic-link libraries (DLLs), particularly
surrounding special handling of background threads and pending deleters when DLLs
are unloaded? Similarly, is special handling required to support clean shutdown of

13

applications? (See the isocpp-parallel email thread in July 2018 with subject line
“Background threads and P0561”.)

7. Can all major platforms support latest<T> instances with static storage duration? (See
the isocpp-parallel email thread in July 2018 with subject line “Background threads and
P0561”.)

8. Clean shutdown when deleters invoke rcu_retire(). Note that we can have cross-retires
where hazard-pointer deleters invoke rcu_retire() and the corresponding RCU deleters
retire a hazard pointer. Note that users can prevent clean shutdown by cascading retires
forever. Should high-quality implementations do a best-effort attempt to shut down (even
in the absence of rcu_barrier()), given that malicious users can prevent this. Note that
this not unprecedented: Users can also prevent clean shutdown via infinite loops and
various other forms of infinite recursion. However, even without infinite recursion, it is
possible for a shutdown-time issues involving shutdown-time destructors using RCU
after RCU itself has destructed (the Linux kernel avoids this by never destructing RCU).
We hope that TS implementation experience will help us identify good strategies for
best-effort shutdown. (Off-list discussion between Paul, Maged, and Michael.)

9. Should there be a polling interface having the functionality of rcu_synchronize()? For
example, there might be an rcu_synchronize_start() free function that returned a cookie
that could be passed to a boolean free function named rcu_synchronize_is_done().

We therefore are not working to resolve these before the concurrency TS2 is created, but rather
expecting that implementation experience based on the TS will shed light on the various
possible resolutions.

6. Acknowledgements

The authors thank Olivier Giroux, Pablo Halpern, Lee Howes, Xiao Shi, Viktor Vafeiadis, Dave
Watson, Daniel Kruegler, Tomsz Kaminski and other members of SG1 and LEWG for useful
discussions and suggestions that helped improve this paper and its earlier versions.

7. References
RCU implementation: https://github.com/paulmckrcu/RCUCPPbindings (See Test/paulmck)

[N4618] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf

[P0233] Hazard Pointers: Safe Resource Reclamation for Optimistic Concurrency
http://wg21.link/P0233

[P0461] Proposed RCU C++ API http://wg21.link/P0461

14

https://github.com/paulmckrcu/RCUCPPbindings
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf
http://wg21.link/P0233
http://wg21.link/P0461

[P0566] Proposed Wording for Concurrent Data Structures: Hazard Pointer and
Read-Copy-Update (RCU) http://wg21.link/P0566

[P0940] Concurrency TS is growing: Utilities and Data Structures http://wg21.link/P0940

8. Appendix

8.1 Removed Text
This is a holding area for text that has been removed, but might be needed elsewhere.

8.1.1. From Proposed Wording Section ?.1
1. RCU is a synchronization mechanism that can be used for linked data structures that are

frequently read, but seldom updated. RCU does not provide mutual exclusion, but
instead allows the user to defer specified actions to a later time at which there are no
longer any RCU read-side critical sections that were executing at the time the deferral
started. Threads executing within an RCU read-side critical section are called readers.

2. RCU read-side critical sections are designated using a class std::rcu_reader.
3. In one common use case (example shown below), RCU linked-structure updates are

divided into two segments. The first segment is restricted to updates that do not disrupt
readers (for example, removal from a linked structure). The second segment is
disruptive to readers (for example, deleting items removed in the first segment), and
must therefore be deferred until pre-existing readers (which might still be accessing the
removed items) have ended.
[Note— The following example shows how RCU allows updates to be carried out in two
segments in the presence of concurrent readers. The reader function executes in one
thread and the update function in another. The rcu_reader instance in print_name

protects the referenced object name from being deleted by rcu_retire until the reader
has completed.

std::atomic<std::string *> name;

// called often and in parallel!

void print_name() {

std::rcu_reader rr;

std::string *s = name.load(std::memory_order_acquire);

/* ...use *s... */

}

// called rarely

void update_name(std::string_view &nn) {

15

http://wg21.link/P0566
http://wg21.link/P0940

// The first segment of update:

std::string *new_name = new std::string(nn);

std::string *s = name.exchange(new_name, std::memory_order_acq_rel);

// The second segment of update is the deferred deleter.

std::rcu_retire(s);

}

—end note]
Again, the first segment can be safely executed while RCU readers are concurrently
traversing the same part of the linked structure, for example, removing some objects
from a linked list. The second segment cannot be safely executed while RCU readers
are accessing the removed objects; for example, the second segment typically deletes
the objects removed by the first segment, in this case in a deferred fashion courtesy of
std::rcu_retire. RCU can also be used to prevent RCU readers from observing
transient atomic values, also known as the A-B-A problem.

4. A class T can inherit from std::rcu_obj_base<T> to inherit the retire member
function and the intrusive machinery required to track retired objects. Alternatively, any
class T can be passed to the std::rcu_retire free function template, whether it
inherits from std::rcu_obj_base<T> or not. The free function is expected to have
performance and memory-footprint advantages, but unlike the member function can
potentially allocate. A deleter may be specified in the class template or to the retire
function, and both types of retire functions arrange to invoke this deleter at a later time,
when it can guarantee that no read-side critical section is still accessing (or can later
access) the deleted data.

5. A std::rcu_synchronize free function blocks until all preexisting or concurrent
read-side critical sections have ended. This function may be used as an alternative to
the retire functions, in which case the rcu_synchronize follows the first (removal)
segment of the update and precedes the second (deletion) segment of the update.

6. A std::rcu_barrier free function blocks until all happens-before [intro.multithreading]
calls to std::rcu_retire have invoked and completed their deleters. This is helpful, for
instance, in cases where deleters have observable effects, or when it is desirable to
bound undeleted resources, or when clean shutdown is desired.

8.1. Proposed Text
The current definition of rcu_domain addresses the feedback that the rcu_reader class not
implement RAII on its own, but rather meet the requirements of Cpp17BasicLockable so as to
leverage lock_guard [thread.lock.guard] and scoped_lock [thread.lock.scoped]. This seems
to require that lock and unlock member functions be provided and that scoped_lock never be
passed multiple types if one of those types is rcu_reader. This restriction is no problem
because rcu_reader does not normally participate in deadlock cycles. The above wording is
based on class mutex [thread.mutex.class].

16

Given definitions for the member functions, and given a constructor, this passes godbolt for
lock_guard, scoped_lock and unique_lock.

The remainder of this appendix contains the old P1122R2 definition of rcu_reader.

?.2.2, class rcu_reader [rcu.reader]

This class provides RCU readers.

// ?.2.2, class rcu_reader

class rcu_reader {

public:

// ?.2.2.1, rcu_reader: RCU readers

rcu_reader() noexcept;

explicit rcu_reader(defer_lock_t) noexcept;

rcu_reader(const rcu_reader&) = delete;

rcu_reader(rcu_reader&& other) noexcept;

rcu_reader& operator=(const rcu_reader&) = delete;

rcu_reader& operator=(rcu_reader&& other) noexcept;

~rcu_reader();

};

?.2.2.1, Construction and destruction [rcu.reader.cons]

rcu_reader() noexcept;

1. Effects: Creates an active rcu_reader.
2. Synchronization: For each retire-function (rcu_obj_base::retire or rcu_retire)

invocation such that this constructor does not happen after (C++Std [intro.races]) that
retire-function invocation, invocation of the corresponding deleter strongly happens after
invocation of this object's destructor.

explicit rcu_reader(defer_lock_t) noexcept;

1. Effects: Creates an inactive rcu_reader.

rcu_reader(rcu_reader&& other) noexcept;

1. Effects: Creates an active rcu_reader. other becomes inactive.

~rcu_reader();

1. Effects: If the rcu_reader is active, causes it to become inactive.

17

https://godbolt.org/z/14Efsf

?.2.2.2, Assignment [rcu.reader.assign]

rcu_reader& operator=(rcu_reader&& other) noexcept;

1. Effects: If this is active, it becomes inactive. In either case, this becomes active if and
only if other was active, and other becomes inactive.

18

