
Atomic maximum/minimum
Proposal to extend atomic with maximum/minimum operations

Document number: P0493R2
Date: 2021-05-11
Reply-To: Al Grant (al.grant@arm.com), Bronek Kozicki (brok@spamcop.net); Tim Northover (tnorthover@apple.com)
Audience: LEWG; SG1 - Concurrency

Abstract

Add integer 'max' and 'min' operations to the set of operations supported in <atomic>. There are minor adjustments to function naming necessitated by the
fact that 'max' and 'min' do not exist as infix operators. Also, in contrast to the existing atomic operations (and previous versions of this proposal), it is
unspecified whether a write occurs if the new value is the same as the old value.

Revision history

P0493R0 (2016-11-08): Original proposal
P0493R1 (2020-05-08): Add motivation for defining new atomics as read-modify-write. Clarify status of proposal for new-value-returning operations.
Align with C++17.
P0493R2 (2021-05-11): Change proposal to make the store unspecified if the value does not change. Align C++20.

Introduction

This proposal extends the atomic operations library to add atomic maximum/minimum operations. These were originally proposed for C++ in N3696 as
particular cases of a general "priority update" mechanism, which atomically combined reading an object's value, computing a new value and conditionally
writing this value if it differs from the old value. In contrast to N3696, we propose atomic maximum/minimum operations where it is unspecified whether or
not the store takes place if the new value happens to be the same as the old value. A future proposal may reintroduce the concept of a conditionalized
atomic update.

This paper benefited from discussion with Mario Torrecillas Rodriguez, Nigel Stephens and Nick Maclaren, and updates have benefited from discussion in
the SG1 Concurrency group.

Background and motivation

Atomic addition (fetch-and-add) was introduced in the NYU Ultracomputer [Gottlieb 1982], has been implemented in a variety of hardware architectures, and
has been standardized in C and C++. Atomic maximum/minimum operations (fetch-and-max) have a history almost as long as atomic addition, e.g. see
[Lipovski 1988], and have also been implemented in various hardware architectures but are not currently standard in C and C++. This proposal fills the gap.

Atomic maximum/minimum operations are useful in a variety of situations in multithreaded applications:

optimal implementation of lock-free shared data structures - as in the motivating example later in this paper
reductions in data-parallel applications: for example, OpenMP ()supports maximumhttps://computing.llnl.gov/tutorials/openMP/#REDUCTION
/minimum as a reduction operation
recording the maximum so far reached in an optimization process, to allow unproductive threads to terminate
collecting statistics, such as the largest item of input encountered by any worker thread.

Atomic maximum/minimum operations already exist in several other programming environments, including OpenCL (https://www.khronos.org/registry/cl
), and in some hardware implementations. Application need, and availability, motivate providing these operations in C++./specs/opencl-2.0-openclc.pdf

The proposed language changes add atomic max/min to , with some syntatic adjustment due to the fact that C++ has no infix operators for max<atomic>
/min, and with a slight difference in semantics as described below.

The existing atomic operations (e.g.) have the effect of a read-modify-write, irrespective of whether the value changes. This is how atomic maxfetch_and
/min are defined in several APIs (OpenCL, CUDA, C++AMP, HCC) and in several hardware architectures (ARM, RISC-V). However, some hardware
(POWER) implements atomic max/min as an atomic read-and-conditional-store. For performance and portability, to allow efficient implmentation on a variety
of architectures, this proposal leaves it unspecified whether the store happens if the new value is the same as the old value. That is, the proposed C++
atomic max/min functions can be implemented using atomic max/min hardware operations where the store always happens in such a situation, where it
never happens, or where the hardware itself leaves it unspecified.

Hardware which implements these operations as read-and-conditional-write may offer a performance advantage at the cost of possible correctness, where
the following instruction makes an assumption as to the write half-barrier (i.e. "release" semantics) of the preceding "min" or "max" operation. Similarly,
platforms where these operations are read-modify-always-write may sacrifice performance where there is no actual change in value, but make it easier to
write correct code, where the following instruction can take for granted the "release" semantics of the preceding "min" or "max" operation. Portable and
correct code may have to introduce an additional write barrier in case the value did not change, but such a barrier might penalize performance on platforms
where these operations are guaranteed read-modify-write since the write will have implemented the requested semantics.This could be made easier by an
addition of a predefined macro which would be always set to e.g. 1 on platforms where an additional section like this is needed, e.g.
__cpp_lib_atomic_maxmin_always_writes (and 0 otherwise) . as to whether or not such macro is needed.We ask for feedback

Summary of proposed additions to <atomic>

The current provides atomic operations in several ways:<atomic>

as a named non-member function template e.g. returning the old valueatomic_fetch_add()

https://computing.llnl.gov/tutorials/openMP/#REDUCTION
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf

as a named member function template e.g. returning the old valueatomic<T>::fetch_add()
as an overloaded compound operator e.g. returning the new valueatomic<T>::operator+=()

Adding 'max' and 'min' versions of the named functions is straightforward. Unlike the existing atomics, max/min operations exist in signed and unsigned
flavors. The atomic type determines the operation. There is precedent for this in C, where all compound assignments on atomic variables are defined to be
atomic, including sign-sensitive operations such as divide and right-shift.

The overloaded operator is defined to return the new value of the atomic object. This does not correspond directly to a atomic<T>::operator op=(n)
named function. For max and min, we have no infix operators to overload. So if we want a function that returns the new value we would need to provide it as
a named function. However, for all operators the new value can be obtained as () , (the standard defines the compound operator overloads fetch_op n op n
this way) while the reverse is not true for non-invertible operators like 'and' or 'max'. Thus the functions would add no significant functionality other than
providing one-to-one equivalents to 's existing compound operator overloads. Following some of the early literature on atomic operations ([Kruskal <atomic>
1988] citing [Draughon 1967]), we suggest that if required, names should have the form . The current revision of this paper demonstrates what replace_op
the replace_min and replace_max functions would look like; whether or not these should be removed; in case these are to be left in, we ask for feedback we

 whether or not to add additional overloads taking memory ordering parameter. We must stress that any inconsistency with the existing ask for feedback
atomic functions is based on the lack of infix representation of these operations in the language syntax, rather than because of any difference in the nature
of the operations in the language execution model.

This paper proposes operations on integral and pointer types only. If both this proposal and floating-point atomics as proposed in P0020 are adopted then
we propose that atomic floating-point maximum/minimum operations also be defined, in the obvious way.

References

[Almasi]: "Highly Parallel Computing" 2nd ed., George S. Almasi and Allan Gotlieb,
[Draughon 1967]: "Programming Considerations for Parallel Computers", E.R. Draughon et al., Courant Inst, 1967
[Gong 1990]: "A Library of Concurrent Objects and Their Proofs of Correctness", Chun Gong and Jeanette M. Wing, 1990,http://www.cs.cmu.edu

)/~wing/publications/CMU-CS-90-151.pdf
[Gottlieb 1982]: "The NYU Ultracomputer - Designing an MIMD Shared Memory Parallel Computer", Gottlieb et al., ICCA, 1982
[Kruskal 1988]: Efficient Synchronization on Multiprocessors with Shared Memory", Clyde P. Kruskal et al., Ultracomputer Note #105, 1988
[Lipovski 1988]: "A Fetch-And-Op Implementation for Parallel Computers", G.J. Lipovski and Paul Vaughan, 1988

Changes to the C++ standard
The following text outlines the proposed changes, based onN4868 (DIS 14882:2020).

31: Atomic operations library[atomics]

31.2: Header <atomic> synopsis [atomics.syn]

namespace std {
 // 31.9, non-member functions
 ...
 template<class T>
 T atomic_fetch_max(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;
 template<class T>
 T atomic_fetch_max(atomic<T>*, typename atomic<T>::value_type) noexcept;
 template<class T>
 T atomic_fetch_max_explicit(volatile atomic<T>*, typename atomic<T>::value_type, memory_order) noexcept;
 template<class T>
 T atomic_fetch_max_explicit(atomic<T>*, typename atomic<T>::value_type, memory_order) noexcept;
 template<class T>
 T atomic_fetch_min(volatile atomic<T>*, typename atomic<T>::value_type) noexcept;
 template<class T>
 T atomic_fetch_min(atomic<T>*, typename atomic<T>::value_type) noexcept;
 template<class T>
 T atomic_fetch_min_explicit(volatile atomic<T>*, typename atomic<T>::value_type, memory_order) noexcept;
 template<class T>
 T atomic_fetch_min_explicit(atomic<T>*, typename atomic<T>::value_type, memory_order) noexcept;
 ...
}

31.7.3: Specializations for integral types[atomics.ref.int]

 namespace std {
 template <> struct atomic_ref<integral> {
 ...
 integral fetch_max(integral, memory_order = memory_order_seq_cst) const noexcept;
 integral fetch_min(integral, memory_order = memory_order_seq_cst) const noexcept;
 ...
 integral replace_max(integral) const noexcept;
 integral replace_min(integral) const noexcept;

 };
 }

Change:

 Effects: ... These operations are atomic read-modify-write operations (6.9.2.2)

to

http://www.cs.cmu.edu/~wing/publications/CMU-CS-90-151.pdf
http://www.cs.cmu.edu/~wing/publications/CMU-CS-90-151.pdf

 Effects: ...Except for fetch_max and fetch_min, these operations are atomic read-modify-write operations (6.9.2.2). For fetch_max and fetch_min, if the new
value is the same as the existing value, it isunspecified whether or not the new value is written; if it is written, the effect is of a read-modify-write operation.

Change:

 Remarks: For signed integer types, the result is as if the object value and parameters were converted to their corresponding unsigned types, the
computation performed on those types, and the result converted back to the signed type.

to

 Remarks: Except for fetch_max and fetch_min, for signed integer types, the result is as if the object value and parameters were converted to their
corresponding unsigned types, the computation performed on those types, and the result converted back to the signed type. For fetch_max and fetch_min,
the computation is performed according to the integral type of the atomic object.

Add the following text:

 integral A::replace_ (integral operand) const noexcept;key

 Requires: These operations are only defined for keys ' ' and ' '.max min

 Effects: A::fetch_ (operand)key

 Returns: std:: (A::fetch_ (operand), operand)key key

After
 integral operatorop=(integral operand) const noexcept;
add "These operations are not defined for keys ' ' and ' '."max min

31.7.5: Partial specialization for pointers[atomics.ref.pointer]

 namespace std {
 template <class T> struct atomic_ref<T *> {
 ...
 T* fetch_max(T *, memory_order = memory_order::seq_cst) const noexcept;
 T* fetch_min(T *, memory_order = memory_order::seq_cst) const noexcept;
 };
 }

Change

 Effects: ... These operations are atomic read-modify-write operations (6.9.2.2)

to

 Effects: ... Except for fetch_max and fetch_min, these operations are atomic read-modify-write operations (6.9.2.2). For fetch_max and fetch_min, if the new
value is the same as the existing value, it isunspecified whether or not the new value is written; if it is written, the effect is of a read-modify-write operation.

Add the following text:

 T* A::replace_ (T* operand) const noexcept;key

 Requires: These operations are only defined for keys ' ' and ' '.max min

 Effects: A::fetch_ (operand)key

 Returns: std:: (A::fetch_ (operand), operand)key key

31.8.3: Specializations for integers [atomics.types.int]

 namespace std {
 template <> struct atomic<integral> {
 ...
 integral fetch_max(integral, memory_order = memory_order_seq_cst) volatile noexcept;
 integral fetch_max(integral, memory_order = memory_order_seq_cst) noexcept;
 integral fetch_min(integral, memory_order = memory_order_seq_cst) volatile noexcept;
 integral fetch_min(integral, memory_order = memory_order_seq_cst) noexcept;
 ...
 };
 }

In table 144, [tab:atomic.types.int.comp], add the following entries:

Key Op Computation

max maximum as computed by fromstd::max <algorithm>

min minimum as computed by fromstd::min <algorithm>

Change:

 Effects: ... These operations are atomic read-modify-write operations (6.9.2.2)

to

 Effects: ... Except for fetch_max and fetch_min, these operations are atomic read-modify-write operations (6.9.2.2). For fetch_max and fetch_min, if the new
value is the same as the existing value, it isunspecified whether or not the new value is written; if it is written, the effect is of a read-modify-write operation.

Add the following text:

 C A::replace_ (M operand) volatile noexcept;key
 C A::replace_ (M operand) noexcept;key

 Requires: These operations are only defined for keys ' ' and ' '.max min

 Effects: A::fetch_ (operand)key

 Returns: std:: (A::fetch_ (operand), operand)key key

After
 T* operatorop=(T operand) noexcept;
add "These operations are not defined for keys ' ' and ' '."max min

31.8.5: Partial specialization for pointers[atomics.types.pointer]

 namespace std {
 template <class T> struct atomic<T*> {
 ...
 T* fetch_max(T*, memory_order = memory_order_seq_cst) volatile noexcept;
 T* fetch_max(T*, memory_order = memory_order_seq_cst) noexcept;
 T* fetch_min(T*, memory_order = memory_order_seq_cst) volatile noexcept;
 T* fetch_min(T*, memory_order = memory_order_seq_cst) noexcept;
 ...
 };
 }

In table 145, [tab:atomic.types.pointer.comp], add the following entries:

Key Op Computation

max maximum as computed by fromstd::max <algorithm>

min minimum as computed by fromstd::min <algorithm>

Change:

 Effects: ... These operations are atomic read-modify-write operations (6.9.2)

to

 Effects: ... These operations are atomic read-modify-write operations, except that for the 'max' and 'min' operations, if the new value is the same as the
existing value, it is unspecified whether or not the new value is written.

Add:

 C A::replace_ (M operand) volatile noexcept;key
 C A::replace_ (M operand) noexcept;key

 Requires: These operations are only defined for keys ' ' and ' '.max min

 Effects:A::fetch_ (operand)key

 Returns:std:: (A::fetch_ (operand), operand)key key

After
 T* operatorop=(T operand) noexcept;
add "These operations are not defined for keys ' ' and ' '."max min

Motivating example
Atomic fetch-and-max can be used to implement a lockfree bounded queue, as explained in [Gong]:

 typedef struct {
 elt item; /* a queue element */
 int tag; /* its generation number */
 } entry;

 typedef struct rep {
 entry elts[SIZE]; /* a bounded array */
 int back;
 } reptype;

 reptype queue;

 void Enq(elt x) {
 int i;
 entry e, *olde;
 e.item = x; /* set the new elements item to x */
 i = READ(&(queue.back)) + 1; /* get a slot in the array for the new element */
 while (true) {
 e.tag = i / SIZE; /* set the new elements generation number */
 olde = EXCHANGE(&(queue.elts[i % SIZE]), -1, &e);
 /* exchange the new element with slots
 value if that slot has not been used */
 if (olde->tag == -1) { /* if exchange is successful */
 break; /* get out of the loop */
 }
 ++i; /* otherwise, try the next slot */
 }
 FETCH_AND_MAX(&(queue.back), i); /* reset the value of back */
 }

 elt Deq() {
 entry e, *olde;
 int i, range;
 e.tag = -1; /* make e an empty entry */
 e.item = NULL;
 while (true) { /* keep trying until an element is found*/
 range = READ(&(queue.back)) - 1; /* search up to back-1 slots */
 for (i = 0; i <= range; i++) {
 olde = EXCHANGE(&(queue.elts[i % SIZE]), i / SIZE, &e);
 /* check slot to see if it contains the oldest element */
 if (olde->tag != -1) { /* if so */
 return(olde->item); /* return the item in it */
 }
 } /* otherwise try the next one */
 }
 }

A similar C++ example was used in the original version of this paper, due to Bronek Kozicki.

A queue class can be used as follows:

int main()
{
 queue<int> q(16);
 assert(q.post(42));
 int d;
 assert(q.read(d));
 assert(d == 42);
 assert(not q.read(d));
}

A naive implementation of the queue follows:

#include <atomic>
#include <utility>
#include <cstddef>

template <typename T>
class queue
{
 // Rounded up logarithm with base of 2
 static int log2(int s)
 {
 --s;
 int r = 0;
 while (s)
 {
 s >>= 1;
 r += 1;
 };
 return r;
 }

 // Actual data storage, contains queued value and data stamp for this slot
 struct slot
 {
 slot() : value(), stamp(0)
 { }

 T value;
 std::atomic_long stamp;
 };

public:
 queue(const queue&) = delete;
 queue& operator=(const queue&) = delete;

 explicit queue(int s) : head_(0) , tail_(0) , bits_(log2(s)) , size_(1 << bits_) , buffer_(nullptr)
 {
 buffer_ = new slot[size_];
 }

 ~queue()
 {
 // Must not be called when either post() or read() are running in other
 // threads. Such calls must be completed before destruction
 delete[] buffer_;
 }

 bool post(T&& v) noexcept(true)
 {
 slot* ptr = nullptr; // Store the data to here
 long expected = 0; // compared against ptr->stamp
 unsigned long head = head_.load();
 for (;;)
 {
 ptr = &buffer_[index(head)];
 expected = stamp(head);
 const long newstamp = expected + 1;
 const long oldstamp = ptr->stamp.load();
 if (oldstamp == expected)
 {
 const unsigned long next = head + 1ul;
 // Try to claim ownership of the slot
 if (head_.compare_exchange_weak(head, next))
 {
 ptr->stamp = newstamp;
 break;
 }
 // else head has been updated
 }
 else if (oldstamp > expected)
 head = head_.load(); // claimed by another thread already
 else
 return false; // overflowing, i.e. ptr is to be read yet
 }

 ptr->value = std::move(v);
 ptr->stamp = expected + 2;
 return true;
 }

 bool read(T& v) noexcept(true)
 {
 slot* ptr = nullptr; // Read the data from here
 long expected = 0; // compared against ptr->stamp
 unsigned long tail = tail_.load();
 for (;;)
 {
 // Optimize for case when data needs to be read, but check that
 // there is actually anything in there.
 if (tail == head_.load())
 break; // Must not advance tail beyond head

 ptr = &buffer_[index(tail)];
 expected = stamp(tail) + 2;
 const long newstamp = expected + 1; // = stamp(tail) + 3
 const long oldstamp = ptr->stamp.load();
 if (oldstamp == expected)
 {
 const unsigned long next = tail + 1ul;
 // Try to claim ownership of the slot
 if (tail_.compare_exchange_weak(tail, next))
 {
 ptr->stamp = newstamp;
 break;
 }
 // else tail has been updated
 }
 else

 tail = tail_.load(); // claimed by another thread already

 ptr = nullptr;
 }

 if (ptr)
 {
 v = std::move(ptr->value);
 ptr->stamp = expected + 2;
 return true;
 }

 return false;
 }

private:
 // Calculate head/tail position inside buffer_ array
 constexpr int index(unsigned long h) const
 {
 return (h & (size_ - 1ul));
 }

 // Calculate lap number for high bits in slot->stamp
 constexpr long stamp(unsigned long h) const
 {
 return (h & ~(size_ - 1ul)) >> (bits_ - 2);
 }

 std::atomic_ulong head_; // slot being written
 std::atomic_ulong tail_; // slot being read
 const int bits_; // = log2(size_)
 const int size_; // must be power of 2
 slot* buffer_;
};

This version suffers from a performance problem, because will not be able to skip over the slot still-being-written to following it slots which are ready read()
for read. The following improved version uses :atomic_fetch_max

#include <atomic>
#include <utility>
#include <cstddef>

template <typename T>
class queue
{
 // Rounded up logarithm with base of 2
 static int log2(int s)
 {
 --s;
 int r = 0;
 while (s)
 {
 s >>= 1;
 r += 1;
 };
 return r;
 }

 // Actual data storage, contains queued value and data stamp for this slot
 struct slot
 {
 slot() : value(), stamp(0)
 { }

 T value;
 std::atomic_long stamp;
 };

public:
 queue(const queue&) = delete;
 queue& operator=(const queue&) = delete;

 explicit queue(int s) : head_(0) , tail_(0) , bits_(log2(s)) , size_(1 << bits_) , buffer_(nullptr)
 {
 buffer_ = new slot[size_];
 }

 ~queue()
 {
 // Must not be called when either post() or read() are running in other
 // threads. Such calls must be completed before destruction
 delete[] buffer_;
 }

 bool post(T&& v) noexcept(true)
 {
 slot* ptr = nullptr; // Store the data to here

 slot* ptr = nullptr; // Store the data to here
 long expected = 0; // CAS against ptr->stamp
 unsigned long head = head_.load();
 unsigned long next = 0; // Next value of head
 for (;;)
 {
 next = head + 1ul;
 ptr = &buffer_[index(head)];
 expected = stamp(head);
 const long newstamp = expected + 1;
 // Not going to revisit this slot in next iteration, so "strong" is required
 if (ptr->stamp.compare_exchange_strong(expected, newstamp))
 break;

 // Advance to next slot if this was claimed by another thread
 if (expected >= newstamp)
 head = next;
 else
 return false; // overflowing, i.e. ptr is to be read yet
 }
 atomic_fetch_max(head_, next);

 ptr->value = std::move(v);
 ptr->stamp = expected + 2;
 return true;
 }

 bool read(T& v) noexcept(true)
 {
 slot* ptr = nullptr; // Read the data from here
 long expected = 0; // CAS against ptr->stamp
 unsigned long tail = tail_.load();
 unsigned long next = tail; // Next value of tail
 for (;;)
 {
 // Optimize for case when data needs to be read, but check that
 // there is actually anything in there.
 const unsigned long head = head_.load();
 if (tail == head)
 break; // Must not advance tail beyond head

 ptr = &buffer_[index(tail)];
 expected = stamp(tail) + 2;
 const long newstamp = expected + 1; // = stamp(tail) + 3
 // Not going to revisit this slot in next iteration, so "strong" is required
 if (ptr->stamp.compare_exchange_strong(expected, newstamp))
 {
 // Advance tail if no slot was being written
 if (next == tail)
 next = tail + 1ul;
 break;
 }

 ptr = nullptr;
 // Advance tail if no slot was being written.
 if (expected >= newstamp && next == tail)
 next = tail + 1ul;
 tail += 1ul;
 }
 atomic_fetch_max(tail_, next);

 if (ptr)
 {
 v = std::move(ptr->value);
 ptr->stamp = expected + 2;
 return true;
 }

 return false;
 }

private:
 // Calculate head/tail position inside buffer_ array
 constexpr int index(unsigned long h) const
 {
 return (h & (size_ - 1ul));
 }

 // Calculate lap number for high bits in slot->stamp
 constexpr long stamp(unsigned long h) const
 {
 return (h & ~(size_ - 1ul)) >> (bits_ - 2);
 }

 std::atomic_ulong head_; // slot being written
 std::atomic_ulong tail_; // slot being read
 const int bits_; // = log2(size_)
 const int size_; // must be power of 2

 slot* buffer_;
};

	Atomic maximum/minimum

