
Proposal for C2Y
WG14 N3312
Title: Allowing stricter alignment for atomic types
Author, affiliation: IBM, WG14
Date: 2024-08-07
Proposal category: Technical
Reference: Base document: N3220

Atomic types may have stricter alignment requirements than their non-
atomic counterparts if efficiency is needed. This can happen if the
hardware supports lock-free atomic operations on objects that are
aligned on larger boundaries such as 16 bytes. For example, Clang's
__int128 type, atomic versions of aggregates larger than 8 bytes up to
16 bytes, as well as double _Complex types on x86_64-pc-windows and on
AIX.

Requiring all objects to have the fundamental alignment as the
alignment causes issues for these atomic types on those types of
hardware since changing max_align_t would result in binary
incompatibility with previously compiled modules. Relaxing this
constraint for atomic types can allow not only efficient
implementations for lock free atomics, but also allow more flexibility
and efficiency for lock based atomics.

Proposed changes:

Change 6.2.8#2 from:
 — all atomic, qualified, or unqualified basic types;
 — all atomic, qualified, or unqualified enumerated types;
 — all atomic, qualified, or unqualified pointer types;

To:
 — all qualified or unqualified basic types,
 — all qualified or unqualified enumerated types,
 — all qualified or unqualified pointer types,

And append to the paragraph:
 Whether any atomic types have fundamental alignment is
implementation defined.

Change footnote 49 (attached to 6.2.8#3) from:
 Every over-aligned type is, or contains, a structure or union type
with a member to which an extended alignment has been applied.

To:
 Every over-aligned type is, or contains, a structure or union type
with a member to which an extended alignment has been applied, or an
atomic type that does not have a fundamental alignment.

