
C xor C++ Programming
WG21 Document Number: P2735R0

WG14 Document Number: N3065

Date: 2022-12-05

Author, Affiliation: Aaron Ballman <aaron@aaronballman.com>, Intel

Audience: SG22 C and C++ Compatibility Study Group

Summary of Changes

R0/N3065

• Original proposal

Introduction and Rationale
It is not uncommon to hear about C/C++ programming as a shorthand for “C and C++” programming.

This implies that C and C++ are similar, but distinct, programming languages with the obvious

interpretation being that C++ is a proper superset of C. However, this does not accurately describe the

situation. The C++ programming language is inspired by the C programming language and supports much

of the syntax and semantics of C, but is not a superset that is built on top of C. Despite sharing a historical

relationship to one another, the languages have evolved independently and are specified in separate

language standards. Due to this separation of the two specifications, incompatibilities have crept into the

shared space of code that can be compiled by either a C compiler or a C++ compiler.

This document enumerates instances where the same source code has different meaning when compiled

with C and C++ implementations. Such source code is often a pain point for users and implementers

because it represents a “sharp edge” in both languages, especially if the code appears in a header file that

may be compiled in separate C and C++ translation units. These sharp edges are areas where either

committee may be interested in exploring unification efforts.

This document explicitly does not cover situations where one language has a feature that the other

language does not have, as the two languages are intentionally distinct and so these kinds of

incompatibilities are to be expected. It also does not cover incompatibilities between the standard library

functionality.

Each incompatibility has a stable name (a name in square brackets) to make it easier to refer to a

particular instance of incompatibility, contrived code examples in each language demonstrating the

incompatibility, a link to an online compiler demonstrating the behaviors shown, and an explanation of

the incompatibility with citations from the standards.

List of Incompatibilities
[type.bitfield]

C C++

struct S {

 int i : 1;

} s;

sizeof(1, s.i); // OK, sizeof(int)

struct S {

 int i : 1;

} s;

sizeof(1, s.i); // Error

https://godbolt.org/z/nsjjjK

In C++, the result of a comma operator is (effectively) the right-hand operand. If the right-hand

operand is a bit-field, then the result is a bit-field. In C, the result is the value and type of the right-hand

operand, but the operand undergoes lvalue conversion and the resulting type is the type of the bit-field

(int).

Note: 6.7.2.1p12 says “A bit-field is interpreted as having a signed or unsigned integer type consisting

of the specified number of bits.” which suggests that the resulting type after lvalue conversion perhaps

should retain that it’s a bit-field.

[comma.value-category]

C C++

int i = 0;

(1, i) = 12; // Error

int i = 0;

(1, i) = 12; // OK, assigns to i

https://godbolt.org/z/WoTK5x

In C++, the result of a comma operator is (effectively) the right-hand operand. In C, the result is the

value and type of the right-hand operand but does not have the same value category.

https://godbolt.org/z/nsjjjK
https://godbolt.org/z/WoTK5x

[assign.value-category]

C C++

int i = 0;

(i = 12) = 11; // Error

int i = 0;

(i = 12) = 11; // OK, assigns to i

https://godbolt.org/z/4ErTTr

The result of an assignment expression in C is not an lvalue (6.5.16p3), but it is an lvalue in C++

([expr.ass]p1).

[incdec.value-category]

C C++

int i = 0;

++i = 12; // Error

int i = 0;

++i = 12; // OK, assigns to i

https://godbolt.org/z/Kr5s3bYaj

The result of an increment or decrement expression in C is not an lvalue (6.5.3.1p2, 6.5.16p3), but it is

an lvalue in C++ ([expr.ass]p1).

[conditional.value-category]

C C++

int i = 0;

0 ? 1 : i = 12; // Error

(0 ? 1 : i) = 12; // Error

int i = 0;

0 ? 1 : i = 12; // OK, assigns to i

(0 ? 1 : i) = 12; // Error

https://godbolt.org/z/vbG1dn

https://godbolt.org/z/4ErTTr
https://godbolt.org/z/Kr5s3bYaj
https://godbolt.org/z/vbG1dn

[decl.tag]

C C++

struct S { int i; };

union U { int i; float f; };

enum E { One };

S s; // Error

U u; // Error

E e; // Error

struct S { int i; };

union U { int i; float f; };

enum E { One };

S s; // OK

U u; // OK

E e; // OK

https://godbolt.org/z/oKqaoe

C has the notion of tag name spaces for structures, unions, and enumerations (aka, tag types). Because

tag types introduce names into separate name spaces, you must specify the tag type to look up the

name. C++ does not have separate tag name spaces, but does allow you to write an elaborated type

specifier that includes the tag name for disambiguation purposes from other identifiers that are in scope.

[decl.bitfield-width]

C C++

struct S {

 int i : 67; // Error

};

struct S {

 int i : 67; // OK, extra bits are padding

};

https://godbolt.org/z/Th76sr

C does not allow a bit-field to specify a width that exceeds the width of the underlying type of the

declaration (6.7.2.1p4) while C++ allows it and defines the extra bits as padding ([class.bit]p1).

https://godbolt.org/z/oKqaoe
https://godbolt.org/z/Th76sr

[decl.anon-param-type]

C C++

void func(

 struct S { int x; } s // OK

);

void func(

 struct S { int x; } s // Error

);

https://godbolt.org/z/W6Wefj

As a natural consequence of the grammar for the language, C allows a type definition to appear

anywhere a type can be specified while C++ does not.

[decl.qualified-return-type]

C C++

struct S { int i; };

const struct S func(void);

void foo(void) {

 typeof(func()) s = {12};

 s.i = 100; // OK

}

struct S { int i; };

const struct S func(void);

void foo(void) {

 decltype(func()) s = {12};

 s.i = 100; // Error

}

https://godbolt.org/z/jT614EoYv

After the resolution of DR 423, in C the return type of a function declarator is the unqualified version

of the specified return type (6.7.6.3p4). However, in C++, the return type of the function is not

similarly adjusted ([dcl.fct]p1). This can be observed during redeclaration merging or in situations

where the languages allow some amount of type inspection, such as _Generic in C or templates in C++.

https://godbolt.org/z/W6Wefj
https://godbolt.org/z/jT614EoYv

[decl.enum-in-struct]

C C++

struct S { enum E { One } e; };

int I = One; // OK

struct S { enum E { One } e; };

int I = One; // Error

https://godbolt.org/z/rP1W7TfsK

In C, an enumeration constant is declared in its surrounding scope (6.7.7.2p4), and a structure does not

form a new scope (6.2.1p4). In C++, a structure does form a scope ([basic.scope.class]p1. Thus, in C

the enumeration constant One is visible in the global scope and in C++ it is not visible and can only be

accessed through S::One.

[expr.qualified-cast]

C C++

struct S { int i; };

void foo(void) {

 struct S orig;

 typeof((const struct S)orig)

 s = { 12 };

 s.i = 100; // OK

}

struct S { int i; };

void foo(void) {

 S orig;

 decltype((const S)orig)

 s = { 12 };

 s.i = 100; // Error

}

https://godbolt.org/z/dh7xvK3hc

After the resolution of DR 423, explicit cast operations in C ignore the qualifiers specified in the cast

(6.5.4p5). However, in C++, the type of the cast operation is not similarly adjusted ([expr.cast]p1). This

can be observed in situations where the languages allow some amount of type inspection, such as

_Generic in C or templates in C++.

https://godbolt.org/z/rP1W7TfsK
https://godbolt.org/z/dh7xvK3hc

[expr.implicit-cast-from-void-ptr]

C C++

#include <stdlib.h>

int *ptr =

 malloc(sizeof(int)); // OK

#include <stdlib.h>

int *ptr =

 malloc(sizeof(int)); // Error

https://godbolt.org/z/WbE99G

C allows a pointer to void to implicitly cast to any other pointer type (6.3.2.3p1, 6.5.16.1p1) while C++

does not.

[stmt.return-void]

C C++

void bar(void);

void foo(void) {

 return bar(); // Error

}

void bar(void);

void foo(void) {

 return bar(); // OK

}

https://godbolt.org/z/4ss611

In C, a return statement with an expression is a constraint violation if the function returns void, even if

the expression used in the return statement is a void expression (6.8.6.4p1). C++ has no such restriction

([stmt.return]p2).

N.B. implementations frequently allow this construct in C as a conforming extension.

[type.char-literal]

C C++

sizeof('a'); // sizeof(int) sizeof('a'); // sizeof(char)

https://godbolt.org/z/rhs7K5

Character literals in C are of type int (6.4.4.4p11) while character literals in C++ are of type char

([lex.ccon]p1).

https://godbolt.org/z/WbE99G
https://godbolt.org/z/4ss611
https://godbolt.org/z/rhs7K5

[decl.non-narrow-type]

C C++

wchar_t a = L'a'; // Error

char16_t c16 = u'a'; // Error

char32_t c32 = U'a'; // Error

wchar_t a = L'a'; // OK

char16_t c16 = u'a'; // OK

char32_t c32 = U'a'; // OK

https://godbolt.org/z/8aaavfdej

wchar_t, char16_t, and char32_t are builtin datatypes in C++ but requires including a header file in C.

Also note that this means that wchar_t, char16_t, and char32_t are typedefs to integer types in C while the

same is not true in C++.

[decl.empty-tag]

C C++

struct S {}; // Error

enum E {}; // Error

struct S {}; // OK

enum E {}; // OK

https://godbolt.org/z/sjvbhe

The grammar for tag declarations (struct, enum, or union) in C does not allow a tag declaration with no

members (6.7.2.1p1, 6.7.2.2p1), which is allowed by C++.

N.B. implementations frequently allow these constructs in C as a conforming extension.

https://godbolt.org/z/8aaavfdej
https://godbolt.org/z/sjvbhe

[decl.anonymous-struct]

C C++

struct S {

 struct { // OK

 int i;

 };

 union { // OK

 float f;

 char c;

 };

 int j;

};

struct S {

 struct { // Error

 int i;

 };

 union { // OK

 float f;

 char c;

 };

 int j;

};

https://godbolt.org/z/nrEfsT

C allows for the declaration of an anonymous structure or anonymous union type (6.7.2.1p15) while

C++ only allows for the declaration of an anonymous union type ([class.union.anon]).

N.B. implementations frequently allow the declaration of an anonymous struct in C++ as a conforming

extension.

[decl.str-init-without-null-term]

C C++

char c[4] =

 "asdf"; // OK, but not null terminated

char c[4] =

 "asdf"; // Error

https://godbolt.org/z/ffe7xf

C++ requires there to be sufficient room for all of the initializers including the terminating null

character ([dcl.init.string]p2), while C has no such requirement (6.7.9p14).

https://godbolt.org/z/nrEfsT
https://godbolt.org/z/ffe7xf

[type.non-const-str-literal]

C C++

"foo"[0] = 'b'; // Compiles, but with

 // undefined behavior

"foo"[0] = 'b'; // Error

https://godbolt.org/z/Gz5b1P

String literals in C are of type char[] (6.4.5p6) and are of type const char[] ([lex.string]p5) in C++. This

means that the assignment in C is valid (it meets all of the requirements for simple assignment) but the

attempted modification of the string literal is still undefined behavior (6.4.5p7).

[expr.call-main]

C C++

int main(void) {

 ...

}

static void foo() {

 main(); // OK

}

int main(void) {

 ...

}

static void foo() {

 main(); // Error

}

https://godbolt.org/z/PaGoh8

C++ prohibits calling the main() function ([basic.start.main]p3 while C has no such restriction.

N.B. implementations frequently allow calling main() in C++ as a conforming extension.

https://godbolt.org/z/Gz5b1P
https://godbolt.org/z/PaGoh8

[decl.main-signature]

C C++

// Impl-defined if signature is OK

float main(void) {

 return 0.0f; // Unspecified result

 // returned to the host

 // environment

}

// Error: incorrect signature

float main(void) {

 return 0.0f;

}

https://godbolt.org/z/934jns

C++ restricts the signature of main() in several ways, one of which is that the return type must be int

([basic.start.main]p2). C has far less constraints and allows for a fully implementation-defined

signature of main(), including the return type (5.1.2.2.1p1). In C, if the return type of main() is not

compatible with int, the actual value returned to the host environment is unspecified (5.1.2.2.3p1).

[decl.tentative]

C C++

// At file scope

int i;

int i; // OK

// At file scope

int i;

int i; // Error, redefinition

https://godbolt.org/z/8cq91K

C has the notion of a tentative definition for a variable at file scope (6.9.2p2) and allows for multiple

tentative definitions of the same variable with the result behaving as though there was only a single

definition of the object. C++ does not have tentative definitions.

https://godbolt.org/z/934jns
https://godbolt.org/z/8cq91K

[decl.linkage]

C C++

// At file scope

const int i = 12; // external linkage

int j = 10; // external linkage

// At file scope

const int i = 12; // internal linkage

int j = 10; // external linkage

https://godbolt.org/z/e5rz6v

A declaration of an object at file scope in C always has external linkage unless the declaration

explicitly gives a different linkage (6.2.2p5). C++ has the same rule except that it carves out an

exception for the declaration of const objects at file scope, which are given internal linkage

([basic.link]p3).

[expr.inc-dec-bool]

C C++

#include <stdbool.h>

bool b = true;

++b; // OK, still true

bool b = true;

++b; // Error

https://godbolt.org/z/Mv55ce

C++ does not allow either prefix or postfix ++ or -- to be applied to an object of type bool

([expr.pre.incr]p1-2, [expr.post.incr]p1-2). C allows the expression, but gives a perhaps surprising

result that ++ does not always invert the Boolean value.

N.B. while C++ disallows prefix ++ and -- on an object of type bool, it still allows some_bool += 1 (and

some_bool -= 1) despite defining prefix ++ and -- as being equivalent to += 1 and -= 1 ([expr.pre.incr]p1-

2).

https://godbolt.org/z/e5rz6v
https://godbolt.org/z/Mv55ce

[decl.missed-init]

C C++

void func(void) {

 goto bad; // OK

 int i = 12;

bad:

 ; // i is uninitialized here.

}

void func(void) {

 goto bad; // Error

 int i = 12;

bad:

 ;

}

https://godbolt.org/z/oscWd8

C does not place restrictions on jumping over a declaration with an initializer provided, while C++

explicitly disallows it ([stmt.dcl]p3) in order to ensure that a variable declared with an initializer is

always initialized by the time you can access the in-scope object.

[decl.useless-storage-spec]

C C++

// Ok, but useless declaration

static struct S {

 int i;

};

static struct S { // Error

 int i;

};

https://godbolt.org/z/jxxb4W

The grammar productions for both C and C++ allow specifying a storage class specifier along with a

type specifier. This allows you to declare both the type and a variable (with the given storage class

specifier) in the same declaration, as in static struct S { int i; } s; In C++, if there is no declaration for the

storage class specifier to apply to, the code is ill-formed ([dcl.stc]p1) while in C, the useless storage

class specifier is ignored.

https://godbolt.org/z/oscWd8
https://godbolt.org/z/jxxb4W

[decl.unitialized-const]

C C++

const int i; // Okay const int i; // Error

https://godbolt.org/z/P7G3bs

In C++, default initialization of a const object requires that the object be const default constructible so

that the object is initialized appropriately ([dcl.init]p7). C does not have such a requirement.

N.B. that the C++ default initialization rules still apply even if the object would be initialized through

other means, such as through zero initialization.

[decl.dup-quals]

C C++

// Okay, duplicate const ignored

const const int i = 12;

const const int i = 12; // Error

https://godbolt.org/z/nnoGxd

The grammar productions for type qualifiers allows type qualifiers to be duplicated. C explicitly

ignores duplicate qualifiers as though only a single qualifier was specified (6.7.3p6) while C++

explicitly disallows qualifiers from being duplicated ([dcl.type.general]p2).

[decl.auto-storage]

C C++

auto int i; // OK auto int i; // Error, two type specifiers

https://godbolt.org/z/eeETd4

auto is a storage class specifier in C and a type specifier in C++. So the declaration in C is a valid

declaration anywhere an automatic declaration is allowed, but is an error in C++ because the

declaration specifies multiple type specifiers.

N.B. C2x supports type inference through auto, but auto is still a storage class specifier rather than a

type specifier, which is different than in C++ where auto is a type specifier.

https://godbolt.org/z/P7G3bs
https://godbolt.org/z/nnoGxd
https://godbolt.org/z/eeETd4

[decl.designated-init]

C C++

struct S {

 int a, b, c;

 struct T {

 int x, y;

 } t;

 float f[3];

} s = {

 .a = 12,

 .c = 10,

 .t.x = 1, 2,

 .f[1] = 1.0f

};

struct S {

 int a, b, c;

 struct T {

 int x, y;

 } t;

 float f[3];

} s = {

 .a = 12,

 .c = 10, // Error, skips init of b

 .t.x = 1, 2, // Error, specifies subobject

 // Error, does not explicitly

 // specify the second element

 // being initialized

 .f[1] = 1.0f // Error, specifies array index

};

https://godbolt.org/z/9WE1EW

Designated initialization in C++ is considerably more restricted than designated initialization in C. In

C, designated initialization can occur in any order, does not need to initialize every element, can be

used on array elements, can initialize subobjects, and can initialize subsequent members by position

rather than by name. In C++, designated initialization must occur in declaration order, must explicitly

name the member being initialized, and cannot be used on arrays or subobjects ([dcl.init.list],

[dcl.init.aggr]).

Further, the evaluations of the initializer subexpressions are unsequenced in C (6.7.9p23), but are

sequenced in declaration order in C++ ([dcl.init.aggr]p6).

https://godbolt.org/z/9WE1EW

[type.enumerator]

C C++

enum foo { one, two };

enum bar { red, green };

enum foo f = red; // OK

enum bar b = 1; // OK

enum foo { one, two };

enum bar { red, green };

enum foo f = red; // Error

enum bar b = 1; // Error

https://godbolt.org/z/s9seqv

In C, the enumerators defined within an enumeration have type int (6.7.2.2p4) and the integer

conversion rules allow for an implicit conversion between the enumeration type and its compatible

integer type, so the assignments are allowed. In C++, the enumerators have the type of the enumeration

([dcl.enum]p5) and require an explicit cast to avoid the type mismatch on assignment.

N.B. the fact that the enumerators have different types in C and C++ can come up in other contexts. For

instance, assert(sizeof(enum foo) == sizeof(one)); is guaranteed in C++ but not in C.

[decl.empty-tu]

C C++

/* empty translation unit: Error */ /* empty translation unit: OK */

https://godbolt.org/z/4vd735

By virtue of the grammar used in C, a translation unit must declare at least one declaration (6.9p1),

while in C++, a translation unit need not declare anything ([basic.link]p1).

https://godbolt.org/z/s9seqv
https://godbolt.org/z/4vd735

[decl.empty-decl]

C C++

/* At top-level of the

 translation unit */

; // Error

/* At top-level of the

 translation unit */

; // OK

https://godbolt.org/z/fGr4K9

The C++ grammar has an empty-declaration ([dcl.pre]p1) production that the C grammar does not have

(6.7p1).

[type.scope]

C C++

struct X {

 int x;

 struct Y { int a; } y;

};

struct Y y; // OK

struct X {

 int x;

 struct Y { int a; } y;

};

struct Y y; // Error

https://godbolt.org/z/nc77qr

In C++, the scope of a nested class declaration within a class type is the outer class type itself

([class.nest]p1, [class.nested.type]p1), while in C, the nested declaration is scoped to the translation

unit (6.7.2.1p10).

[stmt.for-decl-storage-class]

C C++

for (static int i = 0; // Error

 i < 10; ++i)

 ;

for (static int i = 0; // OK

 i < 10; ++i)

 ;

https://godbolt.org/z/76hnnE

C explicitly prohibits the declaration of a variable with a storage class other than auto or register in a

for loop (6.8.5p3), while C++ allows other storage classes to be used.

https://godbolt.org/z/fGr4K9
https://godbolt.org/z/nc77qr
https://godbolt.org/z/76hnnE

[stmt.for-scope]

C C++

for (int i = 0; i < 10; ++i) {

 int i = 12; // OK

}

for (int i = 0; i < 10; ++i) {

 int i = 12; // Error

}

https://godbolt.org/z/vYzxPb7zd

In C++, the scope of the variable declared in the init-statement of the for loop is the same as the scope

of the variable declared in the for loop substatement ([stmt.for]p1), while in C the scopes are different

(6.8.5.3p1). The result is a redeclaration error in C++ and shadowing in C.

[decl.thread-local-storage-class]

C C++

#include <threads.h>

void func(void) {

 thread_local int i; // Error

}

void func(void) {

 thread_local int i; // OK

}

https://godbolt.org/z/b1bK5r

Thread local variables must have static storage duration in both C and C++. In C++, if the static

keyword is absent in the declaration specifiers for the type, static is assumed implicitly ([dcl.stc]p3). C

requires the storage duration to be specified (6.7.1p2).

https://godbolt.org/z/vYzxPb7zd
https://godbolt.org/z/b1bK5r

[expr.left-shift]

C C++

_Static_assert(sizeof(1) == 4,

 "specific to 32-bit ints");

void func(void)

 int i = 1 << 31; // UB

}

static_assert(sizeof(1) == 4,

 "specific to 32-bit ints");

void func(void) {

 int i = 1 << 31; // OK

}

https://godbolt.org/z/oEe6ex

C (6.5.7p4) requires the result of the left-shift expression to be representable in the result type,

otherwise the expression has undefined behavior. C++ ([expr.shift]p1-2) only makes the behavior

undefined if the shift operand has a value that is negative or is the same (or larger) than the width of the

promoted left operand.

[expr.unsequenced-modification]

C C++

void foo(int i) {

 i = i++ + 1; // UB

}

void foo(int i) {

 i = i++ + 1; // OK, same as i = i + 1;

}

https://godbolt.org/z/6she6eahj

In C++, the assignment is sequenced after the value computation of the right-hand side ([expr.ass]p1),

so the operation is not unsequenced. In C, the evaluation of both operands are unsequenced (6.5.16p3).

https://godbolt.org/z/oEe6ex
https://godbolt.org/z/6she6eahj

[dcl.array-vla]

C C++

const int i = 4;

int foo[i]; // Error

void func(void) {

 char bar[i] =

 {'a', 'b', 'c'}; // Error

}

const int i = 4;

int foo[i]; // OK

void func(void) {

 char bar[i] =

 {'a', 'b', 'c'}; // OK

}

https://godbolt.org/z/se7cj64ed

In C, a variable declared as const is not an integer constant expression (6.6p6), and so its use to declare

the bounds in an array declaration causes the array to be a variable-length array. Variable-length arrays

are not allowed to appear at file scope (6.7.6.2p2) and are not allowed to have an initializer (6.7.9p3).

In C++, which does not have variable-length arrays, the const variable is an integer constant expression

([expr.const]p8) and produces a valid array declaration.

[lex.ucn]

C C++

char c = '\u0025'; // Error char c = '\u0025'; // OK

https://godbolt.org/z/a6fx5qohe

C places different constraints on universal character names (UCN) than C++. For example, code points

less than 0x00A0 are restricted in C (6.4.3p2) and restricted differently in C++ ([lex.charset]p2).

https://godbolt.org/z/se7cj64ed
https://godbolt.org/z/a6fx5qohe

[type.punning]

C C++

int func(float f) {

 union {

 int i;

 float f;

 } u;

 u.f = f;

 return u.i; // OK

}

int func(float f) {

 union {

 int i;

 float f;

 } u;

 u.f = f;

 return u.i; // UB

}

https://godbolt.org/z/Wchs3GTa5

In C++, only one member of the union may be active at a time, and only the active member of the

union is within its lifetime ([class.union.general]p1). In the example above, the assignment to u.f causes

f to be the active member of the union and starts the lifetime of f. Accessing an object outside of its

lifetime is undefined behavior ([basic.life]). This is why accessing u.i is undefined behavior in C++; the

lifetime of i has not started.. C does not have the notion of an active member of a union; all union

members have the same lifetime as that of the union itself. When nominating a union member, the

named member is accessed for its value (6.5.2.3p3), and the result is valid so long as the union is

within its lifetime. Thus, it is valid to use a union to type pun in C but not C++.

[expr.unary.plus]

C C++

void func(int *p) {

 +p; // Error

}

void func(int *p) {

 +p; // OK

}

https://godbolt.org/z/Wq7dK8hY6

The unary + operator in C++ operates on an arithmetic, unscoped enumeration, or pointer type

([expr.unary.op]p7) and yields the value of the operand. However, in C, the unary + operator is

constrained to operate only on an arithmetic type (6.5.3.3p1), which includes enumeration types

(6.2.5p20) but does not include pointer types.

https://godbolt.org/z/Wchs3GTa5
https://godbolt.org/z/Wq7dK8hY6

[expr.alignment]

C C++

(void)_Alignof(int[]); // Error (void)alignof(int[]); // OK

https://godbolt.org/z/vdGd1cEKW

In C, the operand to _Alignof must be a complete object type (6.5.3.4p1). If the type is an array type,

the alignment returned is that of the element (6.5.3.4p3). In C++, the operand to alignof must be a

complete object type or an array thereof ([expr.alignof]p1), and if the type is an array, the alignment

returned is that of the element ([expr.alignof]p3). An array of unknown bounds is an incomplete type,

which is why this example is invalid in C.

[type.align]

C C++

#include <stdalign.h>

int alignas(int) unsigned

 i; // OK

int alignas(int) unsigned

 i; // Error

https://godbolt.org/z/3cz4vv8j6

In C, the alignas macro expands to the _Alignas keyword (7.15p2), and the _Alignas keyword is part of

the type-specifier-qualifier production (6.7.2.1p1), which means it may appear anywhere a type

specifier or type qualifier may appear. In C++, the alignas keyword is an attribute-specifier

([dcl.attr]p1), which means it may appear anywhere an attribute-specifier-seq may appear. An attribute

specifier sequence is not allowed in all of the places a type specifier or qualifier is allowed.

https://godbolt.org/z/vdGd1cEKW
https://godbolt.org/z/3cz4vv8j6

[conformance.error]

C C++

#error "error" #error "error"

N/A

In C, the #error directive requires the program to not translate (Clause 4p4), while in C++, the directive

causes the program to be ill-formed ([cpp.error]p1), and an ill-formed program can still be translated

successfully ([intro.compliance.general]p8.

N.B. A core issue is being opened in WG21 to address this and no C++ implementation is known to

successfully translate a programming containing #error directive, which is why no link is provided

demonstrating the diverging behavior.

[expr.deref-void-pointer]

C C++

void func(void *vp) {

 (void)*vp; // Undefined behavior

}

void func(void *vp) {

 (void)*vp; // Error

}

https://godbolt.org/z/d9K1GWobE

In C++, the operand to a unary * operator requires the operand to be a pointer to an object type

([expr.unuary.op]p1), and void is not an object type ([basic.types.general]p8). C has the same

requirements on the operand to a unary * operator, but treats void as being an object type (6.2.5p21).

Despite it not being a constraint violation in C, it is nevertheless undefined behavior because the

standard doesn’t define what happens in this case.

https://godbolt.org/z/d9K1GWobE

[expr.access-struct-member]

C C++

struct S {

 char a[10];

 // Error

 _Static_assert(sizeof(a) == 10);

};

struct S {

 char a[10];

 // OK

 static_assert(sizeof(a) == 10);

};

https://godbolt.org/z/rsT6sKG6f

The lookup rules of C++ have the ability to find member declarations when performing a lookup within

the context of the structure containing the member by virtue of an implicit this object ([expr.prim.id],

[basic.lookup.unqual]). C does not treat members of structures or unions as identifiers as ordinary

identifiers but as members in their own name space (6.2.3p1) and primary expressions only look up

identifiers, not members (6.5.1p1).

Acknowledgements
I would like to recognize the following people for their help in this work: Jens Gustedt, Tom Honermann,

Vsevolod Livinskii, Jens Maurer, Shafik Yaghmour, and Segher Boessenkool.

https://godbolt.org/z/rsT6sKG6f

