
C2x Issue Report

WG14 N2483

Title: Unclear type relationship between a format specifier and its argument

Author, affiliation: Aaron Ballman, GrammaTech

Date: 2020-02-10

Proposal category: Change/Clarification Requests

Abstract: The type relationship between an argument passed to a formatted io function and its

corresponding format specifier could stand to be clarified.

Unclear type relationship between a
format specifier and its argument
Reply-to: Aaron Ballman (aaron@aaronballman.com)

Document No: N2483

Revises Document No: N2420

Date: 2020-02-10

Summary of Changes
N2483

• Clarified va_arg behavior for pointer qualifications

• Updated the wording to be based on <stdarg.h> and va_arg

• Updated the specifications for fscanf, fwprintf and fwscanf

N2420

• Original report

Introduction and Rationale
7.21.6.1p9 states:

9 If a conversion specification is invalid, the behavior is undefined.286) If any argument is not the

correct type for the corresponding conversion specification, the behavior is undefined.

The second sentence does not make it clear what constitutes a “correct type”. For instance, given that

there is no conversion specification for objects of type _Bool, this sentence could be read that passing an

object of type _Bool to printf() is undefined behavior.

Reflector discussion (from roughly SC22WG14.17025 through SC22WG14.17060) observed that we

have concepts like exact type matches, same representation, and compatible types, and that it would be

better to reword this paragraph to bring it in line with <stdarg.h> instead of doing a minor correction.

The ensuing reflector discussion found additional confusion in that the %n specifier does not explicitly

state its type requirements in the absence of a length modifier, nor does %p suggest that it can be used to

print a const-qualified pointer to non-void type, such as const char *.

Proposed Wording
The wording proposed is a diff from WG14 N2454. Green text is new text, while red text is deleted text.

Modify 7.16.1.1p2:

The va_arg macro expands to an expression that has the specified type and the value of the next

argument in the call. The parameter ap shall have been initialized by the va_start or va_copy macro

(without an intervening invocation of the va_end macro for the same ap). Each invocation of the

va_arg macro modifies ap so that the values of successive arguments are returned in turn. The parameter

type shall be a type name specified such that the type of a pointer to an object that has the specified type

can be obtained simply by postfixing a * to type. If there is no actual next argument, or if type is not

compatible with the type of the actual next argument (as promoted according to the default argument

promotions), the behavior is undefined, except for the following cases:

— both types are pointers to qualified or unqualified versions of compatible types;

— one type is a signed integer type, the other type is the corresponding unsigned integer type, and the

value is representable in both types;

— one type is pointer to qualified or unqualified void and the other is a pointer to a qualified or

unqualified character type.

Modify 7.21.6.1p8, the p and n specifiers:

8 The conversion specifiers and their meanings are:

…

p The argument shall be a pointer to void or a pointer to a character type. The value of the pointer

is converted to a sequence of printing characters, in an implementation-defined manner.

n The argument shall be a pointer to signed integer whose type is specified by the length modifiers,

if any, for the conversion specification, or shall be int if no length modifiers are specified for the

conversion specification. into which is written tThe number of characters written to the output stream so

far by this call to fprintf will be stored into the integer pointed to by the argument. No argument is

converted, but one is consumed. If the conversion specification includes any flags, a field width, or a

precision, the behavior is undefined.

…

Modify 7.21.6.1p9:

9 If a conversion specification is invalid, the behavior is undefined.286) If any argument is not the correct

type for the corresponding conversion specification, the behavior is undefined.

Append to that same paragraph:

fprintf shall behave as if it uses va_arg with a type argument naming the type resulting from applying

the default argument promotions to the type corresponding to the conversion specification and then

converts the result of the va_arg expansion to the type corresponding to the conversion specification.x)

Add a new footnote:

x) The behavior is undefined when the types differ as specified for va_arg (7.16.1.1).

Modify 7.21.6.2p12:

12 In the following, the type of the corresponding argument for a conversion specifier shall be a pointer to

a type determined by the length modifiers, if any, or specified by the conversion specifier. The conversion

specifiers and their meanings are:

d … Unless a length modifier is specified, tThe corresponding argument shall be a pointer to int

signed integer.

i … Unless a length modifier is specified, tThe corresponding argument shall be a pointer to int

signed integer.

o … Unless a length modifier is specified, tThe corresponding argument shall be a pointer to

unsigned int unsigned integer.

u … Unless a length modifier is specified, tThe corresponding argument shall be a pointer to

unsigned int unsigned integer.

x … Unless a length modifier is specified, tThe corresponding argument shall be a pointer to

unsigned int unsigned integer.

a,e,f,g … Unless a length modifier is specified, tThe corresponding argument shall be a pointer to

float floating.

c …

 If no l length modifier is present, the corresponding argument shall be a pointer to char, signed

char, unsigned char, or void that points to a buffer the initial element of a character array large

enough to accept the sequence. No null character is added.

 …

s …

 If no l length modifier is present, the corresponding argument shall be a pointer to char, signed

char, unsigned char, or void that points to a buffer the initial element of a character array large

enough to accept the sequence and a terminating null character, which will be added automatically.

 …

[…

 If no l length modifier is present, the corresponding argument shall be a pointer to char, signed

char, unsigned char, or void that points to a buffer the initial element of a character array large

enough to accept the sequence and a terminating null character, which will be added automatically.

 …

…

n No input is consumed. The corresponding argument shall be a pointer to signed integer. into

which is to be written tThe number of characters read from the input stream so far by this call to the

fscanf function will be stored into the integer pointed to by the argument. Execution of a %n directive

does not increment the assignment count returned at the completion of execution of the fscanf function.

No argument is converted, but one is consumed. If the conversion specification includes an assignment-

suppressing character or a field width, the behavior is undefined.

Modify 7.29.2.1p8, the p and n specifiers:

…

p The argument shall be a pointer to void or a pointer to a character type. The value of the pointer

is converted to a sequence of printing wide characters, in an implementation-defined manner.

n The argument shall be a pointer to signed integer whose type is specified by the length modifiers,

if any, for the conversion specification, or shall be int if no length modifiers are specified for the

conversion specification. into which is written tThe number of wide characters written to the output

stream so far by this call to fwprintf will be stored into the integer pointed to by the argument. No

argument is converted, but one is consumed. If the conversion specification includes any flags, a field

width, or a precision, the behavior is undefined.

…

Modify 7.29.2.1p9:

9 If a conversion specification is invalid, the behavior is undefined.286) If any argument is not the correct

type for the corresponding conversion specification, the behavior is undefined.

 Append to that same paragraph:

fwprintf shall behave as if it uses va_arg with a type argument naming the type resulting from

applying the default argument promotions to the type corresponding to the conversion specification and

then converts the result of the va_arg expansion to the type corresponding to the conversion

specification.x)

Add a new footnote:

x) The behavior is undefined when the types differ as specified for va_arg (7.16.1.1).

Modify 7.29.2.2p12:

12 In the following, the type of the corresponding argument for a conversion specifier shall be a pointer to

a type determined by the length modifiers, if any, or specified by the conversion specifier. The conversion

specifiers and their meanings are:

d … Unless a length modifier is specified, tThe corresponding argument shall be a pointer to int

signed integer.

i … Unless a length modifier is specified, tThe corresponding argument shall be a pointer to int

signed integer.

o … Unless a length modifier is specified, tThe corresponding argument shall be a pointer to

unsigned int unsigned integer.

u … Unless a length modifier is specified, tThe corresponding argument shall be a pointer to

unsigned int unsigned integer.

x … Unless a length modifier is specified, tThe corresponding argument shall be a pointer to

unsigned int unsigned integer.

a,e,f,g … Unless a length modifier is specified, tThe corresponding argument shall be a pointer to

float floating.

c …

 If no l length modifier is present, … The corresponding argument shall be a pointer to char,

signed char, unsigned char, or void that points to a buffer the initial element of a character array

large enough to accept the sequence. No null character is added.

 …

s …

 If no l length modifier is present, … The corresponding argument shall be a pointer to char,

signed char, unsigned char, or void that points to a buffer the initial element of a character array

large enough to accept the sequence and a terminating null character, which will be added automatically.

 …

[…

 If no l length modifier is present, … The corresponding argument shall be a pointer to char,

signed char, unsigned char, or void that points to a buffer the initial element of a character array

large enough to accept the sequence and a terminating null character, which will be added automatically.

 …

…

n No input is consumed. The corresponding argument shall be a pointer to signed integer. into

which is to be written tThe number of wide characters read from the input stream so far by this call to the

fwscanf function will be stored into the integer pointed to by the argument. Execution of a %n directive

does not increment the assignment count returned at the completion of execution of the fwscanf

function. No argument is converted, but one is consumed. If the conversion specification includes an

assignment-suppressing wide character or a field width, the behavior is undefined.

Acknowledgements
I would like to recognize the following people for their help with this work: Jens Gustedt, Martin Uecker,

Joseph Myers, and Martin Sebor.

