
Adding Fundamental Type for Short Float

Committee: ISO/IEC JTC1 SC22 WG14
Document Number: N2016

Committee: ISO/IEC JTC1 SC22 WG21 EWG Evolution
Document Number: P0192R1

Date: 2016-02-14

Authors: Boris Fomitchev, Sergei Nikolaev, Olivier Giroux, Lawrence Crowl

Reply to:

Boris Fomitchev boris@stlport.com
Sergei Nikolaev me@cvmlib.com
Olivier Giroux ogiroux@nvidia.com
Lawrence Crowl Lawrence@Crowl.org

Contents
1 Abstract . 2

2 Motivation . 2
2.1 Application use is growing . 2
2.2 Software support is growing . 2
2.3 Hardware support is growing . 3

3 Existing Solutions . 3
3.1 C . 3
3.2 C++ . 4

4 Proposed Solution . 4
4.1 Implementation Options . 4

5 Impact on the Standards . 4
5.1 Lexical Conventions (C and C++) . 5
5.2 Declarations (C and C++) . 5
5.3 Conversions (C and C++) . 5
5.4 Promotion (C and C++) . 5
5.5 C Library . 5

1

5.6 C++ Library . 6
5.7 Compatibility . 6

6 Acknowledgements . 6

1 Abstract

We propose adding a new fundamental type, short float: a floating-point type of un-
specified length, shorter or equal to float. The goal is to provide language option to
represent platform-specific floating-point values shorter than float 1.

2 Motivation

One may wonder: why would a programming language need yet another floating point type
after so many years of doing just fine without it? Apparently, the times are (a-)changing.
Small binary floating-point representation demand and support are becoming more and
more common rapidly. Efficient support for hardware that use the new formats becomes
mission critical for major software products.

2.1 Application use is growing

Application areas include computer graphics, image representation and machine learning.
For example, a 16-bit floating-point number better represents the dynamic range of images
than 16-bit or even 32-bit integers. A 16-bit floating-point number adequately handles human
perceptual range. In 2012, Adobe has defined new HDR DNG image file format that most
commonly uses 16-bit floats. [1] This gives those 16-bits much more dynamic range than a
traditional file stored as 16 or 32-bit integer data. Both Photoshop and Lightroom, as well as
every professional camera produced in 2015 make use of it.

2.2 Software support is growing

• OpenGL has GL_HALF_FLOAT format since OpenGL3.0. [2]

• The OpenEXR software distribution includes Half, a C++ class for manipulating half
float values almost as if they were a built-in C++ data type. [3]

• NVIDIA’s CUDA 7.5 platform header cuda_fp16.h defines the half and half2 data
types and defines __half2float() and __float2half() for conversion between
that and float. [4]

1Usually, this will be "binary16" from IEEE 754-2008 and ISO/IEC 60559:2011

2

• The gcc compiler provides an __fp16 native data type extension for ARM. Values of
that type are promoted to float for computation. [5]

• The LLVM compiler has a 16-bit floating-point type called half. [6]

2.3 Hardware support is growing

• NVIDIA defined the half data type in the Cg language [7], released in early 2002,
and was the first to implement 16-bit floating point in silicon, with the GeForce FX [8],
released in late 2002.

• Intel provides instructions for converting between 16-bit and 32-bit floats and C-level
intrinsics to use them. [9]

• ARM provides support as an optional extension to the VFPv3 architecture. [10]

Defining standards for 16-bit float math already exist. The IEEE 754 standard defined
’binary16’ 16-bit float in 2008. [11] ISO/IEC 60559 ratified that standard in 2011.

However, support for just the IEEE ’binary16’ format does not cover existing use cases.

• OpenGL provides 11-bit and 10-bit float channels in GL_R11F_G11F_B10F and 14-bit
float in GL_RGB9_E5.

• Arm provides a 16-bit floating-point format that differs from IEEE ’binary16’ by dropping
support for NaN and Infinity and then extending the range of values.

• The TI MSP430X architecture provides a 20-bit word-addressed machine. Short floa-
ting-point support on that machine would naturally use a 20-bit format.

There is more than enough evidence of the need for a fundamental and platform-defined
short floating-point type.

3 Existing Solutions

3.1 C

There is a draft technical specification of floating-point types extensions in C WG 14 N1896.
[12] Proposed solution embeds the length in type names, literal suffixes, etc: _Float16.
The specification is general in that it can handle a wide range of lengths. However, it only
permits an exact size.

3

3.2 C++

The closest related preliminary paper, P0102R0 proposes stdint-like support for integers
and floats with the sizes specified as template parameters. [13] While it provides better
flexibility in size, with ’least’ and ’fast’ specifications, than does the C TS, P0102R0 only
provides for IEEE-conforming implementations. It still does not provide a fundamental type
or means to specify "the platform’s short float type".

So, both C and C++ lack support for platform-defined short float size and/or possible
divergence from IEEE specifications.

4 Proposed Solution

We propose adding a new fundamental type, short float – for a float type of unspecified
(platform defined) bit size, shorter or equal to float. Language needs short float
to represent "shorter than float" math that may be natively available on the platform. This
name looks intuitive via short int analogy. Most important, it does not introduce any new
keywords. We’d be happy to outline few possible alternatives, but we can’t think of any that
would not require new keywords, would not break any code and still be semantically sound.
Also, even if we would consider adding one, it would have to start with _ and an uppercase
in order to not break existing code. It won’t even look right in a sentence. Say, we try to use
half, by double example. We’d end up with: _Half_float, float, double and long
double.

4.1 Implementation Options

As of storage and bit-layout for a short float number, we would expect most implementations
to follow IEEE 754-2008 [11] half-precision floating point number format. On platform that
do not provide any advantages of using shorter float, short float may be implemented as
storage-only type, like __fp16 on gcc/ARM today. For example, it can be stored in ’binary16’
format in memory (occupying less bytes than float), converted to native 32-bit float on read
from memory, operated on using native 32-bit float math operations and converted back to
’binary16’ on store to memory. Or, the platform may choose to not take any advantages of
short float and represent it using float in both memory and registers.

5 Impact on the Standards

This section contains brief, though (we believe) complete in scope, overview of changes that
would be introduced into C and C++ standard with the proposed addition of short float.
Should the addition be approved, additional separate documents with exact wording shall be
submitted to both 1/SC 22/WG and SC22 WG21.

4

5.1 Lexical Conventions (C and C++)

Adding new fundamental type involves adding literal suffixes specifying floating literals of
short float type. We suggest the following suffixes: "sf" and "SF", for example: 1.2sf
or 1.23e-1SF. 2

5.2 Declarations (C and C++)

short float should be added to the definitions of declarations for fundamental types.

5.3 Conversions (C and C++)

Conversion from short float to wider floating type are lossless; all short float numbers
are exactly representable as wider floats. Conversion from a wider floating type to short
float possibly may not preserve the float’s value exactly — in which case it is rounded to
the nearest representable short float using usual rules.

5.4 Promotion (C and C++)

short float should be promoted to double, just like float is.

5.5 C Library

• 〈stdio.h〉: For scanf format, length prefix "h" can be used — natural fit to specifier
grammar. For printf, promotion will do all the work, no additions necessary.

• 〈math.h〉: It is to be determined if new are short float versions of computational
functions defined in 〈math.h〉 would be required. sf function length suffix can be
used if those functions added. Implementations should be allowed to implement them
as trivial wrappers around functions for float type, using conversions.

• 〈float.h〉: should follow WG14 TS 18661-3. Compiler-defined short_float_t
can be added.

• Possible related extension would be to add 〈stdfloat.h〉 following 〈stdint.h〉
example, defining floating point types with fixed sizes, present on the platform, e.g.
float16_t, float32_t, float64_t. float16_t may be defined via short float if
it has 16 bit size.

2"s" and "h" suffixes appeared to conflict with new C++ suffixes from 〈chrono〉

5

5.6 C++ Library

• 〈cstdfloat〉: like other C++ C Library headers, should follow 〈stdfloat.h〉

• 〈cmath〉: overloads for short float should be added

• 〈limits〉: numeric_limits〈short float〉 should be added

• 〈numerics〉: complex〈short float〉 should be added

5.7 Compatibility

No compatibility issues adding short float — it’s fully backward compatible and no
C/C++ code can possibly be broken. Some additions proposed in 5.5 may break some
C code (e.g. float16_t being contradictory defined by user — such a case would be very
unusual). No C++ compatibility issues with 5.5 as those would be in std:: namespace.

6 Acknowledgements

Authors would like to thank members of SG6 and and EWG groups of C++ Standard Com-
mittee, for consideration of the initial revision [14] of this paper, constructive suggestions and
unanimously favorable reception. Also, we appreciate 22/WG 14 being open to consider this
proposal in the timeframe that may give a chance to coordinate possible closely related C
and C++ Standard changes, to the benefits of users of both languages.

References

[1] Adobe, "Digital Negative (DNG) Specification", Version 1.4.0.0, 2012
http://wwwimages.adobe.com/content/dam/.../photoshop/pdfs/dng_spec_1.4.0.0.pdf

[2] Segal, Akeley, "The OpenGL (R) Graphics System: A Specification (Version 3.0 – Au-
gust 11, 2008)" https://www.opengl.org/registry/doc/glspec30.20080811.pdf

[3] Kainz, Bogart, Stanczyk, ’Technical Introduction to OpenEXR’, p.18, "The HALF Data
Type" http://openexr.com/TechnicalIntroduction.pdf

[4] Mark Harris (NVIDIA), "New Features in CUDA 7.5: 16-bit Floating Point (FP16) Data",
2015 https://devblogs.nvidia.com/parallelforall/new-features-cuda-7-5/

[5] GNU Compilers Manual, 6.12 "Half-Precision Floating Point"
https://gcc.gnu.org/onlinedocs/gcc/Half-Precision.html

[6] "LLVM Language Reference Manual’, sec. "Floating Point Types"
http://llvm.org/releases/3.3/docs/LangRef.html#t-floating

6

http://wwwimages.adobe.com/content/dam/Adobe/en/products/photoshop/pdfs/dng_spec_1.4.0.0.pdf
https://www.opengl.org/registry/doc/glspec30.20080811.pdf
http://openexr.com/TechnicalIntroduction.pdf
https://devblogs.nvidia.com/parallelforall/new-features-cuda-7-5/
https://gcc.gnu.org/onlinedocs/gcc/Half-Precision.html
http://llvm.org/releases/3.3/docs/LangRef.html##t-floating

[7] NVIDIA, "Cg Language Specification", sec. "Types"
http://http.developer.nvidia.com/Cg/Cg_language.html

[8] Lal Shimpi, Anand, "NVIDIA Introduces GeForce FX (NV30)", 2002
http://www.anandtech.com/show/1034

[9] Patrick Konsor (Intel), "Performance Benefits of Half Precision Floats"
https://software.intel.com/en-us/articles/performance-benefits-of-half-precision-floats

[10] ARM, "Half-precision floating-point number support"
http://infocenter.arm.com/help/topic/com.arm.doc.dui0205j/CIHGAECI.html

[11] IEEE Computer Society, "IEEE Standard for Floating-Point Arithmetic" IEEE Std
754TM-2008 http://www.csee.umbc.edu/ tsimo1/CMSC455/IEEE-754-2008.pdf

[12] ISO/IEC, "Interchange and extended types" published as ISO/IEC JTC 1/SC 22/WG 14
N1896 http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1896.pdf

[13] Lawrence Crowl, "C++ Parametric Number Type Aliases", ISO/IEC JTC1 SC22 WG21
P0102R0 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0102r0.html

[14] Fomitchev, Nikolaev, Giroux, "Adding Fundamental Type for Short Float", ISO/IEC JTC1
SC22 WG21 P0192R0
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0192r0.pdf

[15] "Working Draft , Programming Languages – C++", ISO/IEC N4567
http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4567.pdf

[16] "Programming languages – C, Committee Draft – April 12, 2011", ISO/IEC 9899:201x
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

[17] ISO, "Floating-Point arithmetic", ISO/IEC/IEEE 60559:2011
http://www.iso.org/iso/catalogue_detail.htm?csnumber=57469

7

http://http.developer.nvidia.com/Cg/Cg_language.html
http://www.anandtech.com/show/1034
https://software.intel.com/en-us/articles/performance-benefits-of-half-precision-floats
http://infocenter.arm.com/help/topic/com.arm.doc.dui0205j/CIHGAECI.html
http://www.csee.umbc.edu/unhbox voidb@x penalty @M tsimo1/CMSC455/IEEE-754-2008.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1896.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0102r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0192r0.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4567.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=57469

